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Abstract

The vertical distribution (0–550 m) of zooplankton biomass, and indices of
respiration (electron transfer system [ETS]) and structural growth (aminoacyl-
tRNA synthetases activity [AARS]), were studied in waters off the Antarctic
Peninsula during the austral summer of 2000. The dominant species were the
copepod Metridia gerlachei and the euphausiid Euphausia superba. We observed
a vertical krill/copepod substitution in the water column. The zooplankton
biomass in the layer at a depth of 200–500 m was of the same magnitude as the
biomass in the layer at a depth of 0–200 m, indicating that biomass in the
mesopelagic zone is an important fraction of the total zooplankton in Antarctic
waters. The metabolic rates of the zooplankton community were sustained
by less than 0.5% of the primary production in the area, suggesting that
microplankton or small copepods are the main food source. Neither food
availability nor predation seemed to control mesozooplankton biomass. The
wide time lag between the abundance peak of the dominant copepod (M.
gerlachei) and the phytoplankton bloom is suggested to be the main explanation
for the low summer zooplankton biomass observed in these waters.
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The Bransfield Strait is located between the South Shet-
land Islands and the Antarctic Peninsula. It presents high
variability in both physical conditions (e.g., mesoscale
eddies and fronts; Zhou et al. 2006) and primary produc-
tion rates (Basterretxea & Arístegui 1999; Varela et al.
2002; Morán et al. 2006). It is also considered to be a
highly productive region for all trophic levels (Huntley
et al. 1990; Zhou et al. 1994). The studies of Antarctic
zooplankton have focused on estimating the impact of
these organisms on the development and evolution of
primary production in areas affected by strong micro- or
mesoscale plankton distribution patterns, or by the
influence of eddies and frontal systems, which are
characteristic features of the Southern Ocean. More
recently, the influence of the physical environment on
zooplankton species distribution, as well as their role in
energy flow, has been studied using indices of physiologi-
cal processes (Bergeron et al. 1985; Schalk 1990; Drits
et al. 1993; Hernández-León et al. 1999; Hernández-León
et al. 2000). However, not all the variability in zooplank-
ton biomass is explained by physical changes.

Zooplankton biomass and abundance in the Bransfield
Strait have been studied during the austral spring and
summer seasons (Alcaraz et al. 1998; Hernández-León
et al. 1999; Hernández-León et al. 2000; Cabal et al.
2002; Calbet et al. 2005), showing a great interannual
variability. Previous studies (Hernández-León et al. 1999;
Hernández-León et al. 2000; Calbet et al. 2005) have
reported low mesozooplankton biomass around the
Antarctic Peninsula. This is probably related to predation
and/or food quality, rather than to food availability.
Hernández-León et al. (2000) studied the distribution of
mesozooplankton biomass and metabolism in the upper
200-m layer, showing low zooplankton biomass with a
rather high growth rate. Yet, zooplankton consumed less
than 10% of the primary production, and a top–down
effect of krill on copepods in the area was suggested. In
addition, an important fraction of the biomass in these
waters was found in the mesopelagic zone (below 200-m
depth), as was observed in previous works on Antarctic
copepods (Lancraft et al. 1989; Lancraft et al. 1991; Lopez
& Huntley 1995; Pakhomov et al. 1996; Lancraft et al.
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2004) and euphausiids (Hernández-León, Portillo-
Hahnefeld et al. 2001; Hernández-León & Montero
2006). However, most studies to date have been focused
on the upper 200-m layer. The study of biomass and
diel vertical migration of the deep-water meso-
zooplankton (200–550-m depth) could improve our
understanding of the trophic web in this region of the
Southern Ocean.

