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Global changes, especially the predicted climate 
change, are expected to cause many changes in 
the nature of the Arctic regions. Changes in veg-
etation distribution, permafrost, hydrology and 
many other processes can be foreseen (Anisimov 
& Nelson 1996; Woodwell et al. 1998; Rupp et al. 
2000; Skre et al. 2002; Van der Linden et al. 2003). 
These changes would, in turn, have feedback 
effects on the global climate system (Bonan et al. 
1995; Betts 2000; Harding et al. 2002). Regional 
and global environmental changes can be studied 

effectively by combining spatially explicit data 
sets on vegetation and other landscape properties 
with process models (Levin 1992; Running et al. 
1994; Kittel et al. 2000; Plummer 2000; Rupp et 
al. 2000; Ranson et al. 2001; Van der Linden et al. 
2003). However, present knowledge of the detailed 
vegetation distribution of the remote Arctic areas 
is relatively scarce (Walker et al. 1995; Rees et al. 
2002). Remote sensing images and their classifi -
cation provide possibilities to cover large areas at 
relatively low costs compared to traditional fi eld 
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inventory based vegetation mapping (Walker et 
al. 1995; Barnsley et al. 1997; Cihlar 2000; Frank-
lin & Wulder 2002; Rees et al. 2002).

In recent years some remote sensing based 
global data sets on vegetation have become avail-
able for the global change research commu-
nity (Hansen et al. 2000; Loveland et al. 2000; 
Frank lin & Wulder 2002; Bartalev et al. 2003). 
The minimum spatial resolution, i.e. the small-
est distinguishable objects in the image, of these 
data sets is about 1 km. This is due to the resolu-
tion of the sensors (AVHRR, SPOT4-VEGETA-
TION) on which these global data sets are based. 
To quantify, understand and model many eco-
logical phenomena and processes, more spatial-
ly detailed data are often needed due to the fi ne-
scaled patchiness of the vegetation (Levin 1992; 
Barnsley et al. 1997; Woodcock et al. 1997; Stow 
et al. 1998; Virtanen et al. 1998; Plummer 2000; 
Rees et al. 2002). Some vegetation types occur 
in such small patches that they cannot be rec-
ognized at 1 × 1 km pixel resolution. Discrepan-
cies between different global data sets have been 
detected in the transition zones between vegeta-
tion types especially, and this is at least partly due 
to the more fi ne-grained landscape mosaic char-
acteristic of these areas (Hansen & Reed 2000). 
More detailed classifi cation data like those pre-
sented in this paper could be used as a reference 
in evaluating present and future global land cover 

data sets (Thomlinson et al. 1999; Hansen et al. 
2000; Loveland et al. 2000; Franklin & Wulder 
2002; Bartalev et al. 2003).

The recent improvements in computing power 
and increasing satellite image archives now 
enable production of spatially detailed classifi ca-
tions for large areas relatively quickly and effi -
ciently (Homer et al. 1997; Cihlar 2000; Ma et 
al. 2001; Franklin & Wulder 2002; Rees et al. 
2002). The most commonly used higher spatial 
resolution satellite images are captured by Land-
sat TM5 and ETM+ sensors that have a resolu-
tion of 30 × 30 m, and data with a resolution of 
a few metres are already available, e.g. from the 
IKONOS satellite. In spite of the development 
of spatially fi ner resolution data, assigning rele-
vant information about vegetation or land cover 
to spectral characteristics requires information 
on the vegetation and other land cover forms in 
the area. In remote areas where road networks are 
scarce or even completely absent, and the summer 
season is short and spectral properties of the 
plants change rapidly during that time, obtaining 
comprehensive ground reference data for classifi -
cation is often not an easy task (Rees at al. 2002). 
Therefore, a hybrid of methods, such as the use 
of multi-source geographic and other information 
in classifi cation, is often required instead of rely-
ing solely on ground reference data (Homer et al. 
1997; Franklin & Wulder 2002).

Fig. 1. Location of the Usa Basin, 
north-east Russia.
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The purpose of this paper is to present and dis-
cuss the methods and the results of a study in 
which a vegetation type and land cover classifi -
cation was produced at a fi ne spatial resolution 
(30 m pixel size) for a large, remote Arctic area in 
northern European Russia where the possibilities 
of performing fi eldwork are limited. The work is 
based on the classifi cation of a mosaic of sever-
al Landsat TM5 images using relatively sparse 
ground reference data. The work was carried out 
within the framework of the European Commis-
sion-funded TUNDRA project, in which spatially 
explicit Geographical Information System (GIS)-
based data sets have been built on the main veg-
etation types and their carbon stocks, soil prop-
erties, permafrost conditions and main climatic 
parameters of the catchment of the River Usa (Fig. 
1). The accuracy of our results is evaluated, and 
the advantages of using this kind of spatially 
detailed data in studies on a range of subjects are 
discussed. The resulting classifi cation data have 
in fact already been utilized in a number of stud-
ies: hydrological modelling (Van der Linden et al. 
2003), soil carbon estimates (Kuhry et al. 2002), 
carbon fl uxes (Heikkinen et al. 2004), vegetation 
changes during the Holocene (Kultti et al. 2003), 
river channel dynamics (Huisink et al. 2002) 
and forest line location (Virtanen et al. in press). 
Additional studies are in progress.

Materials and methods

Study area

The Usa Basin (93 500 km2, Fig. 1) is primarily 
located in the Komi Republic, except for some 
of the northern sections that extend up into the 
Nenets Autonomous Area. The region is unique 
in continental Europe in having such a broad, 
lowland tundra–taiga transition zone and exten-
sive permafrost. The River Usa discharges into 
the River Pechora on the west side of the catch-
ment. With elevations ranging from 300 to 
1800 m, the Ural Mountains bound the area in 
the east and occupy approximately 15 % of the 
area. The remaining part of the basin has an alti-
tude of between 40 and 300 m, with most of the 
area lying below 200 m. About 75 % of the Usa 
Basin is dominated by permafrost areas of vari-
ous degrees of continuity, ranging from isolated 
patches in the south to continuous permafrost in 
the north (Oberman & Mazhitova 2003).

