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ABSTRACT
During the 35th Indian Scientific Expedition to Antarctica, measurements of atmospheric carbon
dioxide (CO2) were carried out using a Li-Cor CO2/H2O analyser at Bharati, the Indian Antarctic
research station. This study examines the short-term variability of atmospheric CO2 during the
austral summer (January–February) of 2016. An average of 396.25 ± 4.20 ppm was observed
during the study period. Meteorological parameters such as relative humidity, precipitation, wind
speed, air temperature and atmospheric boundary layer height in conjunction with photosynthe-
tically active radiation, the biological activity indicator which modulates atmospheric CO2 con-
centration have been investigated. High wind speed (>20 m s−1) combined with precipitation
scavenges CO2 in the atmosphere, resulting in low concentrations at the study site. The lowest
CO2 concentration of 385 ppm coincidedwith heavy precipitation of 15mmduring study period.
Statistical analysis of the data shows that precipitation and relative humidity independently
correlated 55% (r = −0.55) and 32% (r = −0.32), respectively, with the variability of CO2 mixing
in the atmosphere at the study site. Atmospheric CO2 was significantly correlated with precipita-
tion alone with a p value of 0.003. Further, multiple regression analysis was performed to test the
significant relation between variability of atmospheric CO2 andmeteorological parameters. Long-
range air-mass transport analysis depicted that the majority of the air masses are reaching the
study site through the oceanic region.
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Introduction

CO2, CH4 and H2O are the major greenhouse gases
in the atmosphere on account of their abundance and
contribution to the greenhouse effect (Stocker et al.
2013).The greenhouse gases play a role in the climate
system by absorbing long-wave infrared radiation.
CO2 levels have been consistently increasing since
pre-industrial times and daily mean values reached
400 ppm in May 2013 at the reference site of Mauna
Loa, Hawaii (Monastersky 2013). This increase is
caused by human activities and is contributing to
increasing the Earth’s surface temperature (Huang
et al. 2016). A study by Turner & Overland (2009)
indicated that northern and western regions of
Antarctica are warming by +0.56°C per decade.
Atmospheric CO2 concentrations are determined by
mechanisms such as respiration and photosynthesis
in the terrestrial biosphere, anthropogenic emissions,
land use and land cover as well as uptake by oceans.
Depending upon partial pressure of CO2 and AT,
CO2 dissolves in the atmosphere, producing a weak
carbonic acid, H2CO3 (Lower 1999). Snow scavenges

atmospheric species such as CO2, O3 and black car-
bon from the atmosphere (Chaubey et al. 2010).
Takagi et al. (2005) explained the role of snow cover
on emissions of CO2 from snowpack to the atmo-
sphere. A large difference in CO2 was observed below
and above the snow surface, which indicates that the
snow cover act as cap for CO2 between the atmo-
sphere and the snowpack. Local and long-range
winds play a significant role in wind-driven mass
transfer between snow and atmosphere (Jones et al.
1999; Takagi et al. 2005). In tropical regions, humid-
ity plays a significant role in mixing of CO2 in the
atmosphere through a dilution process (Mahesh et al.
2014; Sreenivas et al. 2016).

Polar regions are the most important soil carbon
reservoirs on Earth (Gutt et al. 2012; Carvalho et al.
2013). C.D. Keeling et al. (1976) brought out that the
concentration of CO2 in the Antarctic atmosphere
increased by 3.7% from 1957 to 1971. At Jubany
Station, Antarctica (62° 14ʹ S, 58° 40ʹ W), CO2 mea-
surements, based on a non-dispersive infrared gas
analyser, showed an increasing trend, from
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356.75 ppm in 1994 to 384.74 ppm in 2009, at an
average annual rate of 1.3 ppm yr−1 (R.F. Keeling
et al. 2008). During the 2012–15 period, many other
stations in Antarctica, such as Casey (66.28° S,
110.53° E), Syowa (69° S, 39.6° E), Palmer (64.92° S,
64° W), Halley (75.6° S, 26.5° W) and Amundsen–
Scott South Pole Station (90° S, 24.8° W), also showed
an increasing CO2 trend, with annual rates of
2.40 ppm yr–1, 2.43 ppm yr–1, 2.42 ppm yr–1,
2.52 ppm yr–1 and 2.49 ppm yr–1, respectively.
Compared to the 2011–12 period, the annual
increases of CO2 observed in 2014–15 at these sites
were 0.54–0.56%, 0.57–0.63%, 0.53–0.63% and 0.53–
0.57%, respectively, except over Casey (0.56–0.52%)
(Sun et al. 2014). Over Antarctica, background CO2

concentrations showed an average growth rate of
2.10 ppm yr–1, with the highest during summer
(Cristofanelli et al. 2011). During 2015, CO2 rates of
increase over Antarctica stations are lesser (higher)
than global (Antarctica as a whole) rate of 2.93
(2.10) ppm yr−1. The monthly mean CO2 mole frac-
tion measured at Zhongshan Station (69°22′2′′S, 76°
21′49′′E) is similar to that of other stations in
Antarctica, and their annual amplitudes were all
within the range of 384 to 392 ppm during the period
2010 to 2013 (Sun et al. 2014). Schmithüsen et al.
(2015) showed that raising atmospheric CO2 over
most of Antarctica causes an increase in the long-
wave cooling in central Antarctica.