The main aim of this study is to give a first insight on
zooplankton biomass and metabolic rates in relation to
the vertical distribution over the 0–550-m water column.
We used two enzymatic methods to obtain high-
resolution estimates of respiration and growth at depth.
The activity of the electron transfer system (ETS; Packard
1971) was used to assess the maximum potential respi-
ration. The aminoacyl-tRNA synthetases activity (AARS;
Yebra & Hernández-León 2004) was applied as an index
of the in-situ growth rate. The combined use of these
methods allowed us to simultaneously study in-situ
respiration and growth rates of mixed zooplankton
populations inhabiting mesopelagic depths, without the
need for incubation or elaborate procedures. A recent
discussion of the usefulness and advantages of these bio-
chemical methods can be found in Båmstedt (2000),

Ikeda et al. (2000), Hernández-León, Almeida et al.
(2001, 2002), Yebra, Harris et al. (2005), Yebra et al.
(2006) and Guerra (2006). Secondarily, we seek to inves-
tigate the importance of bottom–up and top–down
controls on zooplankton biomass in the Bransfield Strait.
Finally, despite the short austral summer nights, we
studied the plankton dynamic in the water column by
day and night in an attempt to look at diel vertical
migration and carbon fluxes mediated by zooplankton
in the region.

Methods

Sampling

During the austral summer of 2000, from 24 January to
17 February, 10 stations were sampled on board the RV
BIO Hespérides in the Bransfield Strait, Antarctic Peninsula
(Fig. 1), using a Longhurst–Hardy Plankton Recorder
(LHPR; 200-mm mesh net). The average day length was
20 h (06.00–02.00 h GMT), and darkness lasted for only
4 h (02.00–06.00 h GMT). Eight hauls were carried out
by day (14.33–24.21 h GMT) and two hauls were carried
out at night (03.56–04.39 h GMT), in order to study diel

Fig. 1 Location of the Longhurst–Hardy Plank-

ton Recorder net stations: �, day; �, night.
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differences in biomass and metabolic profiles. Samples
were collected from 550 to 0 m, at a speed of 3–4 knots.
Each haul contained about 22 samples, corresponding
to different layers, ranging from 13- to 24-m deep.
A conductivity–temperature–depth (CTD) recorder was
used to obtain high-resolution profiles of temperature,
conductivity and fluorescence. On board, samples were
split into two halves. One half was stored in liquid nitro-
gen at -196°C, for biochemical assays, and the other half
was preserved in 4% formalin for presence/absence
analyses of the two main groups found: euphausiids
and copepods.

Biomass and metabolic rates

Frozen samples were homogenized with Tris-HCl buffer
(pH = 7.8) before the assays. The protein content was
measured using the folin dye method (Lowry et al. 1951),
as modified for microanalysis by Rutter (1967). We trans-
formed biomass, measured as protein content, to carbon,
using published ratios: protein : dry weight (dw) = 0.192;
carbon : dry weight = 0.40 (Postel et al. 2000).

The ETS activity was assayed using the method of
Packard (1971), as modified by Gómez et al. (1996). ETS
activity was corrected for the in-situ temperature at each
depth using the Arrhenius equation with an activation
energy of 15 kcal mol-1, as given by Packard et al. (1975).
AARS activity was measured using the method of Yebra &
Hernández-León (2004), and was corrected for the in-situ
temperature with an activation energy of 10.5 kcal mol-1

(Guerra 2006).
The community respiration rates (R; mg C m-2 h-1)

were assessed from specific ETS activities (ml O2 mg
prot-1 h-1) and integrated biomass (mg protein m-2),
assuming a respiratory quotient of 0.97 (Omori & Ikeda
1984) and a theoretical R : ETS ratio of 0.5 (Hernández-
León & Gómez 1996; Ikeda et al. 2000). The community
growth rates (nm PPi m-2 h-1) were calculated from
specific AARS activities (nm PPi mg protein-1 h-1) and
integrated biomass (mg protein m-2). We assessed the
community potential ingestion (I; mg C m-2 h-1) from
respiration rates (R), assuming an assimilation and a gross
growth efficiency of 70 and 30%, respectively, and apply-
ing the equation proposed by Ikeda & Motoda (1978):
I = 100 R/(70 - 30) = 2.5 R.

Active flux

Protein content and ETS activity data were averaged at
25-m intervals to obtain day and night vertical distribu-
tion profiles. The biomass night profile was then
subtracted from the biomass day profile to show daily
changes. The day-minus-night protein profile was inte-

grated to estimate migrant biomass (mg protein m-2). The
negative area values represent the migrant biomass that
reached the euphotic layer at night (0–245-m depth).