There is a south-west to north-east decline in 
the mean annual temperature in the Usa Basin 
lowlands; the temperature also decreases with 
elevation in the Urals. Mean annual temperatures 
for the period 1961–1990 varied from –2.5 °C in 
Pechora (located immediately to the south-west 
of the Usa Basin) to –6.1 °C in Vorkuta (locat-
ed in the north-eastern part of the Usa Basin). 
The mean January and July temperatures were, 
respectively, –20.3 °C and +16.1 °C in Pechora and 
–21.2 °C and +13.0 °C in Vorkuta. Mean annual 
precipitation is around 550 mm in both Pechora 
and Vorkuta, but orographic precipitation results 
in higher values in the Urals. Meterological data 
were obtained from the Komi Republican Centre 
for Hydro meteorology and Environmental Moni-
toring, Syk tyvkar, Russia.

Vegetation zones in the Usa Basin range from 
taiga in the south to forest–tundra and tundra in 
the north. The northern part is covered by tree-
less tundra vegetation, the upland areas being 
occupied by dwarf shrub tundra vegetation with 
a well-developed lichen and/or moss layer. Peat 
plateau mires are common. Willow (Salix spp.) 
dominated, often paludifi ed, vegetation occurs 
in depressions and river valleys. The central part 
of the Usa Basin consists of a mosaic of tundra 
and northern coniferous taiga forests, and the 
southern part belongs to the northern taiga forest 
zone (Kozubov et al. 1999). Large open mires are 
common in the lowlands of the taiga zone. The 
forest stands in lowland areas mainly consist of 
mixed forests dominated by spruce (Picea obo-
vata Ledeb.). Pubescent birch (Betula pubes-
cens Ehrh.) is the most frequent broadleaved 
tree. Scots pine (Pinus sylvestris L.) is rare and is 
only found tens of kilometres to the south of the 
spruce treeline. Pine mainly occurs around open 
mires, although there are some stands on sandy 
soils along the largest rivers in the western parts 
of the Usa Basin. In the alpine taiga zone, the for-
ests consist of spruce, Siberian fi r (Abies sibirica 
Ledeb.), larch (Larix sibirica Ledeb.) and birch 
(Gorchakovskii 1960). Areas above the treeline 
are characterized by patchy alpine meadows and 
dwarf shrub–lichen dominated tundra vegeta-
tion. The steep and rocky slopes and the highest 
altitudes are almost completely devoid of vege-
tation.

Apart from in the surroundings of a few villag-
es, towns and industrial areas, there has been no 
forest cutting. Other human impacts on the veg-
etation are insignifi cant, with the exception of 
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some vegetation changes around the industrial 
complex of Vorkuta (Virtanen et al. 2002). Apart 
from air traffi c between the main cities (see Fig. 
2), the only land connection is a railroad running 
through the region from the south-west to Vorku-
ta that continues over the Urals. There are no car 
drivable roads outside the surroundings of the 
three main cities, except for the 100 km long road 
from the town of Usinsk to the northern oil fi elds.

Fieldwork

During the fi eldwork carried out in the summers 
of 1998 (4 weeks), 1999 (4 weeks) and 2000 (2 

weeks), we collected a set of ground reference 
data from fi ve different sub-areas covering all the 
main vegetation types in these areas (Fig. 3). This 
sub-area selection was partly determined by the 
research interests of the other research teams in 
the TUNDRA project. Most of the studied loca-
tions were reached by helicopter, except for sub-
area 5, which was accessed by an all-terrain land 
vehicle, and sub-area 4, which was reached by 
boat. During the helicopter fl ights we took hun-
dreds of oblique photographs (35 mm slides) with 
a 35 and 50 mm objective to be used in evaluating 
the accuracy of the classifi cation (Fig. 2). Ground 
reference sites selected to present all the charac-

Fig. 2. Spectrally corrected Landsat TM5 image mosaic for the Usa Basin. Channels 5, 4 and 3 are shown as red, green and blue. 
Areas covered by different images and the locations of the aerial oblique photographs (red dots) used to test the classifi cation 
accuracy are indicated.
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Fig. 3. (a) Classifi cation for the whole Usa Basin resampled to a 500 m grid. Five sub-areas and ground reference locations (red 
dots) are indicated. (b) Classifi cation of sub-area 3. (c) More detailed view of sub-area 3 showing individual grid cells. Ground 
reference locations in the area are indicated. 

(a)

(b)

(c)
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teristic vegetation types (avoiding mixed pixels) 
were located and marked on satellite image print-
outs in the fi eld. At each site (totalling 158), we 
estimated the percentage cover of different veg-
etation growth forms and the most common spe-
cies and vegetation assemblages on three circular 
plots (10 m diameter), situated 30 m apart along a 
south–north line. The percentage cover was esti-
mated visually in a vertical projection. On for-
ested sites we also measured a number of stand 
parameters (tree species composition, basal area, 
number of stems and average height).

Satellite image data

We constructed an image mosaic based on Land-
sat 5 TM images (pixel size 30 m) to cover the 
whole Usa Basin (Fig. 2). Among the images 
acquired from the 1980s to the late '90s, 1988 
had the largest cover of cloudless images over the 
study area and, therefore, the following images 
from fi ve different days were acquired (ddmmyy, 
path, row[s]): 310788, 166, 13-14; 130788, 168, 12-
15; 110788, 170, 12-14; 030888, 171, 13; 230695, 
168, 14. Because of cloudiness, an additional 
image from 1995 was used for some parts of the 
southern area.