Recently, the British Antarctica Survey and the US
National Oceanic and Atmospheric Administration
have reported 400 ppm of CO2, a milestone record over
Antarctica (Kahn 2016). The NRSC of the Indian Space
Research Organization installed a Li-Cor CO2/H2O ana-
lyser at the Indian Antarctic station during 2016, as part
of 35th Indian Scientific Expedition to Antarctica, to
measure high-frequency CO2 concentration. The objec-
tive of the present study is to assess CO2 variability in
relation to localmeteorological parameters at Bharati, the
Indian Antarctic research station, during the austral
summer.

Material and methodology

Bharati Station is located in the Larsemann Hills, an
Antarctic Specially Managed Area, between Thala Fjord
andQuilty Bay, at 69.24° S, 76.11° E (Fig. 1). It is approxi-
mately 35 m above the sea level and about 50 m from the
seashore. Bharati consists of one multi-purpose building,
a satellite camp and a number of smaller container mod-
ules. Three diesel-fired combined heat and power-gener-
ating units in the main building provide electrical power
for the station.

CO2 and H2O are continuously monitored using a
Li-Cor CO2/H2O non-dispersive infrared gas analyser
(model Li-840A). Meteorological parameters – AT,
RH, surface pressure, WS, wind direction and

precipitation – were measured using an automatic
weather station installed near the CO2 sensor mast;
the weather station meets the standards of the World
Meteorological Organization. Details of the para-
meters used, instruments and their make are sum-
marized in Table 1. At the site, the prevailing surface
winds are from the east–north-east around the year.
In quantifying the net precipitation, a known amount
of hot water was used to melt the snow collected from
the snow gauge.

Calibration is crucial for eliminating the instrumental
drifts and generating precise, accurate measurements
(Mahesh et al. 2015). In the present set-up, the Li-Cor
analyser is periodically calibrated using National
Oceanic and Atmospheric Administration CO2 calibra-
tion gases (369.398 ppm and 434.814 ppm), following
theWorldMeteorological Organization’s recommended
calibration procedure (Brailsford 2012). The precision
and accuracy of the instrument were assessed by per-
forming internal calibration with 369.398 ppm and
434.814 ppm spans of CO2. The 60 s (1 σ) average
precision of CO2 was 92 ppb and 78 ppb, with an
accuracy of 0.33% and 0.10% of the reading, respectively.

In addition to the Li-Cor and weather station
meteorological measurements, we made use of daily
measurements of PAR and BLH on from the
European Centre for Medium-range Weather
Forecasting Interim Reanalysis, with a resolution of
0.25°×0.25° (http://apps.ecmwf.int/datasets/data/
interim-full-daily/levtype=sfc/). Seidel et al. (2010)
reported that uncertainties are greater in shallow
boundary layers. BLH estimation also depends on
the method of estimation and vertical resolution of
the data over the region.

We also computed five-day backward air-mass
trajectories using the HYSPLIT model (Draxler &
Rolph 2003) at altitudes of 1, 2 and 3 km during
the study period. Even though trajectory analysis
has inherent uncertainties (Stohl et al. 1998), it is
quite useful in determining long-range transport of
air masses and identifying probable sources as well.

Figure 1. The location of Bharati, the Indian research station,
in Antarctica.

2 M. PATHAKOTI ET AL.

http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/


Results

Influence and significance of meteorological
parameters on CO2 mixing

During the study period, average daily maximum (mini-
mum) of AT, RH, WS and surface pressure were 1.14°C
(−8.45°C), 97.65% (48.32%), 25.09m s−1 (7.41m s−1) and
1001.81 hPa (967.33 hPa), respectively (Fig. 2). One of
the lowest CO2 levels, observed on 30 January 2016,
coincided with high RH and high WS (Fig. 2b, c). A
summary of CO2 distribution under varied environmen-
tal conditions at the study site is shown in Fig. 3. When
the temperature was positive (>0°C), the median CO2

values were high compared to other temperature bins.
An enhancement in CO2 concentration could have been
due to an increase in snowmelt (Takagi et al. 2005). The
median CO2 concentration for 90–100% RH shows a
marked contrast in comparison with lower RH levels,
possibly due to the scavenging effect of snowfall, which

can significantly elevate RH levels (>90%). A similar
contrast in the median CO2 concentrations is also
observed during instances of relatively low (<20 m s−1)
and high (>20 m s−1) WS. The wind direction bin shows
high CO2 concentrations when the winds were from the
north-west, followed by the north-east, and low concen-
trations were associated with winds from the east and
south-east.

