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Abstract

Sediment cores from the Norwegian Sea were studied to evaluate interglacial
climate conditions of the marine isotope stage 5e (MIS 5e). Using planktic
forminiferal assemblages as the core method, a detailed picture of the evolution
of surface water conditions was derived. According to our age model, a step-
like deglaciation of the Saalian ice sheets is noted between ca. 135 and
124.5 Kya, but the deglaciation shows little response with regard to surface
ocean warming. From then on, the rapidly increasing abundance of subpolar
forminifers, concomitant with decreasing iceberg indicators, provides evidence
for the development of interglacial conditions sensu stricto (5e-ss), a period that
lasted for about 9 Ky. As interpreted from the foraminiferal records, and
supported by the other proxies, this interval of 5e-ss was in two parts: showing
an early warm phase, but with a fresher, i.e., lower salinity, water mass, and a
subsequent cooling phase that lasted until ca. 118.5 Kya. After this time, the
climatic optimum with the most intense advection of Atlantic surface water
masses occurred until ca. 116 Kya. A rapid transition with two notable climatic
perturbations is observed subsequently during the glacial inception. Overall,
the peak warmth of the last interglacial period occurred relatively late after
deglaciation, and at no time did it reach the high warmth level of the early
Holocene. This finding must be considered when using the last interglacial
situation as an analogue model for enhanced meridional transfer of ocean heat
to the Arctic, with the prospect of a future warmer climate.
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As a result of ongoing global warming, the polar Northern
Hemisphere is considered to be the region on Earth for
which large-scale environmental changes are expected
within the near future. At present, this environment
undergoes particularly extreme seasonal variations in
temperature-sensitive processes: for instance, the varia-
tion in thickness and lateral extent of sea ice in the Arctic
Ocean, which causes feedback mechanisms on atmo-
spheric and oceanic circulations well beyond the polar
realm itself. Whereas the heat balance dominates Arctic
environments on a seasonal basis, variations in the mass
input of relatively warm Atlantic surface water into the
Arctic Ocean is a crucial factor on longer, centennial to
millennial timescales.

Depending on the particular region, it has been shown
that the Arctic and sub-Arctic region was warmer during
the early Holocene (11–7 Kya) than later on, a situation

partly induced by high insolation forcing. To put the
Holocene (i.e., the past ca. 11 Kya), the present-day and
some future aspects of the northern polar realm into a
longer term climatic perspective, evaluating past condi-
tions with environmental constraints similar to the
current warm period is a reasonable measure. Relevant
palaeo situations are easily found in deep-sea archives
of the late Quaternary. The last interglacial period, marine
isotope stage 5e (MIS 5e; some 125 Kya), is often sug-
gested as representing a suitable candidate for such a
climate analogy study on the global scale (e.g., Kukla &
Went 1992), as well as on northern, regional scales (e.g.,
Bauch et al. 1996; Fronval & Jansen 1997). Somewhat in
accordance with a higher level of insolation, investigations
have indeed indicated that subpolar northern latitudes
during MIS 5e experienced higher temperatures on
land, and in the surface of the oceans, than have ever
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been found for the Holocene (e.g., Bauch & Kandiano
2007). For the Arctic, there are hardly any available con-
tinuous records of the complete last interglacial cycle that
would convincingly show the change from a cold glacial
environment across a rather warm interglacial period
and into a progressively cooling phase, neither from land,
e.g., Greenland ice cores, circum-Arctic vegetational and
shallow-marine coastal records, nor from the Arctic Ocean
proper. In spite of this obvious lack of good data and,
thus, stratigraphic control, there have been numerous
reconstructions, based on temperature estimates and/or
numerical modelling, to show that the Arctic region was
generally much warmer in MIS 5e than in the Holocene
(Anderson et al. 2006), which resulted in a large-scale
areal reduction of both Greenland ice (e.g., Cuffey &
Marshall 2000; Overpeck et al. 2005) and Arctic Ocean
sea-ice cover (e.g., Otto-Bliesner et al. 2006). Moreover,
outside the Arctic itself in the Nordic seas, deep-sea records
with good stratigraphic control of the last interglacial
period have been interpreted in different ways with
respect to the spatial temperature gradients, water mass
distribution and climate variability (e.g., Cortijo et al.
1994; Fronval et al. 1998; Bauch et al. 1999).

To shed more light on the topic, the aim of our study
was to critically evaluate and interpret some crucial
marine palaeo data from the present and the last inter-
glacial period of the eastern Nordic seas (Norwegian Sea).
From the palaeoceanographic and palaeoclimatic per-
spective alike, this area is important for monitoring the
main flux of interglacial surface oceanic heat on its
northbound flow to the High Arctic.

Material and methods

Hydrography and core sites

The modern hydrography of the Norwegian, Greenland
and Iceland seas (Nordic seas) is determined by a meridi-
onal flow pattern of surface waters (Fig. 1). Relatively
warm and saline Atlantic water enters the south-eastern
Nordic seas as the Norwegian Atlantic Current (NAC).
The Coriolis effect forces a large portion of this Atlantic-
derived warm water northwards along the Norwegian
continental margin, entering the Arctic Ocean through
Fram Strait and across the Barents Sea. Today, the NAC
does not touch the Norwegian coast directly, as this area
is screened by the Norwegian Coastal Current (NCC), a
fresher water mass formed from North Sea and Baltic
Sea water masses, as well as from coastal run-off. In the
opposite direction to the NAC, rather cold and lower
salinity waters leave the Arctic Ocean through Fram
Strait and flow south as the East Greenland Current
(EGC) along the Greenland continental margin. In

response to the seafloor topography, parts of the NAC and
EGC become deflected towards the central Nordic seas,
feeding a new water mass (Arctic waters), with two domi-
nant gyres in the Iceland Sea and in the Greenland Sea.
These Arctic waters are separated from the main flow of
Atlantic-derived waters by a distinct water mass bound-
ary: the Arctic front (Fig. 1, Table 1).