To assess the respiratory flux (ml O2 m-2 day-1) of
carbon to deep waters, positive values of the ETS
(ml O2 m-3 h-1) day-minus-night profile were integrated
and divided by the integrated biomass present in the
same depth range (as in Yebra, Almeida et al. 2005). The
specific ETS activity measured at depth (ml O2 mg
protein-1 h-1) was then multiplied by the migrant biomass
(mg protein m-2) to obtain the flux resulting from
migrants’ respiration located below 200-m depth during
the day. For all calculations, we applied 4 h of darkness
per day, and an R : ETS ratio of 0.5 (see above).

Results

Hydrology

We found no sea-ice cover during the sampling period.
The water temperature ranged between 1 and 2°C at the
surface, decreasing to -1°C at 500-m depth (Fig. 2). We
observed occasional deep warm water masses at a depth
of 200 m. Salinity ranged from 33.9 to 34.4 at the surface,
but was similar below 100 m at all stations. The
maximum of chlorophyll was observed at around 25-m
depth, where values reached up to 14 mg Chl. a m-3.

Zooplankton biomass

The most abundant organisms were the pelagic copepod
Metridia gerlachei and the euphausiid Euphausia superba.
Calanoides acutus and Calanus propinquus were also
present, but were found only in low numbers. Visual
assessments of the presence/absence of copepods and
euphausiids showed that by day large euphausiids
were in the surface waters (above 250-m depth),
whereas smaller juveniles stayed at depth (500–550 m).
M. gerlachei was located in a compact layer from 300 to
500 m depth. Occasional layers of salps (Salpa thompsonii)
were also found around 100- and 300-m depths (Fig. 3a).
Surprisingly, the biomass values by day were similar in
both the 0–200-m and the 200–550-m layers (t = -0.17,
p = 0.86; Table 1). At night, euphausiids were observed
above 100 m and below 400 m, whereas copepods
dominated the layer in between (150–400 m), and salps
scarcely occurred above 100 m (Fig. 3b). During the
night, the biomass was concentrated in the upper 200-m
layer, increasing by twofold compared with daytime
values (t = 2.85, p < 0.01; Table 1).

Metabolic indices

During the day, specific ETS activities decreased slightly
from the surface down to 200 m, but presented higher
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values at mesopelagic depths (200–550 m, t = -2.81,
p < 0.01; Fig. 3a). In contrast, specific AARS activities
were higher above 200 m (Fig. 3a), with an averaged
specific AARS activity double that in the 200–550-m layer
(t = 3.83, p < 0.001; Table 1).

At night, the specific ETS remained variable, with peaks
at 25- and 225-m depths. Specific AARS activity peaks
were also higher in the upper 250-m layer (Fig. 3b).
The upward diel migration was accompanied by a 60%
increase in averaged specific ETS activity in the upper
200 m (t = -2.78, p < 0.01), and a slight but not signifi-
cant (t = 0.93, p = 0.35) 15% decrease between 200 and
550 m. The specific AARS activity remained constant
in shallow waters (t = 0.42, p = 0.67) and increased,
although not significantly (t = -1.77, p = 0.079), by 46%
in the mesopelagic zone at night (Table 1).

Community rates and active flux

Considering the whole water column, we observed a
small increase in specific ETS and AARS activities by
night (13% and 9%, respectively; Table 1). However,
as the biomass also increased at night, the respiration
rate of the community was 1.7 times higher during
the night (0.20 mg C m-2 h-1) compared to daytime
(0.12 mg C m-2 h-1). The community growth rate was
also 50% higher by night (360.6 nm PPi m-2 h-1) than by
day (241.8 nm PPi m-2 h-1). The mean community respi-
ration (over 0–550 m) was 1.74 mg C m-2 day-1, and the
community ingestion (0–550 m) assessed from respira-
tion was 4.35 mg C m-2 day-1.

From the day-minus-night biomass differences
observed in the upper 250 m (Fig. 4a) we obtained

a daily migrant biomass of 92.3 mg protein m-2. The
integrated total ETS activity diel difference (Fig. 4b) was
187.8 ml O2 m-2 h-1, and we estimated an active flux to
deep waters of 10.2 mg C m-2 d-1.