When creating the mosaic, the images were fi rst 
georeferenced and rectifi ed to UTM coordinates 
using Russian 1:200 000 digital map data (source: 
GOSGISCENTER, Moscow). The images from 
different dates were then spectrally standard-
ized by multitemporal relative calibration using 
fi rst or second order linear regression equations 
for each channel (see e.g. Olsson 1993). Regres-
sion equations were calculated for the pixel data 
values sampled from the overlapping areas of 
the images. The calibration rectangles, blocks of 
pixels of which values were used to calculate cal-
ibration equations, were chosen from deep water, 
coniferous forest (low near-infrared values) and 
rocky sites in order to avoid seasonal bias effects. 
The number of these few hundred pixel-sized rec-
tangles was 5 - 7 per image pair. Channels 1 and 6 
did not provide a good fi t and were omitted from 
the classifi cation. It is known that values of chan-
nel 1 (blue) are sensitive to varying atmospheric 
conditions, and calibration results between differ-
ent day images are not as good as in other chan-
nels (Olsson 1993). Thermal channel 6 has coars-
er spatial resolution (120 m cell) than in other 
channels, and is typically not used in vegetation 
classifi cations (Price 1981; Homer et al. 1997).

Finally, the image mosaic was clipped accord-
ing to the catchment area of the River Usa derived 
from a digital elevation model (DEM). This 
100 m pixel DEM was calculated with ARC/
INFO’s TOPOGRID tool for the whole of the Usa 
Basin using the contours and hydrological layers 
of the Russian digital map data.

Classifi cation

The classifi cation work was carried out in a 
number of steps. First, the fi ve sub-areas (Fig. 3) 
were each classifi ed by a supervised method using 
bands 2 - 5 and 7. Spectral signatures for different 
vegetation types were derived by creating repre-
sentative samples around ground reference points 
(N = 158) with ERDAS IMAGINE’s interactive 
seed pixel region growing technique (ERDAS 
1997). We used the parallelepiped decision rule 
to assign the signature minimum–maximum 
limits in feature space for each vegetation class. 
Those pixels which fell outside the defi ned signa-
ture minimum–maximum limits (gaps in feature 
space between the signatures) were assigned zero 
values at this point. These unclassifi ed pixel areas 
(10 - 20 % of the total pixel count, depending on 
the area) were then visually inspected from the 
original image and several additional signature 
addition and classifi cation rounds were done until 
only scattered pixels were left unclassifi ed. The 
fi eld knowledge and experience of the local land-
scape plus the scanned photographs taken in the 
fi eld and during helicopter fl ights were of great 
help in this part of work.

In the second phase, signatures from the fi ve 
sub-areas were pooled and the iterative process 
of classifi cation of the whole Usa Basin was start-
ed. The fi rst classifi cation runs produced clearly 
erroneous results—for example, scattered spruce 
forests were found in many locations in the tree-
less tundra, and the human impacted tundra 
around the mining town of Vorkuta was classi-
fi ed to the category mixed forest. Using similar 
iterative approach as described above new signa-
tures were added to the set and the procedure was 
repeated until there were only scattered unclas-
sifi ed pixels and visual inspection of the whole 
area showed no clear discrepancies. The fi nal run 
to fi ll the remaining feature space gaps (unclas-
sifi ed pixels) was done using maximum likeli-
hood as a parametric decision rule. The number 
of spectral classes increased during the process to 
around 100. These primary classes were then sub-
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jectively combined to form 21 fi nal classes. The 
insight and experience gained during the fi eld-
work, some general Russian thematic maps, gen-
eral knowledge of the landscape structure, DEM 
and the several hundred photographs taken in the 
fi eld were applied during this process.

During the classifi cation work we found that 
mountain shadows caused obvious problems 
in classifi cation. The most shadowed mountain 
slopes especially were systematically misclassi-
fi ed as water. Sophisticated algorithms for cor-
recting satellite image radiance values in rela-
tion to slope have been developed (ERDAS 1997; 
Florinsky 1998) but, as the DEM available for the 
area had a coarser resolution (100 m) than the sat-
ellite images used, these methods were not feasi-
ble. Instead, we simply reclassifi ed all the pixels 
within the mountain area that fell on slopes steep-
er than 10 degrees as mainly bare land, because 
most of those areas are shadowed rocky mountain 
slopes. The class human infrastructures (cities, 
villages, industrial areas, railroads and main 
roads) was separated from the spectrally similar-
ly to the mainly bare land class using layers in the 
Russian digital map data and some manual delim-
itation.

The new forest cuttings found in a limited area 
in the south-west corner of the Usa Basin were 
delineated by visual examination of the image. 
Also distinctive clouds were delimited manual-
ly, as cloud shadows could not be easily separat-
ed from water bodies in the classifi cation. In the 
fi nal mosaic, 2.8 % of the area was cloud covered. 
Clouded areas were masked out from the classi-
fi cations and treated in the calculations as miss-
ing data.

Testing the accuracy of classifi cation

We could not perform classifi cation accuracy 
tests with real ground reference data due to the 
limited amount of fi eld data. Instead, we used 
oblique aerial photographs taken during heli-
copter fl ights as test data for classifi cation. With 
the aid of information on fl ight paths, we con-
nected 271 scanned slides spatially to the satel-
lite images (Fig. 2). (Some of these photographs 
[with reduced resolution] can be seen on the inter-
net at www.urova.fi /home/arktinen/tundra/pho-
togallery.htm.) With the help of located slides we 
identifi ed and visually inspected 1328 test points 
from the available photographs of the different 
vegetation types on the image mosaic. The clas-

sifi cation accuracy was tested by cross-tabulating 
these points with our classifi cation data. Random 
sampling was assumed for calculations. Forest 
cuttings (no photographs) and water bodies (all 
non-mixed water pixels can be classifi ed to an 
accuracy of almost 100 %) were omitted from the 
test. We performed two tests, the fi rst one for the 
remaining 19 classes, and the second for the clus-
ters of fi ve combined classes: forests (classes 1 - 7 
in Table 1), willows and meadows (classes 8 - 9), 
peatlands (classes 10 - 13), tundra heaths (classes 
14 - 18) and mainly bare land and infrastructures 
(classes 19 - 20).