The core sites selected for this study cover most of the
crucial areas of the Norwegian Sea. Thus, they should be
well suited to recording any major changes or variations
of the meridional circulation. This applies particularly
to the periods of peak warmth in the last interglacial
period and Holocene times, when global ice volumes
were at a minimum, when low global ice volumes
brought about similar environmental constraints for
these two interglacials.

Stratigraphy and stable isotope analyses

For comparison with the Holocene, we have selected
the published records of cores PS1243 (Bauch et al.
2001), HM52-43 (Veum et al. 1992; Fronval & Jansen
1997) and MD95-2011 (Riesebrobakken et al. 2003).
These cores have well-established last glacial to Holocene
chronologies based on radiocarbon dates. However, to
better take into account the recent developments in
converting radiocarbon years into calendar years, we
recalculated the dates of cores PS1243 and HM52-43 by
using the method of Fairbanks et al. (2005) and applying
a reservoir correction of 400 years. The age chronology of
MD95-2011 was taken as that already published.

In Kastencores M23055 and M23071, intervals of the
last interglacial period were originally identified by Vogel-
sang (1990) on the basis of stable carbon and oxygen
isotopes measured on the polar planktic foraminifer
Neogloboquadrina pachyderma (s). Accordingly, core
M23055 reaches back to MIS 7, whereas M23071 pen-
etrates into the deglacial section of MIS 6. For the purpose

Table 1. Geographical position and water depth of cores from the

Norwegian Sea.

Core Norw. Sea

Geographical position

Water depth (m)Latitude Longitude

HM52-43 64°31′N 0°43′E 2781

M23055 68°25′N 4°1′E 2311

M23071 67°05′N 2°55′E 1308

M23323 67°46′N 5°55′E 1286

MD95-2009 62°44′N 3°59′W 1027

MD95-2010 66°41′N 4°34′E 1226

MD95-2011 66°58′N 7°38′E 1048

ODP644 66°40′N 4°34′E 1227

PS1243 69°23′N 6°32′W 2710
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of this study, we have resampled both cores. M23055 was
sampled more or less at the same depth levels as per-
formed previously by Vogelsang (1990). Core M23071,
which showed a more promising, i.e., better temporal,
resolution than M23055, was sampled more or less con-
tinuously every 1 cm. In addition, the core catcher of this
Kastencore was also sampled, as it was expected to
extend the original record into the earliest deglaciation.

As noted previously, cores from near the Norwegian
continental margin usually show extremely high sedi-
mentation rates during the glacial–interglacial transition
from MIS 6 to MIS 5e (Bauch et al. 1996). This makes

it somewhat difficult to assign the few existing age tie-
points given by the conventional SPECMAP timescale
(Martinson et al. 1987). In order to circumvent the
problem to some extent, a simple but straightforward
age model was reconstructed for core M23071, which
appeared to have the highest temporal resolution (i.e.,
sedimentation rate) of the peak last interglacial section.
By using a core from further west (site PS1243) with
more even sedimentation rates throughout the MIS
6–MIS 5d interval (Bauch & Erlenkeuser 2003; unpubl.
data), and by assigning the SPECMAP events 6.2, 6.0,
5.53, 5.51 and 5.4 (Martinson et al. 1987), an age scale

Fig. 1. Map of the subpolar and polar North Atlantic region showing a schematic overview of the meridional surface ocean circulation. The positions of

sediment cores studied (large white labels) and discussed in this work (black labels) are indicated. MD95-2010 and ODP644 share the same position.

Abbreviations: EGC, East Greenland Current; ISR, Iceland–Scotland Ridge; NAC, Norwegian Atlantic Current; NAD, North Atlantic Drift; NCC, Norwegian

Coastal Current; VP, Vøring Plateau.
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was established via interpolation between these refer-
ence depths. The final age model for core M23071 was
essentially derived by cross-correlating between the
planktic stable isotope curves of the two cores. We do
realize at this point that controversial opinions exist as
to the validity of the SPECMAP timescale for the onset
of the penultimate deglaciation (e.g., Winograd et al.
1992). However, following the concept of SPECMAP
(e.g., Imbrie et al. 1992), we assume that northern inso-
lation peaked during the penultimate deglaciation after
the glacial maximum of MIS 6, with a similar timelag
as it did during the transition from MIS 2 into the
Holocene.

Stable isotope ratios were analysed at the Leibniz
Laboratory for Radiometric Dating and Stable Isotope
Research, Kiel University, using a Finnigan MAT 251
mass spectrometer with the Kiel carbo device (Kiel I,
prototype). The analytical accuracy is �0.07‰ for d18O
and �0.04‰ for d13C. All results were calibrated to Pee
Dee Belemnite (PDB). For the measurements, about 30
specimens (average test size 200 mm) of the planktic
foraminifer N. pachyderma (s) were used per sample.
Oxygen isotopes were also analysed on the epibenthic
foraminifer Cibicidoides wuellerstorfi using multiple speci-
mens (ca. 8–10, with an average test size of ca.
400 mm). In a few samples from the deglacial section,
where this species is rarely found, measurements were
also performed on a smaller number of tests. The data
from core M23055 and M23071 will be compared with
published data from ODP644 (e.g., Fronval & Jansen
1996, 1997), and are then further discussed with more
recently interpreted data compiled by the same working
group (e.g., Riesebrobakken et al. 2006; Riesebrobakken
et al. 2007).

Sediment samples from our cores were usually taken
either as 1-cm-thick slices, or with cut-off syringes (1 cm
in diameter). All samples were freeze-dried and then
routinely washed over a 63-mm mesh. Depending on the
core, ice-rafted debris (IRD) grains were counted in the
size fractions >150 mm or >250 mm. IRD is usually
expressed as grains per gram of the dry bulk sample. For
better comparability between some records, we also
expressed IRD records as percentages (of the total of
planktic foraminifers and IRD grains in the sample).