Discussion

Relationship between biomass vertical distribution
and enzyme activities

The Antarctic Peninsula is a region of low zooplankton
biomass in comparison with other Antarctic areas (Atkin-
son et al. 1997; Ward et al. 1997; Ward et al. 2004). The
summer zooplankton biomass in the Bransfield Strait
has high interannual variability, ranging from 35 up to
1039 mg C m-2 (Table 2). The highest biomass record cor-
responds to a summer when the salp S. thompsonii was the
most abundant zooplankton species (Alcaraz et al. 1998).
This species can have a widespread oceanic distribution
further north and east of the study area (Hosie 1994).
However, they were scarcely found during our study, and
were mainly associated with relatively warmer waters.
Instead, zooplankton was dominated by crustaceans,
and the biomass values we observed were within the
lower range of the previous values reported in the area
(Table 2).

The patterns of zooplankton vertical distribution
described for Antarctic waters coincide with our observa-
tions in the Bransfield Strait. These studies show a surface
layer dominated by krill, and a wide layer of smaller
organisms below 200-m depth (Pakhomov et al. 1994;
Murray et al. 1995; Weeks et al. 1995; Hernández-León,
Portillo-Hahnefeld et al. 2001). During our sampling,

Fig. 2 Daytime conductivity–temperature–depth (CTD) vertical profiles of temperature (°C), salinity and chlorophyll a (mg Chl. a m-3).
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euphausiids (E. superba) were concentrated above 200 m
and around 550-m depth. The copepod M. gerlachei was
found in the 300–500-m layer, as previously observed
(Schnack-Schiel & Mújica 1994; Lopez & Huntley 1995;
Hernández-León, Portillo-Hahnefeld et al. 2001), and was
the dominant copepod species during our sampling. This
agrees with Pakhomov et al. (2000), who observed that
this copepod could make up 40–95% of the total abun-
dance in the absence of krill swarms. Despite the reduced
krill presence below 200-m depth, the biomass in the
mesopelagic zone was similar to that in upper waters. This
is in agreement with studies showing that copepods could
represent more than 50% of the total biomass in Antarctic
waters (Boysen-Ennen et al. 1991; Conover & Huntley
1991; Pakhomov et al. 2000).

The vertical distribution of ETS activities was related to
biomass concentrations. The highest specific respiration

rates (ETS activities) were found below 200 m, and
were mainly related to copepod populations. Because of
the inverse allometric relationship between size and
metabolism (Ikeda 1985), copepods would show a higher
metabolism than euphausiids, thereby explaining the
observed tendency of specific respiration rates to increase
with depth. Specific ETS activity increases in relation to
high biomass values were previously observed in the
Weddell Sea (Jacques & Panouse 1991; Schnack-Shiel
& Mújica 1994). The night-time increase in biomass
from 0 to 200 m also corresponded to higher values
of specific ETS, and suggests that higher ingestion rates
occur at night. Enhanced feeding at night has been pre-
viously observed in Antarctic waters. Atkinson et al.
(1996) observed higher grazing rates of copepods, and
Hernández-León, Portillo-Hahnefeld et al. (2001) found
higher gut fullness of Antarctic krill at night. Opposite to

Fig. 3 (a) Day and (b) night averaged vertical profiles (�SD) of biomass (mg protein m-3), specific electron transfer system (ETS) activity

(ml O2 mg protein-1 h-1) and specific aminoacyl-tRNA synthetases (AARS) activity (nm PPi mg protein-1 h-1). Biomass plots show the general vertical

distribution of euphausiids (E), copepods (C) and salps (S).
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respiration, the specific growth rates (AARS activity)
during the day in the upper 200 m were higher than in the
mesopelagic layer. This indicates higher specific growth
rates in the euphotic zone, where primary production
was concentrated. Also, specific AARS activities did not
increase at night, which suggests that although feeding
seemed to have a day–night cycle, the somatic growth of
the populations remained constant in the upper waters.