Results and discussion

Classifi cation accuracy

The area and proportion of each class within the 
sub-areas and the whole Usa Basin are shown in 
Table 1. (A high resolution image of the classifi ca-
tion is posted as supplementary material at www.
npolar.no/PolarResearch; see the table of contents 
for this volume. The data are also available from 
the authors on request.) When the aerial photo-
graph test points are cross-tabulated for 19 class-
es, the overall accuracy is 53 % and simple Kappa 
0.50, but the fi t varies considerably between the 
classes (Tables 1, 2a). However, when only fi ve 
main groups are compared, the overall accura-
cy rises to 84 % and simple Kappa to 0.75 (Table 
2b, c). This means that the misclassifi cations are 
mainly spread over the functionally and spec-
trally nearest classes (e.g. different forest types 
were generally confused with other forest types; 
Table 2c). This is also indicated by the fact that 
weighted (by class number as in Table 1; refl ects 
to some extent the functional similarity of the 
classes) Kappa values are higher than simple 
Kappa values (Table 2a, b). Achieved accuracies 
and Kappa values indicate good results when the 
main groups are compared, but in the 19-class 
comparison some individual classes are not well 
separated from their neighbourhood classes. Typ-
ically, the overall accuracy estimates of the corre-
sponding cover types have varied between 65 and 
87 % in other studies (Fitz gerald & Lees 1994; 
Fuller et al. 1994; Holmgren & Thuresson 1998; 
Muller et al. 1998; Foody 2002; Rees et al. 2002; 
Tømmervik et al. 2003). Thus, when taking into 
account the practical restraints in the fi eldwork 
and the large region covered, we think that our 
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accuracy test values are acceptable.
Generally, the use of oblique photographs as a 

reference for accuracy testing includes more error 
and uncertainty sources than is the case with real 
ground reference points. Even though we were 
able to locate the photographs on the satellite 
image, there may have been some location errors 
of the test points. Moreover, some vegetation 
classes were almost impossible (e.g. spruce dom-

inated vs. spruce–fi r dominated forest) or at least 
diffi cult to distinguish from the photographs (e.g. 
dwarf birch vs. dwarf shrub moss tundra). Third, 
test points were not selected randomly from the 
located photographs, which may yield some bias 
on the classifi cation accuracy estimates. Howev-
er, keeping in mind that no unambiguous method 
for testing the accuracy existed (Foody 2002), the 
accuracy assessment method used gives at least 

Table 1. Brief description and coverage percentages of the vegetation and land cover classes in each sub-area (see Fig. 3) and 
in the whole Usa Basin (in 30 m cell and in 1 km cell majority-class grid). Test points: % indicates the proportion of test points 
interpreted from photographs falling in the correct class and the second fi gure the number of test points in each class.

Sub-
area 1

Sub-
area 2

Sub-
area 3

Sub-
area 4

Sub-
area 5

Whole 
basin, 30 m 

Whole 
basin, 1 km

Test 
points

Area (km2) 3477 2282 4071 3509 114 93 484 93 484

Class description
1. Spruce forest. Spruce crowns cover more than 60 % 

of the coverage of the trees.
–   1.0 21.3 29.6 - 12.2 20.1 67 %, 97

2. Spruce–fi r forest. Spruce and fi r together cover more 
than 60 % of the tree coverage.

– –   7.8 – -   0.5   0.1 27 %, 15

3. Pine forest. Lichen fi eld layer dominated forests, 
mainly pine, near the spruce forest line. 

– – -  0.8 –   0.6   0.2 71 %, 7

4. Mixed forest. Mainly spruce forests with birch, 
willow, alder, aspen, larch or pine.

–   1.3 13.1 15.1 –   7.3   5.3 38 %, 150

5. Larch forest. Larch crowns cover more than 60 % of 
the tree coverage (classifi ed only in sub-area 3). 

– –   1.1 – – – – –

6. Birch dominated stands. Birch dominated, mainly 
young stands, and mountain birch stands.

–   0.8   2.9   5.8 –   3.2   0.8 30 %, 47

7. Forest cuttings. Some new forest cuttings found in 
the south-west corner of the area. 

– – – – –   0.3   0.4 –

8. Willow stands. Willow dominated stands. 12.9 10.8   3.6   2.2 22.6   7.5   5.5 71 %, 143
9. Meadows. Grass and herb dominated non-peatlands.   3.1   0.2   1.9   0.9   1.7   2.0   0.7 50 %, 68

10. Bog partly with few trees. Paludifi ed areas, often 
with a few pines, birches or spruces.

– –   9.2 16.2 –   7.4   4.1 49 %, 65

11. Open bog. Mainly shrubby, ombrotrophic bogs. 12.8 12.5   6.7 11.6 16.0 16.6 19.3 41 %, 175
12. Wetland. Wet sedge fens etc. Also includes areas of 

water and land mosaic.
  3.0   2.8   1.2   2.0   9.1   4.7   1.7 40 %, 160

13. Tundra with some bare peat. Sparsely vegetated 
tundra–palsa–peatland complex.

–   6.4 – – –   1.1   0.2 60 %, 15

14. Dwarf shrub-moss tundra heath. Shrubby tundra 
heath with mainly mosses, on mineral soils.

17.7 32.9   3.7 11.7 21.2 16.7 25.8 56 %, 121

15. Dwarf birch heath. Dwarf birch dominated tundra 
heaths.

14.1 – – – 25.7   4.0   3.0 65 %, 62

16. Dry dwarf shrub–lichen tundra. Tundra heath with 
lichen dominated fi eld layer, on mineral soils. 

– 22.9   2.6   1.6 –   4.7   2.2 52 %, 70

17. Sparse alpine tundra. Some sparse dwarf shrubs, 
grasses, herbs, sedges, mosses and lichens.

  5.1 –   0.5 – –   1.1   0.2 45 %, 38

18. Human impacted tundra. Dwarf birch tundra 
changed by human impacts around Vorkuta.

– – – – –   0.3   0.4 67 %, 6

19. Mainly bare land. Areas dominated by sand and 
stones (cover > 50 %). 

28.3   0.8 23.7   0.2 –   6.5   7.1 94 %, 109

20. Human infrastructures. Cities, villages, industrial 
areas, railroad, and main roads.

– –   0.0   0.1 –   0.4   0.5 82 %, 34

21. Water bodies. Lakes, ponds, and rivers.   3.0   7.8   0.7   2.2   3.8   2.8   2.3 –
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the approximate level of confi dence of the pro-
duced classifi cation.