Foraminiferal assemblages and
modern distribution

It has been shown by a number of detailed test-size mea-
surements, as well as by discrete size-fraction analyses,
that calculating census data of the foraminiferal assem-
blage in the Nordic seas using different lower mesh size
limits (e.g., >125 mm vs. >150 mm) may lead to quite

different results and interpretations (Bauch 1992, 1994;
Kandiano & Bauch 2002). This is particularly true for the
species Turborotalita quinqueloba, which could be regarded
the “coldest” representative of the entire subpolar fauna.
This species is found in last glacial sediments in test sizes
below 125 mm (Bauch 1994; Hebbeln et al. 1994).
Besides inhabiting the Norwegian Sea, T. quinqueloba
is also widespread in the Arctic waters of the Nordic seas
(e.g., Bé & Tolderlund 1971; Carstens 1991; Carstens
et al. 1997; Schröder-Ritzrau et al. 2001), along with high
proportions of the polar species N. pachyderma (s). In a
study of sediment surface samples from the Norwegian
Sea, T. quinqueloba showed an enhanced abundance near
the Arctic front (Johannessen et al. 1994) and, accord-
ingly, has often been referred to as an indicator of past
positions of the Arctic front (e.g., Fronval et al. 1998).
Based solely on the modern analogue in surface samples,
this conclusion oversimplifies the actual situation, as
T. quinqueloba occurs widely across the Nordic seas, as it
did during the early Holocene (e.g., Bauch et al. 1999;
Simstich 1999; Sarnthein et al. 2003).

From the biogeographical point of view, the right-
coiled variety of N. pachyderma, N. pachyderma (d), could
be regarded in the Nordic seas as the “warm” counterpart
of the left-coiled polar species N. pachyderma (s). In
surface sediments, N. pachyderma (d) is the most domi-
nant subpolar species in the eastern and south-eastern
marginal areas of the Norwegian Sea (Pflaumann et al.
1996; Bauch & Kandiano 2007). Here, surface waters are
warmest (Arctic Climatology Project 1998) but are also
influenced by the waters of the NCC (Fig. 1). A more
typical representative of the Atlantic-derived waters in
the Norwegian Sea appears to be Globigerina bulloides. In
surface sediments of the southern Norwegian Sea it can
comprise up to 5% of the entire assemblage >150 mm
(Pflaumann 1988).

Within the data set of surface samples, which is based
on the >150-mm size fraction, and forms the backbone
for estimating past temperatures (Pflaumann et al. 1996),
other subpolar species, such as those belonging to the
genus Globigerinita, are clearly under-represented because
of their smaller sizes. As a result of the collection criteria
used in the past, in this study we will rely on faunal data
produced from two different size fractions (>125 mm and
>150 mm). However, this will not affect our main conclu-
sions that are based on cores from the relatively warm
eastern Norwegian Sea. In this area, we found that the
relative abundance of subpolar species in the surface
sample (from the undisturbed trigger boxcorer) of our
key site (M23071) differs only marginally between
>125-mm and >150-mm mesh sizes, i.e., 57% vs. 55%,
respectively, for the total subpolar fauna, or 24% and
18%, respectively, for the smaller-sized T. quinqueloba.
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Results

Holocene records

Both core sites HM52-43 and PS1243 show a rather
harmonic development over the past 20 Ky, in that the
transition from the Last Glacial Maximum (LGM) into the
Holocene was accompanied by the surface ocean changes
so typical for the deglacial processes of this region (Fig. 2).

It was only after the Younger Dryas cold event had ter-
minated (ca. 11.5 Kya) that a drastic change towards
interglacial conditions, with strongly decreasing IRD
input from melting icebergs and, hence, increasing salini-
ties resulting from the reduced influence of meltwater,
is noted. Concomitant with the reduction in meltwater,
steeply increasing numbers of subpolar foraminifers (as
shown by the reduced polar N. pachyderma [s] population;
Fig. 2) bear witness to the existence of Atlantic-type

Fig. 2. Proxy record from the Norwegian Sea

showing the evolution of surface water masses,

as indicated by the proportion of the polar

planktic foraminifer Neogloboquadrina pachy-

derma (s), its oxygen isotope composition and

the relative quantity of iceberg-rafted debris

(IRD). The records are shown alongside the

northern summer insolation 65°N (W m–2;

Berger 1978), when Arctic–sub-Arctic regions

usually show the least seasonal sea-ice cover

(from mid-July through to August).
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water mass inflow into the Norwegian Sea, with the
“warmest conditions” occurring roughly between 10 and
6.5 Kya, and during a phase of high summer insolation.
After this time, surface conditions at the two sites never
regained the peak level seen in the early Holocene. This
became particularly apparent near the Arctic front (core
PS1243), where a steady increase towards polar condi-
tions since mid-Holocene times can be observed.

By comparison, and somewhat contradictory to the
records upstream and further west, core MD95-2011
does not show a clear early Holocene peak warming
within the foraminiferal assemblage. Although the
faunal record also reveals a low polar abundance during
this time, the population of N. pachyderma (s) remains
below 20% on average throughout the last 10.5 Ky. The
overall decreasing trend of this species during the last
6 Ky is especially at odds with the other temperature
reconstructions on the basis of diatoms and alkenones
from this core (Calvo et al. 2002; C. Andersen et al.
2004). All these data do show a clear early to middle
Holocene climatic optimum. In fact, in core M23323, a

site which is located just slightly to the north-west of
MD95-2011 (Fig. 1), ca. 80–90% of subpolar foramini-
fers occur within the >125-mm size fraction between
10.5 and 8.5 Kya (Simstich 1999; Bauch et al. 2003),
thus also verifying the existence of the early Holocene
warm peak for this region on the basis of the planktic
foraminiferal assemblage.