Control of zooplankton biomass

One of the main unsolved questions in the region is
which factors determine the low summer zooplankton
biomass. We looked at zooplankton metabolic rates
and food availability to discuss the importance of the
bottom–up and top–down control of zooplankton popu-
lations. The community respiration in the 0–200-m layer
(1.33 mg C m-2 day-1) was similar to the summer 1993
estimates in the Bransfield Strait (1.5 mg C m-2 day-1;
Hernández-León et al. 2000). However, in summer 1994,
the biomass was dominated by salps, and the zooplankton
carbon losses due to respiration ranged from 10 to
50 mg C m-2 day-1 (Alcaraz et al. 1998). On the other
hand, we found that respiration in the mesopelagic
waters (200–550-m depth) was 30% higher than
that in the euphotic zone (2.2 mg C m-2 day-1). When

comparing the average respiration rate of the whole
0–550-m water column (1.74 mg C m-2 day-1) with
the average primary production found in the area
(2854.5 mg C m-2 day-1; Agawin et al. unpubl. data;
Table 2), we observe that the zooplankton daily respira-
tion needs accounted for only 0.06% of phytoplankton
production. This value is much lower than the 0.9
and 5.3% reported for crustacean zooplankton and
salps, respectively, by Alcaraz et al. (1998). Likewise, the
average community ingestion (0–550 m) derived from
respiration represented only 0.15% of the primary pro-
duction. Therefore, in our study, zooplankton metabolic
requirements accounted for less than 0.3% of the photo-
synthetic production. This percentage is lower than that
observed in previous studies (Atkinson & Shreeve 1995;
Lopez & Huntley 1995; Alcaraz et al. 1998; Hernández-
León et al. 1999; Hernández-León et al. 2000).
However, it is important to note that the phytoplan-
kton bloom in February 2000 was notably intense.
The average chlorophyll a concentration varied
from 3.16 � 1.5 mg Chl. a m-3 (ranging from 0.38 to
16.75 mg Chl. a m-3) in open water (Agustí et al. 2004) to
19 � 5 mg Chl. a m-3 within the waters of Deception
Island (Sturz et al. 2003). Also, the primary production
rate was the highest recorded in the area that we know of
(Table 2). The other important food source to consider for

Table 1 Zooplankton biomass (mg protein m-3, except where otherwise noted), specific electron transfer system (ETS; ml O2 mg protein-1 h-1) and

specific aminoacyl-tRNA synthetases (AARS; nm PPi mg protein-1 h-1) activities. Potential respiration (mg C m-2 h-1) and ingestion (mg C m-2 h-1) rates

calculated from specific ETS activities and biomass. Growth rates (nm PPi m-2 h-1) calculated from specific AARS activities and biomass (see Methods) for

depths of 0–200, 200–550 and 0–550 m in the Bransfield Strait.

Depth range

(m)

Day Night

Mean � SD (number of samples) Range Mean � SD (number of samples) Range

Biomass 0–200 0.23 � 0.61 (62) 0.001–4.68 0.54 � 0.39 (21) 0.05–1.56

200–550 0.24 � 0.20 (59) 0.004–0.86 0.25 � 0.32 (28) 0.03–1.71

Average 0–550 0.24 � 0.46 (121) 0.37 � 0.38 (49)

Total 0–550 0.52/130.0* (121) 1.23/179.4* (49)

Specific ETS 0–200 3.12 � 2.03 (76) 0.04–10.86 4.99 � 4.21 (21) 1.05–21.19

200–550 4.23 � 2.69 (83) 0.54–14.18 3.63 � 3.63 (28) 0.51–20.10

Average 0–550 3.70 � 2.45 (159) 4.20 � 3.90 (49)

Specific AARS 0–200 2.49 � 2.28 (62) 0.11–11.36 2.23 � 2.00 (18) 0.03–7.33

200–550 1.26 � 1.70 (65) 0.08–7.87 1.84 � 1.83 (24) 0.07–9.28

Average 0–550 1.86 � 1.90 (127) 2.01 � 1.89 (42)