Mixed pixels—i.e. pixels whose refl ectance 
values are due to several types of vegetation/land-
scape types within one pixel— are a well known 
problem in satellite image classifi cations (Camp-
bell 1987; Foody 2002). In our study area this was 
typical especially in the northern tundra areas 
and peatlands, where the vegetation patches are 
often so small that several patches fall within one 
pixel (see also Stow et al. 1998). Pixels falling on 
the boundaries of two vegetation types are anoth-
er source of mixed pixels. Mixed pixels either 
yield spectral classes that mix with some uniform 
vegetation types or produce their own specifi c 
combinations of spectral values which, in turn, 
may cause signifi cant random errors (Campbell 
1987; Chen et al. 2002; Foody 2002). For exam-
ple, the refl ectance of pure spruce stands is often 
similar to that of areas with small-scale variation 

of waters and broadleaved trees or grassy vegeta-
tion. In addition to introducing error into the total 
areas of different vegetation types, misclassifi -
cations should also be taken into account when 
studying spatial questions such as the location of 
different vegetation types in relation to environ-
mental variables or to each other.

Class descriptions

Next we describe and briefl y discuss the problems 
related to each class and their potential misclas-
sifi cation under fi ve main groups: forests (cover 
24.1 % of the area in the 30 m cell detailed classi-
fi cation), willows and meadows (9.5 %), peatlands 
(29.8 %), tundra heaths (26.4 %) and mainly non-
vegetated areas (mainly bare land, human infra-
structures and water bodies; 9.8 %).

Forests. We separated seven forest classes 
(Table 1), using crown cover exceeding 20 % as 
the defi ning feature of forest. Generally, when 
one tree species covered more than 60 % we spec-
ifi ed that the stand was dominated by that spe-
cies. If the cover of none of the species exceeded 
the limit, the stand was classifi ed as mixed forest. 
According to our fi eld measurements, mean tree 
volumes in northern taiga forests vary from about 
110 m3 ha-1 (range 65 - 215 m3 ha-1) in the southern 
part of the area to about 25 m3 ha-1 in the forest 
line region, and the mean tree height of the stand 
varies from 9 - 16 m to about 3.5 m, correspond-
ingly.

Most of the forest sites in the region are mesic 
and spruce dominated with a variable admixture 
of other trees, primarily birches (Kozubov et al. 
1999). Spruce with a low proportion of birch forms 
the northernmost forest stands in the lowlands. 
The separation between mixed and “pure” forests 
is arbitrary, as in reality there is a total continu-
um from almost pure stands to very mixed ones. 
However, in addition to the spruce forest class, 

Table 2. Accuracy test of the classifi cation with test points. 
In weighted Kappa tests weights were calculated using Cic-
chetti-Allison Kappa coeffi cient weights (SAS Institute, 
Inc., 1999, Cary, NC). See the Materials and methods section 
for details. (a) Test for 19 classes. (b) Test for classes when 
grouped into fi ve main classes. (c) Cross-tabulation of the fi ve 
main classes.

(a)

Kappa coeffi cients Statistic 
value  95 % confi dence limits

Simple Kappa 0.503 0.474 - 0.531
Weighted Kappa 0.768 0.747 - 0.789
Overall accuracy 53.34 %

(b)

Kappa coeffi cients Statistic 
value 95 % confi dence limits

Simple Kappa 0.749  0.722 -  0.776
Weighted Kappa 0.820 0.798 - 0.842
Overall accuracy 83.58 %

(c)

 Classifi cation:
Test: Forests Willow & 

meadow Peatlands Tundra 
heaths

Mainly bare 
land & infra-

structures
Total n

Forest 264 21 29 2 0 316
Willow & meadow 3 201 5 1 1 211
Peatland 20 29 294 60 12 415
Tundra 4 8 59 213 13 297
Bare 1 0 2 2 138 143
Total n 292 259 389 278 164 1328
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we decided to establish a separate mixed forest 
class, as in our fi eld measurements the mean tree 
volumes had about 20 % lower values in mixed 
than in the more homogeneous spruce forests. 
This separation might also have some value to 
biodiversity-related future studies, for example.

The spruce–fi r forest stands that occur in the 
foothills of the Urals in the southern part of the 
study area can, to some extent, be separated from 
Norway spruce–birch forests in the classifi cation. 
This is primarily due to the fact that they usu-
ally include only a few broadleaved trees, and 
fi rs often grow very abundantly as an understo-
rey species. Mountain shadows probably caused 
some misclassifi cation; on shadowed slopes the 
brightness values are lower, which indicates that 
dark conifer (spruce and fi r) dominated forests 
are overestimated on such slopes.

The small number of Scots pine forests with a 
lichen dominated fi eld layer are found on sandy 
river terraces near the Usa and Pechora rivers in 
the western parts of the Usa Basin. In the forest 
line region, outside the distribution range of pine, 
our pine forest class also contains some lichen 
dominated stands where the dominant tree is 
spruce and, in the Urals, stands with larch and/or 
spruce as the dominant tree species. The spectral 
class of this pine forest class could be clearly sep-
arated, mainly due to the extensive lichen cover-
age in the fi eld layer rather than to spectral differ-
ences between spruce and pine crowns.