The last interglacial period

Records of the last interglacial period from the northern
slope of the Vøring Plateau (Fig. 3) show some very
characteristic features of the palaeoceanographic devel-
opment from the preceding glaciation MIS 6 (Saalian),
across the main deglaciation, MIS 5e and into the early
phase of the last glaciation. The final phase of MIS 6
(event 6.2) has planktic d18O values similar to the LGM.
The deglaciation commenced at ca. 390 cm, with some
notable variations, and shows enhanced but variable
inputs of IRD and, as a result, also of meltwater. After
this inital phase, above a core depth of 325 cm, steeply

Fig. 3. Various proxy records across MIS 5e

from the northern slope of the Vøring Plateau

(isotope events 6.2 and 5.4 frame the complete

last interglacial cycle). The vertical grey-shaded

area represents peak last interglacial conditions

sensu stricto (5e-ss), as defined by low levels of

ice-rafted debris (IRD) and, simultaneously, low

proportions of the polar planktic foraminifer

Neogloboquadrina pachyderma (s). The hori-

zontal grey bar marks the occurrence of Beella

megastoma (Bm) in the core. Abbreviations: Cw,

benthic foraminifer Cibicidoides wuellerstorfi;

Np(s), Neogloboquadrina pachyderma (s).
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decreasing planktic d18O values provide evidence for a
definite environmental change, although a response
within the foraminiferal assemblage apparently remains
negligible. Benthic d18O values, however, reveal large-
scale fluctuations (up to 1‰), especially during this
second phase. The main deglaciation terminates in a dis-
tinct isotopic trough, reflected in both surface and bottom
waters. Above this prominent trough, subpolar formini-
fers steeply increased in parallel with the reducing input
of IRD. The initial phase of a return to glacial conditions
is marked by enhanced IRD input, together with rising
proportions of N. pachyderma (s) and increasing d18O
towards isotope event 5.4. As has been stated previously
on the basis of some of the records from core M23055
(Bauch et al 1996), the main 5e-ss of the last warm period
in the Nordic seas occurred within the upper part of the
MIS 5e interval, and the warmest phase occurred towards
its very end (see also Haake & Pflaumann 1989). This
now seems corroborated by the benthic d18O record,
which reveals relatively stable values of about 3.7‰ only
during times of high (up to 60%) subpolar foraminiferal
abundance. We stress at this point, however, that because
of the thinness of the sediment section, which makes up
the peak interglacial part in core M23055 (ca. 15 cm),

bioturbational effects become strongly enhanced, despite
the slice technique applied for sampling.

Overall, proxy records of ODP644 from further south
on the Vøring Plateau show reasonable similarity to core
M23055 (Fig. 4): a more than 2.5-m thick package of
sediment constitutes the main deglacial interval. This
deglaciation shows large-scale variations in d18O, and
both benthic and planktic isotopic records terminate
towards the uppermost end of the deglaciation in a dis-
tinct isotopic trough. Again, this prominent trough
occurred just prior to the onset of interglacial conditions,
which is marked by steeply increasing subpolar foramin-
iferal abundance, and concomitant cessation of IRD
deposition. A relatively thin interval (ca. 30 cm) com-
prises the peak interglacial part of MIS 5e. The transition
down to isotope event 5.4 is characterized by increasing
d18O values and polar surface water conditions.

Apart from the overall similar trends between the
proxy records of M23055 and ODP644, there are never-
theless major differences to be noted. For instance, the
faunal record of ODP644 shows large changes within
5e-ss. These changes have been repeatedly shown along-
side with the disturbed, lower section of the GRIP ice core
(Fronval & Jansen 1996, 1997), despite the fact that the

Fig. 4. Various proxy records across MIS 5e

from the Vøring Plateau (isotope events 6.2 and

5.4 frame the complete last interglacial cycle).

The vertical grey-shaded area represents peak

last interglacial conditions sensu stricto (5e-ss),

as defined by low levels of ice-rafted debris (IRD)

and low proportions of the polar planktic

foraminifer Neogloboquadrina pachyderma (s).

Abbreviations: Cw, benthic foraminifer Cibici-

doides wuellerstorfi; Np(s), Neogloboquadrina

pachyderma (s).
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originally published interpretation of the GRIP core
(Dansgaard et al. 1993) was found to be erroneous only
shortly after publication (Grootes et al. 1993).

Another, noteworthy difference between the two
marine cores is the actual position of the warmest part
within 5e-ss. This is clearly not at the end of 5e-ss in core
ODP644. Although subpolar abundances rise up to 60%
during its short peak, the remaining section is dominated
by N. pachyderma (s) constituting between 60 and 80% of
the foraminiferal assemblage.

In order to further evaluate the differences between
cores M23055 and ODP644, in our study we have
included core M23071 from a similar water depth as
ODP644, but located just slightly further west (ca.
46 nm). Again, the main deglaciation in this core (Fig. 5)
shows all the characteristic features already described
from the other two sites. In particular the IRD data reveal
a good similarity in all cores, in that the rather dominant
depositional event occurred during step I of the degla-
ciation period. However, a second, considerably less

prominent, IRD increase is found within the upper part
of step II. Notwithstanding the many more minor IRD
events, for instance, near the end of the deglaciation (at
ca. 657 cm in M23071), this two-stepped nature, with
virtually no response among the dominant planktic
foraminiferal species, appears to be the typical feature of
iceberg discharge events at the Vøring Plateau during
deglaciation.

The 5e-ss section in core M23071 commenced with a
steep increase in subpolar abundance (up to 45%). After
a phase of some minor variability but with a decreasing
trend, which terminated in a trough (centred at 643 cm),
the main warm interval of 5e-ss occurred between 640
and 628 cm, when subpolar abundance reached more
than 60% within a very short interval. It is this second,
warmer interval that is accompanied by, on average,
heavier d18O values in both benthic and planktic fora-
minifers. This may imply that the d18O values during the
first warm interval contain a freshwater component of
measurable quantity.

Fig. 5. Various proxy records across MIS 5e

from the Vøring Plateau (isotope events 6.2 and

5.4 frame the complete last interglacial cycle).