Potential respiration 0–200 0.037 0.140

200–550 0.092 0.083

Average 0–550 0.065 � 0.039 0.111 � 0.041

Potential ingestion 0–200 0.093 0.350

200–550 0.231 0.206

Average 0–550 0.162 � 0.197 0.278 � 0.102

Growth 0–200 114.54 240.84

200–550 105.84 161.00

Average 0–550 110.19 � 6.15 200.92 � 56.46

* mg protein m-2.
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mesozooplankton is microplankton. E. superba is known
to feed on ciliates as well as copepods (Price et al. 1988;
Froneman et al. 1996; Atkinson & Snyder 1997; Perissi-
notto et al. 2000; Wickham & Berninger 2007). Likewise,
M. gerlachei has shown preference for ciliates and other
copepods over algae, in both austral autumn and winter
(Atkinson 1996, 1998; Pasternak & Schnack-Schiel 2001;
Wickham & Berninger 2007). Calbet et al. (2005) sug-
gested that, in this region, the mesozooplankton was
grazing on microplankton rather than on phytoplankton,
and was therefore aiding the development of the phy-
toplankton bloom. Nevertheless, the net microplankton
production found (76.36 mg C m-3 day-1; Agustí et al.
2004) was much higher than the phytoplankton
production (4.6 mg C m-3 day-1; Agawin, unpubl. data),
although it was similar to the value found in a previous
study in the region (93.35 mg C m-3 day-1; Arístegui et al.
1996). Therefore, the mesozooplankton metabolism
during summer 2000 was not limited by phyto- or
microplankton availability. Hence, as previously sug-
gested (Hernández-León et al. 1999), we reject the
bottom–up control hypothesis.

On the other hand, a top–down effect of krill on cope-
pods has been suggested as the main factor controlling
copepod abundance and development in the Bransfield
Strait (Hernández-León et al. 1999; Hernández-León
et al. 2000; Hernández-León, Portillo-Hahnefeld et al.
2001). This idea is supported by the inverse relationship
of krill/non-krill zooplankton distribution observed here,
and in other Antarctic areas, where high krill densities
coincide with very low copepod abundances (Hosie 1994;
Voronina et al. 1994; Atkinson et al. 1999). As mentioned
above, krill is able to prey selectively on copepods (Price
et al. 1988; Graneli et al. 1993; Atkinson & Snyder 1997),
although their impact on copepods might be reduced in
spring or summer, when phytoplankton concentrations
are high. Hernández-León, Portillo-Hahnefeld et al.
(2001) observed that during the austral summer of 1993
E. superba grazed on phytoplankton by day, but, despite
the high primary production (Basterretxea & Arístegui
1999; Table 2), they switched to feed on M. gerlachei at
night, when copepods migrated upwards. Our study
reflected a similar scenario, with zooplankton biomass in
the lower range and a high primary production. Hence,
the low biomass found could be the result of predation
pressure (top–down control). However, as a result of the
short length of the summer night and the high phy-
toplankton concentrations available to krill during the
bloom, their impact on copepods would be minimal. Thus,
predation might not be the only cause for the low zoop-
lankton biomass in the Bransfield Strait, and copepod life
history might be an important factor to explain the low
values found in summer. Ward et al. (2004) suggested
that the low biomass found was probably linked to
the higher latitude, lower temperatures and reduced
production in comparison with areas further north.
This combination could delay the development of zoo-
plankton populations. This agrees with studies of M.
gerlachei showing that their abundance peaks in autumn,
i.e., March–May (Schnack-Schiel & Hagen 1994, 1995;
Tucker & Burton 1990) or in early winter, i.e., June (King
& LaCasella 2003). King & LaCasella (2003) found the
biomass of M. gerlachei in the waters of Deception Island
(Bransfield Strait) to be 1.7 mg dw m-3 during February
2000, which is similar to the biomass that we observed in
open waters at that time (1.2 mg dw m-3). Nevertheless,
the biomass they found in June (31.4 mg dw m-3) was 20
times greater, showing a four-month lag response of the
copepod population to the phytoplankton bloom. This
may be explained by their preference for microplankton
and small copepods (i.e., Oithona spp.) as prey, the popu-
lations of which would peak after the phytoplankton
bloom. Therefore, it is probable that the low zooplankton
biomass found in summer is not caused by predation
pressure either, but instead is the result of life-cycle

Fig. 4 Day-minus-night averaged value profiles of (a) biomass

(mg protein m-3) and (b) total electron transfer system activity (ETS;

ml O2 m-3 h-1).
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adaptation of the dominant copepod species to the pro-
duction dynamics in the region.