In the Ural Mountains the treeline is mainly 
composed of larch. Individual larch trees are 
found on sheltered southern slopes even in the 
northernmost parts of our study area. In the Polar 
Urals sparse larch stands are typically found at an 
elevation of around 200 m a.s.l. In the southern 
parts of the Usa Basin, the alpine treeline is locat-
ed at around 550 - 600 m a.s.l. On some slopes the 
larch belt is only a few tens of metres wide, and 
sometimes mixed with mountain birches. Toutou-
balina & Rees (1999) reported that sparse larch 
stands can not be distinguished from treeless sites 
with Landsat images because the refl ected spec-
trum of sparse larch forests is primarily due to 
ground vegetation. Our fi ndings from sub-area 
3 support this result. Second, we found out that 
the spectral signature of denser larch forest could 
not be separated from that of the Salix dominat-
ed lowland forests or mountain birch dominated 
forests. Therefore, we reclassifi ed larch forests 
below 400 m a.s.l. to the spectrally most simi-
lar class, willow dominated stands in sub-area 

3. Depending on the area and ground vegetation, 
larch forests are pooled either with willow dom-
inated stands, meadows, mixed forests or birch 
dominated stands in the whole area classifi ca-
tion.

The class birch dominated stands mainly con-
sists of young, birch dominated stands. Birch, or 
in some cases aspen (Populus tremula L.), is the 
fi rst successional tree species after forest fi re in 
the region (Kozubov et al. 1999; Gromtsev 2002) 
and therefore young, birch dominated forests are 
mainly generated by forest fi res. Examination of 
the pattern and brightness showed that 30- to 80-
year-old larger fi re areas account for about 12 % of 
the forests. New cuttings covering about 300 km2 
in the south-west corner of the Usa Basin could be 
easily distinguished from naturally regenerated 
young successional stages due to their rectangu-
lar shape. We did not fi nd any signs of large fi res 
that would have occurred during the past 10 - 20 
years before the satellite images were recorded. 
It is also known that the mesic spruce dominat-
ed forests in the region often regenerate through 
many tree generations by means of small-scale 
gap dynamics without forest fi res (Kuuluvainen 
et al. 1998; Gromtsev 2002). We also included the 
mountain birch dominated stands at the treeline 
in the Pre-Polar Urals in the class birch dominat-
ed stands.

Willows and meadows. Large willow dominat-
ed stands are typical for the region in depressions 
and along the rivers. Willow stands are found 
in almost every part of the basin and, togeth-
er with meadows, they cover almost 10 % of the 
Usa Basin (Table 1). Willow stands vary from 
stands consisting of up to 15 m high willow trees 
(mainly Salix viminalis sensu lato) along south-
ern riverbanks, to about 1 m high bushes (S. phyl-
icifolia L., S. glauca L., S. lapponum L., etc.) in 
the tundra. Extensive willow stands are also often 
growing around mires. The class willow stands 
also includes stands containing other tree species 
when willow undergrowth dominates the cover-
age.

Meadows are regularly found adjacent to 
willow stands along river banks and on islands in 
fl ooded areas in the lowlands. Meadows are espe-
cially common in the Urals. A transitional belt 
exists at the treeline where forests and luxurious 
grass and herb meadows alternate. Areas located 
above the treeline, up to about 750 m a.s.l. in the 
south and about 400 m a.s.l. in the north, are char-
acterized by a mosaic of patchy alpine meadows, 
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dwarf shrub–lichen dominated tundra vegetation, 
and rocky slopes (Gorchakovskii 1960; our obser-
vations and data).

Peatlands. Different types of peatland are 
common in the Usa Basin. Large open mires and 
fens are found in the lowlands of the taiga zone. 
Peat plateaus are more typical of the central and 
northern parts of the area. Peatlands become 
patchier in the tundra and the peat layer is gen-
erally shallower. Peatlands in fl at valley bottoms 
in the Ural Mountains resemble those in the low-
lands. On the mountain slopes they are mainly 
sedge dominated and typically found next to 
steeper areas.

Spectrally peatlands are a very diverse group 
due to the variable moisture conditions and patchy 
vegetation, which makes them relatively diffi cult 
to classify even at the resolution of 30 m. This 
is also refl ected in the slightly lower test point fi t 
than in the other groups (Table 1). Also, as sat-
ellite sensors record refl ectance primarily from 
the uppermost layer, tree-covered peatlands are 
easily confused with wooded vegetation types. 
Peatlands with a dense willow cover are classifi ed 
as willow stands, and slightly paludifi ed, spruce 
dominated forests as forests.

We divided peatlands into four classes. In the 
class bog shrubland partly with few trees we 
included areas found along the peatland margins 
in the taiga region. These peatlands often have a 
few pines, birches or spruces, with a mean tree 
volume of around 10 m3 ha-1. Most of the pines 
within the Usa Basin grow on peatlands.

Shrub dominated treeless peatlands were cate-
gorized as open bogs. Separation of the shrubby 
tundra heath in the tundra fraction from this class 
is in some locations arbitrary due to the patterned 
nature of the vegetation. In the class tundra with 
some bare peat we classifi ed sparsely vegetated 
tundra heath and palsa or peat plateau complex-
es found in the northern parts of the Usa Basin. 
In some tundra areas lichens grow extensively on 
top of the peat. They could not be separated from 
lichen-growing tundra heaths in locations where 
the size of these patches exceeded the size of the 
image pixel.

We included wet sedge fens in the class wet-
lands. Areas of water and land mosaic are also 
mainly of this class. In some cases we found that 
the mixed land/water pixels have almost exact-
ly the same spectral fi ngerprint as the densest 
spruce stands. These misclassifi cations caused 
by mixed pixels could not be handled by adding 

training categories to represent different vegeta-
tion mixtures. However, the number of erroneous 
pixels attributable to this is relatively small.

Tundra heaths. Different kinds of tundra heath 
are found in better-drained soils in the central 
and northern parts of the Usa Basin. The most 
common type of tundra heath in our classifi ca-
tion is called dwarf shrub–moss tundra. This 
class includes shrubby tundra heaths with dif-
ferent mosses and also some lichens on mineral 
soils. Typical and abundant dwarf shrub species 
are Vaccinium uliginosum L., V. vitis-idaea L., V. 
myrtillus L., Empetrum nigrum L., Ledum decum-
bens Lodd., Arctostaphylos arctica L. and dwarf 
birch. Tundra vegetation often consists of a small-
scale mosaic in which drier heaths are mixed with 
small, wetter patches with a few willows that are 
also slightly paludifi ed. In many cases the patches 
are not larger than the individual pixels of a Land-
sat image, which results in their inclusion prima-
rily into the dwarf shrub–moss tundra class.