The vertical grey-shaded area represents peak

last interglacial conditions sensu stricto (5e-ss),

as defined by low levels of IRD and low pro-

portions of the polar planktic foraminifer

Neogloboquadrina pachyderma (s); the white

area within highlights the interval with highest

surface ocean temperatures. The horizontal

grey bar marks the occurrence of Beella megas-

toma (Bm) in the core. Abbreviations: Bm, Beella

megastoma; Cw, benthic foraminifer Cibici-

doides wuellerstorfi; Np(s), Neogloboquadrina

pachyderma (s).
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The transition down to isotope event 5.4 is marked
by a steep increase towards polar conditions. Interest-
ingly, whereas the polar faunal record does not reveal any
observable variability, there are two notable events in the
d18O records. The first one is found mainly in the planktic
record at a core depth of 627 cm, just prior to the recur-
rence of IRD. The second event is very easily recognizable
in both d18O records, and coincided with the deposition
of increased quantities of IRD. In fact, two more benthic
d18O spikes are seen further up in core M23071 (around
isotope event 5.4), and each of them seems to have its
counterpart in the IRD record.

The good comparability between all proxy records
from cores M23071 and M23055 discussed so far is cor-
roborated by the planktic d13C record of N. pachyderma (s).
In these two cores, both carbon records do show a very
similar evolution during early deglaciation, with a promi-
nent interval during step II marked by lowest values. This
high isotopic similarity is retained across the remaining
5e-ss section and into the glacial inception, in both abso-
lute values and variability. By comparison, all isotopic
records of ODP644 show large-scale amplitude changes,
casting doubt on their quality as a reliable palaeoenviron-
mental recorder. In a similar way, this may apply to the
faunal data during 5e-ss, which are so similar between
cores M23055 and M23071 in trend and absolute values,
despite the very different sedimentation rates, but which
differ significantly from the data from core ODP644.

Discussion

5e-ss

According to our age model, the part of MIS 5e in core
M23071 that would compare directly with the interglacial
conditions of the Holocene since 11.5 Kya lasted for
�9 Ky, from 124.5 to 115.5 Kya (Fig. 6). This is clearly
confirmed by the populations of all dominant subpolar
species which started to increase in numbers at the same
time, and is contemporaneous with the steep decrease in
planktic d18O, as well as high insolation. It is rather note-
worthy that towards the end of 5e-ss, at 116.5 Kya, the
ultimate turning point in the subpolar species T. quinque-
loba and G. bulloides was again associated with a similar
steep change in planktic d18O, but with the opposite effect
because of the cooling surface conditions. Although most
subpolar foraminifers seem to have reached their abun-
dance peaks between 118 and 116.5 Kya, N. pachyderma
(d) shows its dominance clearly before that. At face value
one could be tempted to assume that the late high abun-
dance of T. quinqueloba in particular reflects the eastward
shift of cooler Arctic Waters (i.e., including the Arctic
front sensu Johannessen et al. 1994) during times of early

glacial inception. The peak in T. quinqueloba, however,
occurred simultaneously with the peak in G. bulloides, a
species that can clearly be regarded as a solid indicator for
North Atlantic surface waters flowing into the Norwegian
Sea (Pflaumann 1988; Bauch & Kandiano 2007). By con-
trast, surface samples give ample evidence of a well-
defined biogeographical and ecological preference of
N. pachyderma (d) for the marginal areas, stretching from
the North Sea, north along the Norwegian coast, where
coastal waters of the NCC are the dominating oceano-
graphic factor (see Bauch & Kandiano 2007). Such a
preference does not discount N. pachyderma (d) from also
being a representative of a typical interglacial water mass
circulation in the Norwegian Sea in general. But it would
rule out this species from being a direct indicator of the
north-directed meridional transfer of ocean heat from
the North Atlantic, in particular, as is often inferred in
other studies (e.g., Fronval et al. 1998; Riesebrobakken
et al. 2007).

In two recent investigations, Riesebrobakken et al.
(2006) and Riesebrobakken et al. (2007) show various
proxy records of MD95-2010 from the Vøring Plateau;
this core was taken in 1995, apparently to restudy
ODP644 as both sites share exactly the same position
(Fig. 1). The published planktic foraminiferal census data
from this new core reveal that the main decrease in the
polar species N. pachyderma (s) clearly occurred during
the early part of 5e-ss. What comes as a surprise is that
none of the large-scale faunal and isotopic variabilities
originally compiled and interpreted from core ODP644,
data often cited and used by others (e.g., Müller & Kukla
2004), could even roughly be reproduced from MD95-
2010. Furthermore, although the original and new data
from the two cores share the same site, and were com-
piled within the same working group, all previous studies
and interpretations of ODP644 were not referred to in the
subsequent, more recent studies of core MD95-2010.

That core MD95-2010 shows the warmest conditions
during early 5e-ss strongly conflicts with our data from
cores M23071 and M23055. In fact, it also opposes data
and interpretations made from a site further upstream,
i.e., core MD95-2009 at the Iceland–Scotland Ridge
(Fig. 1). On the basis of crucial planktic foraminiferal data
from this core, there is unequivocal evidence of the late,
peak warm interval (Rasmussen et al. 1999; Rasmussen
et al. 2003), in absolute accordance with our data.

In the latest interpretation, the faunal data of core
MD95-2010 were compared with records from the
south-west of Svalbard, where a clear late warm peak is
recognized in MIS 5e (Riesebrobakken et al. 2007). These
authors, who also employ a modelling approach, claim
that this phase difference between the early warm peak at
the Vøring Plateau and the later warm peak off Svalbard
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was a main forcing (i.e., controlling moisture supply,
atmospheric circulation, etc.), which triggered enhanced
glacier growth in the northern Barents Sea region and its
archipelagos during early glacial inception.

Indeed, it has often been suggested, in accordance with
the orbital theory, that the steeply decreasing insolation
values at high northern latitudes during MIS 5e was the
main trigger that enforced early glacial inception in this
region (e.g., Imbrie et al. 1992). An analogy of this is
certainly found over large areas of the Nordic seas after
the early to middle Holocene warm peak, when surface
ocean cooling occurred contemporaneously with both

lowered insolation and mountainous glacier growth in
Norway (Koç et al. 1993; Bauch et al. 1996; Nesje &
Kvamme 1991; Hald et al. 2004; see also Fig. 2).
However, the occurrence of the warmest peak during late
5e-ss is somewhat contradictory with this Holocene
analogy. It has therefore been suggested that the degla-
ciation of the much larger Saalian (MIS 6) vs. Weichselian
(MIS 2) ice sheet led to quite contrasting environmental
boundary conditions (Bauch & Kandiano 2007). These
were enforced by different glacial–deglacial histories, and
resulted from the combined effects of meltwater release
to the Nordic seas and inflow of Atlantic water, as well as

Fig. 6. Comparison of planktic foraminiferal

asemblage data, planktic and benthic oxygen

isotopes (Np[s] and Cw) and sedimentological

records of key core M23071, shown alongside

with northern summer insolation (W m–2, as

in Fig. 2) for the period 140–105 Kya. Also indi-

cated are the stepwise deglaciation and the

glacial inception. Dashed vertical lines together

with up- and down-pointing solid arrows frame

the peak interglacial time sensu stricto (5e-ss).