Figure 3e displays hourly averaged CO2 concentration
corresponding to eachWS bin (bin size 5m s−1), where it
was observed that 90.5% of WSs were in the range
of 1.1 m s−1 to 20 m s−1 and the remaining 9.5% were
>20m s−1. During highWS (>20 m s−1), CO2 concentra-
tions decreased with the increase of WS and mean RH.
Figure 3f also shows that high precipitation combined
with high WS resulted in one of the lowest daily CO2

concentrations recorded during the study period. A low
CO2 concentration of 385 ppm was observed during the
high-intensity snowfall (precipitation) of 15 mm along

Figure 2. Daily variation of atmospheric CO2 with meteorological parameters (a) AT (°C), (b) RH (%), (c) WS (m s−1) and
(d) surface pressure (hPa).

Table 1. Details of the data used and their sources. The period was 22 January–25 February 2016.
Parameter Data collection frequency Source

CO2 1 sec Li-Cor CO2/H2O analyser
AT, RH, WS, wind direction
and surface pressure

1 min Automatic weather station: AT & RH (Rotronic); WS & wind direction (Gill Instruments)
and surface pressure sensor (Thies Clima), India Meteorological Department

Precipitation Daily Snow gauge, India Meteorological Department
PAR and BLH Daily European Centre for Medium-Range Weather Forecasts (http://data-portal.ecmwf.int)
Backward trajectory Averaged summer season HYSPLIT (https://ready.arl.noaa.gov/HYSPLIT.php)
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with the highest WS and RH of 25 m s−1 and 97%,
respectively. The highest daily mean CO2 concentration
of 401 ppm was observed on 3 February 2016, with WS
about 12 m s−1 and RH of 55%.

PAR and BLH – the two other parameters we took
into consideration – are shown in Fig. 4, along with
local meteorological observations. Correlation coeffi-
cients (r) of CO2 against PAR, surface pressure, AT,

BLH, WS, RH and precipitation are summarized in
Table 2. It is clear that the variability of atmospheric
CO2 mixing over Bharati, Antarctica was mainly
associated with prevailing meteorological conditions.
Statistical analyses of CO2 concentration against PAR,
BLH and meteorological parameters show good cor-
relation, but the strongest statistical correlation was
with precipitation, with a p value 0.003 (Fig. 4). To

Figure 3. Box and whisker plots of atmospheric CO2 with meteorological parameters (a) AT (°C), (b) RH (%), (c) WS (m s−1) and
(d) wind direction (deg.). The lower and upper whiskers shows 5th and 95th percentiles of the data. The lower and upper
quartiles of the vertical boxes represent the 25th and 75th percentiles, respectively – together they comprise the middle 50% of
the data. The horizontal line in each vertical box indicates the median of the data. Values which are beyond whiskers are
outliers. Lowest and highest CO2 values are represented at the 5th and 95th percentiles of the data. (e) Frequency distribution of
WS and mean CO2. (f) Precipitation influence on daily mean CO2.
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further examine the relative influence of meteorolo-
gical parameters on CO2 concentration, we imple-
mented multiple regression analysis (Benallal et al.
2017), as given in Eqn. 1. It is a method used to
examine the sensitivity between one dependent vari-
able (Y = CO2) and one or more independent vari-
ables Xi (Neter et al. 1996; Norman et al. 2007).
Dueñas et al. (2002) followed a similar approach to
assess the influence of meteorological parameters on
ozone concentration variations at a (Mediterranean)
coastal station.

YCO2 ¼ a0 þ a1 � PAR þ a2 � Pressureþ a3
� ATþ a4 � BLHþ a5 �WSþ a6
� RHþ a7 � Precipitation (1)

The coefficients ai are estimated using the method of
least squares (Bickel & Doksum 1997). The results of
the multiple regression analysis are given in Table 3.