In some locations the tundra heaths are lichen 
dominated. Areas where the lichen cover exceed-
ed approximately 30 % (as visible from above) 
were classifi ed as dwarf shrub–lichen tundra. In 
some locations the lichens were heavily grazed 
by reindeer (Crittenden 2000; own observations). 
Grazing has potentially yielded some vegetation 
changes during the approximately ten year inter-
val between our image acquisition and fi eldwork. 
Changes of this kind have been analysed in the 
study Rees et al. (2003) conducted in the region 
near our study area. This might have caused some 
inaccuracies to the estimates of the amount of 
dwarf shrub–lichen tundra versus dwarf shrub–
moss tundra.

In the north-eastern part of the Usa Basin, 
shrub tundra dominated by dwarf birch (height 
30 - 80 cm) is the most common type of vegetation 
and was classifi ed as dwarf birch tundra. Further 
west, away from the Ural Mountains, lower dwarf 
shrub species (Vaccinium spp., Empetrum spp., 
etc.) dominate the shrub tundra, and the exist-
ing dwarf birches in the heath vegetation are 
mainly shorter than 30 cm (Rebristaya 1977; our 
fi eld observations). The predominance of dwarf 
birch in the north-eastern region is probably due 
to the higher precipitation and related thick snow 
cover owing to the proximity of the Urals. More 
than ca. 100 km west from the Urals, dwarf birch 
dominated heaths are found only in some shel-
tered locations and they are very scattered; in 
these cases they are mainly included in the dwarf 
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shrub–moss tundra class.
We observed some specifi c refl ectance values 

around the coal-mining city of Vorkuta. A sep-
arate study of this issue is presented in Virtanen 
et al. (2002). Only the main fi ndings are brief-
ly summarized here. Dwarf birch tundra has 
changed there due to human impacts, and two 
impact zones could be identifi ed (presented as an 
aggregated class in Table 1 and Fig. 2). The fi rst 
zone, the pollution zone, covers 150 - 200 km2 

around the main pollution sources. Most of the 
lichen species are absent, and changes in the spe-
cies composition of the vegetation communities 
in all the main plant groups are also obvious. Wil-
lows are more dominant than in the unpolluted 
sites. In the second zone, slight pollution/distur-
bance zone (600 - 900 km2), changes in the veg-
etation are generally similar but are less severe 
than those in the fi rst zone. The amount of herbs 
and grasses in particular has increased compared 
to the unpolluted areas. The extent of the zones is 
furthest to the north-east from the main emission 
sources, matching the prevailing winds during 
winter.

For the area of the Ural Mountains we sepa-
rated one more vegetation type: sparse alpine 
tundra. Alpine dwarf shrub and grass vegeta-
tion are found in some locations, mainly above 
the meadow zone. In the northern parts this zone 
is about 350 - 500 m. a.s.l., and in the south 600 -
1000 m. a.s.l. This vegetation type exists on thin 
soil that has developed on relatively gentle moun-
tain slopes. The vegetation consists of some 
low dwarf shrubs, sedges, grasses, mosses and 
lichens, and is sparser than that in the typical low-
land tundra heath.

Mainly non-vegetated areas. We classifi ed 
areas where the vegetation cover was less than 
50 % of the area into mainly non-vegetated class-
es. Mainly bare land can be found in different 
locations: on sandy and stony riverbanks; on 
sandy defl ations in the tundra lowlands; and in the 
highest parts and on the rocky steepest slopes of 
the mountains. We also classifi ed snow-covered 
areas as mainly bare land. Snow-covered areas 
were found almost only on the highest mountains 
and they covered less than 1 % of the whole area. 
Cities, villages, and other human infrastructures, 
which were separated from the spectrally similar 
mainly bare land class using Russian GIS data, 
covered 0.4 % of the Usa Basin.

Larger water bodies were separated very well 
in the classifi cation process. However, the area of 

water bodies is probably slightly underestimated, 
as most of the water pixels mixed with vegetation 
were classifi ed in the wetlands class.

Classifi cation approach and usability of the 
data

In the following section we discuss our classifi -
cation method and highlight the advantages the 
classifi cation data contribute to the studies on 
global change issues. We also briefl y present the 
advantages that our 30 m resolution data offer for 
landscape-level studies when compared to low 
resolution data.

Approach. A frequently employed strategy in 
the use of satellite images in large-scale invento-
ries is fi rst to classify individual images and then 
to merge the classifi cation results (Fuller et al. 
1994; Cihlar 2000; Franklin & Wulder 2002). An 
alternative strategy is spectrally to normalize and 
mosaic the images before the classifi cation (Homer 
et al. 1997; Cihlar 2000; Franklin & Wulder 
2002). As we did not have extensive ground ref-
erence data from all the separate images, only the 
mosaicing method was relevant in our case. In the 
channel-to-channel regressions, the coeffi cients 
(R2) varied from around 0.85 in channel 2 to as 
high as 0.97 in channels 4 and 5. The coeffi cients 
of channels 3 and 7 were between these values. 
The values were even higher than those reported 
in the study of Olsson (1993), which implies that 
the spectral multitemporal relative calibration 
yielded satisfactory results. Also, according to 
visual inspection, the classifi cation did not yield 
any obvious spatial discrepancies of the classes 
along the borders of the original images in the 
mosaic. Spectral calibration worked better in for-
ested areas and drier tundra, but peatlands were 
more problematic. This is at least partly due to the 
more variable moisture conditions and phenologi-
cal changes in green biomass of peatlands.