The highest ocean surface temperatures

occurred during times when highest salinites

are inferred and surface water advection from

the Atlantic to the Vøring Plateau was most

intense. Up- and down-pointing open arrows

denote some further events, as discussed in

the text.
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the regional sea level changes caused by global deglacia-
tion and glacial rebound of Fennoscandia. Therefore, a
significant time lag in postdeglacial climate evolution
developed between the higher and middle latitudes of the
North Atlantic sector. In accordance with peak northern
insolation, the warmest surface conditions clearly
occurred on the southern Rockall Plateau during the
initial phase of MIS 5e, with a second, slightly cooler,
warm peak discernible towards the terminal phase of
MIS 5e (Bauch & Kandiano 2007). Further north in the
Iceland Basin, estimates of the sea surface temperature
from core JPC8 (Fig. 1) indicate instead a slightly warmer
late MIS 5e (Oppo et al. 1997; Bauch et al. 2000). This
late MIS 5e warming in this particular region now seems
to be confirmed by a palynological study of core MD95-
2015 (Fig. 1), revealing an unusually high abundance
of the warm, Atlantic-type dinocyst Spiniferites mirabilis
(Eynaud et al. 2004).

A recent palynological investigation of core M23071
has also revealed the occurrence of S. mirabilis on the
Vøring Plateau, in synchrony with the occurrence of
peaks in G. bulloides and T. quinqueloba (Van Nieuwen-
hove et al. 2008). This new finding strongly suggests that
fully marine, Atlantic-type conditions developed at site
M23071 only after 118 Kya, and that the lower planktic
d18O values (and possibly benthic d18O values, too) found
previously mainly reflect an influence of water masses
with lower salinities. An influence of freshwater from
melted icebergs before 119 Kya cannot be ruled out
entirely, as we find a slight, but distinct, increase in IRD
at 120 Kya followed by a subsequent cooling, recorded
by all subpolar foraminfers (Fig. 6). Because of the low
resolution, we do not intend to overinterpret the data
from core M23055. But, based on the overall strati-
graphic context, it seems as if the low planktic d18O
spikes found between core depths of 295 and 288 cm
(Fig. 3) correlate in time with the interval 124–119 Kya
in core M23071.

Thus, in analogy to the modern biogeographical
distribution of N. pachyderma (d), it is suggested that the
high abundance of this species in M23071during the first
phase of 5e-ss was also the result of a water mass with
lower salinity, i.e., a water mass with properties similar
to the modern NCC. During the intial phase of 5e-ss, this
water mass was relatively thick, as it reached across the
Vøring Plateau down to a water depth of 1300 m, forming
conditions there that were less preferred by the other
subpolar species. To what extent this water mass was
also fed by water from the North Sea/Baltic Sea region
remains an open question, but seems rather likely, con-
sidering the deglacial and isostatic history of the entire
area during the last interglacial period (e.g., Seidenkrantz
& Knudsen 1997; Winn et al. 2000; Funder et al. 2002).

The existence of a water mass with lowered salinity
during the earlier stage of 5e-ss must have brought about
seasonal differences in surface stratification and tem-
peratures that do not match the Holocene situation.
Indeed, this assumption gains support from new recon-
structions using dinoflagellate assemblage studies, which
show that surface salinity steadily increased across the
5e-ss interval (Van Nieuwenhove & Bauch 2008 [this
issue]). As the same salinity trend was also found across
MIS 5e in a core from the southern Labrador Sea
(Hillaire-Marcel et al. 2001), it seems as if those north-
ern regions that were in proximity of the formerly
heavily glaciated land areas underwent a similar surface
water evolution.

Last interglacial climate transitions

As is evident from the massive deposition of IRD at the
Vøring Plateau, in combination with the planktic d18O
record, the penultimate deglaciation came in two major
steps (Fig. 6). In fact, the early step-event of this transi-
tion has a global significance, as it is also easily
recognizable in the standard SPECMAP d18O curve
(Martinson et al. 1987), as well as in other reconstruc-
tions (e.g., Sarnthein & Tiedemann 1990). More recent
studies of the step-like appearance speak of a “pause” in
the overall deglacial process (e.g., Gouzy et al. 2004;
Riesebrobakken et al. 2006), or even a significant drop in
sea level (Siddall et al. 2006). Regardless of the relevance
of these new interpretations, in the subpolar north-east
Atlantic a major iceberg discharge event was associated
with surface cooling during the penultimate deglaciation,
and has originally been labelled H11 in accordance with
the younger series of such events (McManus et al. 1994).
Intriguingly, at the Vøring Plateau we would infer two
such major events on the basis of IRD alone, as have
others (Riesebrobakken et al. 2006), and two events have
also been described from the southern Rockall Plateau
(Didié & Bauch 2000). However, unlike the record from
further south, where these two IRD events were linked to
contemporaneous surface cooling (Kandiano et al. 2004),
nothing obvious is recognized in the polar faunal record
at the Vøring Plateau. Yet, a sample from the early
deglaciation in M23071 that yielded an unusually high
number of G. bulloides (12 specimens) is noteworthy,
although the remainder of the sample was entirely com-
prised of N. pachyderma (s). This sample is found at
129 Kya, and it correlates to the steep decrease in planktic
d18O (Fig. 6).