Forward selection removes the effect of relatively less
significant parameters on CO2 variability compared to
highly significant ones. Statistical correlation of CO2

was trained against the independent variables by accept-
ing those p values less than 0.05 and rejecting those with
p values greater than 0.10. The independent variables
PAR, surface pressure, AT, BLH, WS and RH were
removed from this test because of their statistical insig-
nificance. In the short-term analysis, we attempted to
establish an empirical relation between the variability of
atmospheric CO2 and precipitation at the study site
during austral summer, as follows:

YCO2 ¼ 396:05� 0:75� Precipitation; (2)

where a0 is 396.05 and a7 is � 0:75:
Though there is no causal connection with CO2

concentration, Eqn. 2 shows that the parameter that
most strongly fluctuates along with the CO2 concen-
trations at the study region is precipitation.

Long-range air-mass influence on local CO2

We computed five-day isentropic backward air-mass
trajectories for all the days during the study period.
There were six-hour intervals between trajectories,
with the first trajectory starting at 00:00 UTC.
Trajectories which reached the study site at 3, 2 and
1 km altitudes are shown in Fig. 5a–c. We separated
the trajectory into four clusters based on their path-
ways: north-east, north-west, south-east and south-
west. The majority of air-mass trajectories at 3 and
2 km during study period originated from the north-
west (42% and 23%) and north-east (30% and 45%).
Air masses coming from the icy Antarctic continent
(south-west and south-east of the station) were low
compared to their north-easterly and north-westerly
components. At 1 km altitude, air masses reaching
the study site were from the north-east (47%) and
south-east (33%), which was consistent with the sur-
face winds that originated from the north and north-
east. Computing differences in CO2 (in %) for each
sector from the total mean of the data showed that
the maximum positive change was in the north-west

Figure 4. Correlation of CO2 with different meteorological parameters at Bharati station, during summer 2016.

Table 2. Statistical correlation between CO2 and its influencing parameters at Bharati Station.
PAR (MJ m−2) Surface pressure (hPa) AT (°C) BLH (m) WS (m s−1) RH (%) Precipitation (mm)

CO2 (ppm) r 0.210 0.230 0.130 −0.110 −0.180 −0.320 −0.550
p level 0.242 0.205 0.468 0.512 0.303 0.071 0.003
n 33 33 33 33 33 33 27
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(0.76%) sector, followed by the north-east (0.08%)
and the south-west (0.06%) (Fig. 5d). Easterly wind
showed a change of −0.26%. These results indicate
that air masses with high CO2 concentration flowed
to the study site from across both the Antarctic sea
ice and the continent itself.

Discussion and conclusions

In our study of atmospheric CO2 at Bharati Station
evaluated against local meteorological parameters
statistical analysis showed that metrological condi-
tions – specifically precipitation (snowfall) and RH
– were major contributors in variability of

atmospheric CO2 concentration. Lowest CO2 values
were correlated with high snowfall days, which
could be due to a snow scavenging effect at the
study site. Studies by Takagi et al. (2005) and
Chaubey et al. (2010) also reported the snow
scavenging effect on atmospheric species such as
CO2 and black carbon in Antarctica.

The air-mass trajectories that we computed
showed that air masses with high CO2 concentra-
tions were flowing to Bharati Station from across
the Antarctic sea ice and from the continent itself.
An average of 396.25 ± 4.20 ppm of CO2 was
observed during the study period at the station,
with a maximum daily mean CO2 concentration of

Table 3. Training and results of the least squares multiple regression analysis performed between meteorological parameters
and the CO2 mixing ratio (the dependent variable).
Selection method Forward: significant variables selected sequentially

Significance test Reject if p > 0.10 Accept if p < 0.05
Sample size (n) 27
Coefficient of determination (R2) 0.29
Multiple correlation coefficient (r) 0.55

Results of regression equation Independent variables Coefficient Constant Standard error p value

Precipitation −0.75 396.05 0.23 0.003
Variables rejected in the significance test PAR, pressure, AT, BLH, WS and RH

Figure 5. Long range air-mass trajectories to Bharati at altitudes (a) 3 km, (b) 2 km, (c) 1 km altitude and (d) change in CO2 (%)
in different wind sectors.
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about 400 ppm. Similar observations were recently
made by the British Antarctic Survey and National
Oceanic and Atmospheric Administration: an
atmospheric CO2 concentration of 400 ppm was
a record high concentration that reached the
South Pole (Kahn 2016), which is the same level
as that recorded at Mauna Loa in 2013
(Monastersky 2013). CO2 concentrations over
Antarctica – the most remote and thinly populated
continent – are approaching those of densely
populated areas: the annual average CO2 mixing
ratios during 2013–15 over the cities of
Ahmedabad, India, and Nanjin, China, were
413 ± 13.70 ppm and 406.50 ± 20 ppm, respec-
tively (Huang et al. 2016). Monitoring CO2 over
Antarctica and other locations around the world
continues to be an important activity.
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