The main advantages of the mosaicing method 
are the possibility to use ground reference sites 
from ecologically similar areas in other satel-
lite image scenes, and that the post-classifi cation 
edge matching is not needed. The disadvantage of 
using a low amount of and spatially sparse ground 
reference data, especially with image mosaic that 
covers large area, is that this creates a well known 
signature extension problem, when the spectral 
signatures are also used for regions located far 
away from the training areas (Cihlar 2000). Some 
obvious misclassifi cations in our data could not 
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be avoided due to this problem. To some extent, 
these errors could be handled by post-classifi ca-
tion refi nement using other GIS data or geograph-
ical limitations for the classes, as we did with 
mountain shadows. This kind of refi nement could 
be done even more extensively if enough back-
ground information about the region’s vegetation 
and landscapes exists, as in the work of Homer 
et al. (1997). Actually, many large-area classifi -
cations rely heavily on ancillary data input, using 
approaches like a decision or classifi cation tree 
classifi ers or expert classifi cation approaches 
(Franklin & Wulder 2002). Within our approach 
the only ancillary data used was a DEM, and even 
it was utilized only to a small extent.

Theoretically, there are several other classifi ca-
tion procedures in addition to the supervised one 
that we used. For example, classifi cation can be 
produced by creating a large number of unsuper-
vised spectral classes and then merging them to 
match the actual land cover categories (Homer et 
al. 1997; Stow et al. 1998; Cihlar 2000; Loveland 
et al. 2000; Ma et al. 2001; Franklin & Wulder 
2002). After trying this procedure we came to 
the conclusion that spectral classes created by 

the unsupervised method were often ecological-
ly heterogeneous and thus not suitable for our 
needs. However, if the aim is only to separate 
broad groups, like forest, tundra and bare areas, 
we think that an unsupervised method could be 
used relatively successfully.

Content of the classes. Landsat TM image clas-
sifi cation does not allow vegetation mapping to 
the same degree of detail as the vegetation types 
recognized by the traditional phytosociologi-
cal school (Kalliola & Syrjänen 1991). Satellite 
image based vegetation classifi cations are useful 
when evaluating the frequency distribution of 
broadly defi ned vegetation classes in a specifi ed 
area, but they are more limited with respect to 
more detailed and precise information, e.g. about 
forest or other vegetation structure (Holmgren & 
Thuresson 1998; Achard et al. 2001). However, 
the separation of the main functional types (e.g. 
forest, peatland, tundra heath) is often suffi cient 
for the process models normally used in global 
change studies (Running et al. 1994; Kittel et al. 
2000; Plummer 2000; Rupp et al. 2000; Van der 
Linden et al. 2003). The resolution used in many 
of these models is often of hundreds of metres 

Fig. 4. Fragmented landscape 
presented using different 
cell sizes (30 m, 200 m and 1 
km). Coordinates of the lower 
left corner are 66° 57′ 36″ N, 
59° 28′ 12″ E. 
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or coarser and inevitably masks the small-scale 
variation in the vegetation. The upscaling proce-
dures used in various process models also large-
ly omit the sort of small-scale misclassifi cations 
which our classifi cation in some cases probably 
includes.

A common strategy for utilizing remote sensing 
data in modelling studies is the usage of certain 
indices in connection with ecological parame-
ters. For example, the normalized difference veg-
etation index (NDVI) connected to the leaf area 
index (LAI) has often been used to study a wide 
range of physical and biological processes, e.g. 
carbon fl uxes and biological production (Wood-
cock et al. 1997; Holmgren & Thuresson 1998; 
Soegaard et al. 2000; Chen et al. 2002). Howev-
er, there might be some limitations in using these 
kinds of indices due to specifi c spectral proper-
ties of some vegetation types, like lichen domi-
nated stands or dark conifer dominated forest 
(Rees et al. 2002). Although these indices are 
suitable for modelling some processes, vegetation 
indices lack information on functional differenc-
es between various vegetation types. The separa-
tion of different vegetation types is important if 
they respond in a different way to e.g. climate or 
other environmental changes (Kittel et al. 2000; 
Rupp et al. 2000; Skre et al. 2002). Examples of 
the processes or factors to model that require spa-
tially explicit data of functional vegetation types 
are treeline dynamics (Rupp et al. 2000; Virtanen 
et al. in press) and various disturbance factors 
(Virtanen et al. 1998; Malmström & Raffa 2000; 
Rupp et al. 2000). Furthermore, both of these 
approaches can always be linked, as in the study 
of Liu et al. (2002), in which cover type specifi c 
formulae connecting NDVI and LAI were used 
for various land cover types.

Spatial resolution. As far as the landscape level 
analyses and models are concerned, it is obvious 
that much information is lost when using 1 km 
cell data instead of a 30 m cell. We have illustrated 
how the 30 m scale is more accurate in landscape 
characterization than the coarser ones, especial-
ly when the landscape pattern is fragmented (Fig. 
4). The 200 m and 1 km cell sizes are calculated 
using majority fi ltering that originates from the 
30 m cell size. The vegetation types occurring in 
small or narrow patches even completely disap-
pear in the coarser resolutions. The same effect 
can be seen at the whole Usa Basin level when 
we compare the coverage percentages in 30 m 
cell resolution and in 1 km majority fi ltered cells 

(Table 1). This fi nding supports the well estab-
lished fact that the less abundant and more frag-
mented patch types in the landscape are lost at 
coarser resolution, and dominant types become 
over-represented (Turner et al. 1989).

Concluding remarks

This paper shows how a mesoscale vegetation clas-
sifi cation of a large and remote Arctic area can be 
effectively conducted with a limited ground ref-
erence data set. In our case we found out that the 
feasible method to produce large-area, multiple 
image land cover classifi cation was supervised 
classifi cation of the spectrally matched image 
mosaic with some post-classifi cation refi nement 
with additional GIS data.

Classifi cation data like ours describing the main 
functional vegetation types of vegetation and land 
cover can be effectively used in many kinds of 
landscape analysis and process modelling stud-
ies (Huisink et al. 2002; Kuhry et al. 2002; Van 
der Linden et al. 2003, Heikkinen et al. 2004; Vir-
tanen et al. in press). In particular, the detailed 
spatial resolution (30 m cell size) provides new 
landscape level insights compared to the current-
ly available global vegetation data sets.
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