Always in association with strong depletions in benthic
d18O, the penultimate deglaciation of the Nordic seas was
marked by the intrusion of the subtropical planktic fora-
minifer Beella megastoma in the Iceland Sea at the end of
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step I (Bauch 1996; Bauch et al. 2000). Probably as a
result of a thick meltwater lid closer to the Norwegian
margin, records from further east show that the intrusion
occurred either later in time or not at all (Bauch 1996).
In core M23071, the record is extremely sparse, as only
four samples revealed one specimen each between 126
and 124.5 Kya (Fig. 6). The events recognized in core
M23055 cover a roughly similar stratigraphical position
as the few specimens in M23071 (Fig. 3). What makes the
appearance of B. megastoma so significant for interpreting
deglacial processes in the Nordic seas is that it testifies to
an “Atlantic” water mass component. For this, and for
much of the other evidence shown and discussed else-
where (e.g., Rasmussen et al. 1996; Bauch et al. 2000;
Bauch et al. 2001; Jung & Vogt 2004; Shaffer et al. 2004),
the widespread occurrence of highly depleted d18O values
in benthic foraminifers cannot be caused by brines ejected
during sea-ice formation alone, as has been repeatedly
suggested (e.g., Veum et al. 1992; Fronval & Jansen 1996;
Dokken & Jansen 1999; Riesebrobakken et al. 2006).
Unlike other attempts (Bauch & Bauch 2001), the “brine
hypothesis” has so far failed to provide any further evi-
dence or arguments to explain how brines could rapidly
fill and replace deep-basin water masses of the Nordic
seas, during times when quite contrasting climatic back-
ground conditions prevailed (see Bauch & Erlenkeuser
2003).

Data from the North Atlantic have revealed two cold
events, C26 and C25, during the interglacial transition
towards isotope event 5.4 (Chapman & Shackleton 1999;
Lehman et al. 2002), and clearly after full interglacial
conditions had ceased (Bauch & Kandiano 2007).
Although we did not match our age model from the
Vøring Plateau with the records from much further
south, it appears evident that the two events recorded
in the planktic d18O data of M23071 at 116 and 114 Kya
would correlate, respectively, with C26 and C25, and the
subsequent brief warmings (Fig. 6). This cooling and
warming of the older event is also recognizable in the
faunal record of G. bulloides. Although a much stronger
impact is found on the isotopic proxies in association
with IRD during the younger event, there was no
response in the subpolar records. Thus, it may be con-
cluded that the brief warming found in G. bulloides near
115.5 Kya may correlate with the warming event recog-
nized in the North Greenland ice core during glacial
inception (K.K. Andersen et al. 2004; Bauch & Kandiano
2007). Still, the overall response in the Nordic seas
appears to have been rather weak. This may imply that
there was no strong link between atmospheric change
over Greenland and variations in the meridional flux of
Atlantic surface water into the Norwegian Sea during the
early phase of the last glacial cycle.

Holocene versus last interglacial period

On the basis of a large number of cores from key locations
in the Nordic seas, Bauch et al. (1999) attempted to
reconstruct the main difference between the last and
the present interglacial surface circulation pattern. The
pattern that emerged differed from reconstructions by
Kellogg (1980) and Fronval et al. (1998), which were
rather similar to each other, in showing a weaker influx
of Atlantic water into the Norwegian Sea and into the
Arctic Ocean when compared with the Holocene. As it
was then suggested, the weaker influx resulted in a zonal
alignment of the main oceanic fronts (e.g., the Arctic
front), a view also favoured because the western Iceland
Sea indicated slightly warmer last interglacial conditions
than in the Holocene. A relatively warmer south-western
Nordic sea, resulting from a weakened EGC responding
to a reduced water mass inflow to the Arctic Ocean, may
comply with assumptions on a smaller size of the south
Greenland ice sheet (Koerner 1989; Cuffey & Marshall
2000), and the lack of deep-water ventilation in the
Labrador Sea (Hillaire-Marcel et al. 2001). It must be
stressed at this point, however, that the previous recon-
struction from the Nordic seas lacked the high sample
resolution of the present study, and did not clearly dis-
tinguish between an early and a late 5e-ss phase (Bauch
et al. 1999).

Still, evaluating all the new foraminiferal census data
available does not really lead to a very different picture:
nowhere in the Norwegian Sea did the proportion of
subpolar foraminifers exceed the high values found
during the first half of the Holocene at the selected sites
at any time during 5e-ss. In fact, taking the Holocene data
of Riesebrobakken et al. (2003) from core MD95-2011 as
valid for the entire eastern Norwegian Sea, then this
statement would apply for most of the Holocene (Fig. 2).
But, as has already been indicated, the particular subpolar
record in the Holocene of core MD95-2011 is not con-
firmed anywhere south (HM52-43; Fronval & Jansen
1997), west (PS1243; Bauch et al. 1996) or in closer
vicinity of its position (M23323; Simstich 1999). As a
matter of fact, not even the average subpolar trend in
MD95-2011 is actually verified by other surface ocean
proxy methods conducted on the very same core (Calvo
et al. 2002; C. Andersen et al. 2004). And even much
further north, reconstructions indicate a very warm early
Holocene on the basis of planktic foraminiferal data
(Sarnthein et al. 2003; Hald et al. 2004), in strong con-
trast to the situation in 5e-ss. In this context, a recent
re-evaluation of Holocene data from sites stretching from
the northern North Sea north along the Norwegian–
Barents Sea continental margin, towards Svalbard, also
reveals very high proportions of N. pachyderma (d) in the

A “critical” climatic evaluation of the last interglacial (MIS 5e) records from the Norwegian Sea H.A. Bauch & H. Erlenkeuser

Polar Research 27 2008 135–151 © 2008 The Authors146



marginal areas during the second half of the Holocene
(Hald et al. 2007), thus masking the overregional signal
of the warmest period in the early Holocene.