Vertical migration and carbon fluxes

Biomass in the upper 200-m layer increased by twofold
at night, corresponding to the upward migration of
M. gerlachei (Park & Wormuth 1993; Lopez & Huntley
1995; Hernández-León, Portillo-Hahnefeld et al. 2001;
King & LaCasella 2003). However, the integrated
migrant biomass in the Bransfield Strait was low
(192.0 mg C m-2), compared with previous studies in the
area (Voronina et al. 1994; Hernández-León et al. 2000),
and was within the lower range (20–5200 mg C m-2) of
values found in Antarctica (Boysen-Ennen et al. 1991;
Robins et al. 1995; Ward et al. 1995). The carbon flux
due to migrant fauna respiration below 200-m depth
(10.2 mg C m-2 day-1) represented less than 0.01% of
the averaged primary production measured in the area
(2854.5 mg C m-2 day-1; Agawin, unpubl. data). At the
time of our sampling, Khim et al. (2007) were conduct-
ing a year-long study to determine carbon fluxes to
depths of 960 and 1860 m in the Bransfield Strait. Most
sediment particles (60–73%) were of lithogenic origin,
followed by biogenic silica (20%) and organic carbon
(3–5%). The organic carbon flux was similar at 960- and
1860-m depths (54.98 and 54.49 mg C m-2 day-1, respec-
tively). The authors suggested that this carbon was first
coming from the diatom spring bloom (gravitational
flux), and, later in summer, from zooplankton faecal
pellets (active flux). In this sense, Anadón et al. (2002)
observed summer carbon fluxes in the region ranging
from 160 to 800 mg C m-2 day-1 at depths of 60–65 m.
They calculated an average export flux from the euphotic
zone of 294 � 89 mg C m-2 day-1, which represented
25.6% of the primary production (Varela et al. 2002),
and suggested that the Bransfield Strait played an impor-
tant role as a carbon sink area. On the other hand,
Ebersbach & Trull (2008) observed export fluxes due to

faecal pellets to be 50–60 mg C m-2 d-1 at 100-m depth.
They concluded that the majority of export flux was
processed through the heterotrophic food web, and was
not a direct export of phytoplankton detritus. However,
if that was the case in the Bransfield Strait, carbon
fluxes would be high during autumn and early winter,
when the biomass of copepods peaks. Instead, Khim
et al. (2007) observed that more than 99% of the carbon
flux for the year occurred between December and
February. The extraordinarily minimal fluxes recorded
during the rest of the year suggest important carbon
recycling processes in the absence of phytoplankton
blooms. Nevertheless, Serret et al. (2001) suggested that
seasonal production and respiration uncoupling in the
Bransfield Strait would increase the role of hydrody-
namics (i.e., advection) in the trophic control of carbon
export. Further research during the austral autumn and
winter is needed to reveal the importance of microplank-
ton, both as grazers and as prey, if we seek to assess the
changes in carbon transport to the deep ocean through
the year.
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Table 2 Interannual variability of mesozooplankton biomass (ZPB; mg C m-2) and average primary production (PP; mg C m-2 day-1) in the Bransfield Strait.

Depth Date ZPB Reference PP Reference

0–200 12/1991 34.6* Hernández-León et al. 1999 333 Basterretxea & Arístegui 1999

0–200 01/1993–02/1993 133.6* Hernández-León et al. 2000 423–3913 Basterretxea & Arístegui 1999

0–200 01/1994 713–1039 Alcaraz et al. 1998 684–1396 Alcaraz et al. 1998

0–200 12/1995–02/1996 136–431 Cabal et al. 2002 14–176 Varela et al. 2002

0–43 02/1998 — — 262–889 Morán et al. 2001

0–200 01/2000–02/2000 94.0–240.5 Present work 578–6911 Agawin unpubl. data

0–550 270.4–373.2

0–200 01/2001–02/2001 9.3–179.3* Catalán et al. 2008 — —

0–250 12/2002 55 Calbet et al. 2005 23–451† Morán et al. 2006

*Carbon calculated from dry weight (dw) applying a C : dw ratio of 0.4 for crustaceans (Postel et al. 2000) and 0.05 for salps (Schneider 1989).
†PP estimated from surface experiments, and assuming 15 h of light per day.
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