Conclusions

The last interglacial climate maximum, i.e., the time
when Atlantic water inflow was most dominant in the
Norwegian Sea, occurred rather late along the meridional
pathway of ocean heat transfer towards the Arctic, and
during times of already very low insolation forcing. At
times when northern summer insolation was higher, i.e.,
in the early phase of 5e-ss, water masses in the eastern
Norwegian seas were affected by lower salinity and some
climate instability, which were likely to have resulted
from effects connected to the radical environmental
change from the glacial to the interglacial regime. Thus,
the response to insolation forcing would have been quite
different in early 5e-ss if there had been more (quasi)
stationary conditions of an already better established
equilibrium system, such as probably existed in the
earlier Holocene.

Our findings pose large question marks on those mod-
elling attempts for the High Arctic that usually use
insolation as the major forcing (e.g., Montoya et al.
1998; Otto-Bliesner et al. 2006; Overpeck et al. 2005).
Major doubts also remain for the reconstructions that
suffer from a rather “floating” stratigraphic control. For
instance, the finds of so-called “warm-loving” and, in
shallow water, living molluscs in some coastal outcrops
are widely used to generally infer a much warmer last
interglacial period than the Holocene (Funder et al.
2002; Anderson et al. 2006). But, because of a poor
knowledge of the details of the last interglacial isostatic
history of the western and northern North European
continental and land margins, such finds lack realistic
age control. By analogy with the Holocene isostatic
evolution of this region, one could conclude that these
“warm” indicators should belong to the earlier part of
MIS 5e, i.e., to the late deglaciation and early 5e-ss. By
this time, the formerly extensive Saalian ice sheet on the
bounded shelf regions all around Fennoscandia was
probably gone (e.g., Lambeck et al. 2006), giving way to
widespread intrusions of marine waters (Funder et al.
2002). The inflow was aided by the overdeepened shelf
areas, a delayed regional isostatic response and a con-
temporaneous, rapid rise in the global sea level. As
indicated by our data from the Vøring Plateau, we
assume that during early 5e-ss the eastern Norwegian
Sea was largely affected by marine waters, but with a
lowered salinity, as they were probably mixed waters
from the inundated shelf regions (North–Baltic Sea
region). By comparison, the water masses that affected

the eastern Norwegian Sea in the early Holocene were
more directly connected to the inflow of Atlantic surface
water.

Regardless of the precise stratigraphic context of these
shallow marine sediments within MIS 5e, and this still
remains an open question, our study documents a lower
influx of Atlantic waters towards the Arctic in MIS 5e.
Moreover, although the last interglacial period is identi-
fiable at the northern Barents Sea margin (Matthiessen
& Knies 2001), and perhaps also north of Greenland
(Nørgaard-Pedersen et al. 2007), as yet there exists no
primary data basis good enough to justify a large-scale
reconstruction of the last interglacial period tempera-
tures, as recently compiled by the CAPE group (Anderson
et al. 2006), neither for the terrestrial nor for the marine
Arctic realm. We cannot judge the methodological quality
of proxy data production, core site selection, coring and
sampling made by others. This we have to take for
granted. But, in assembling a coherent palaeoceano-
graphic picture of the last interglacial period. But, in
assembling a coherent palaeoceanographic picture of the
last interglacial period, for the polar north, reconstruc-
tions should rely on those records and those sites that,
after critical evaluation, appear worthy of confidence as
to the overregional climate signals.

Acknowledgements

The team from the Leibniz Laboratory for Radiometric
Dating and Stable Isotope Research, Kiel University, is
thanked for their support in isotope analyses. Thanks
are expressed to the two anonymous referees for their
help to improve the manuscript. The project was funded
through grants provided by the German Research
Foundation.

References

Andersen C., Koç, N., Jennings A. & Andrews J.T. 2004.
Nonuniform response of the major surface currents in the
Nordic seas to insolation forcing: implications for the
Holocene climate variability. Paleoceanography 19, PA2003,
doi: 10.1029/2002PA000873.

Andersen K.K., Azuma N., Barnola J.M., Bigler M., Biscaye
P., Caillon N., Chappellaz J., Clausen H.B., Dahl-Jensen D.,
Fischer H., Fluckiger J., Fritzsche D., Fujii Y., Goto-Azuma
K., Gronvold K., Gundestrup N.S., Hansson M., Huber C.,
Hvidberg C.S., Johnsen S.J., Jonsell U., Jouzel J.,
Kipfstuhl S., Landais A., Leuenberger M., Lorrain R.,
Masson-Delmotte V., Miller H., Motoyama H., Narita H.,
Popp T., Rasmussen S.O., Raynaud D., Rothlisberger R.,
Ruth U., Samyn D., Schwander J., Shoji H.,
Siggard-Andersen M.L., Steffensen J.P., Stocker T.,
Sveinbjornsdottir A.E., Svensson A., Takata M., Tison J.L.,

A “critical” climatic evaluation of the last interglacial (MIS 5e) records from the Norwegian SeaH.A. Bauch & H. Erlenkeuser

Polar Research 27 2008 135–151 © 2008 The Authors 147



Thorsteinsson T., Watanabe O., Wilhelms F. & White
J.W.C. 2004. High-resolution record of Northern
Hemisphere climate extending into the last interglacial
period. Nature 431, 147–151.

Anderson P., Bennike O., Bigelow N., Brigham-Grette J.,
Duvall M., Edwards M., Frechette B., Funder S., Johnsen
S., Knies J., Koerner R., Lozhkin A., Marshall S.,
Matthiessen J., Macdonald G., Miller G., Montoya M.,
Muhs D., Otto-Bliesner B., Overpeck J., Reeh N., Sejrup
H.P., Spielhagen R., Turner C. & Velichko A. 2006.
Last interglacial Arctic warmth confirms polar
amplification of climate change. Quaternary Science
Reviews 25, 1383–1400.

Arctic Climatology Project 1998. Environmental Working
Group joint US–Russian atlas of the Arctic Ocean—summer
period. L. Timokhov & F. Tanis (eds.). Ann Arbor, MI:
Environmental Research Institute of Michigan in
association with the National Snow and Ice Data Center.
CD-rom.

Bauch H.A. 1992. Test size variation of planktic foraminifers
as response to climatic changes. Abstracts, 4th International
Conference on Paleoceanography. GEOMAR Report 15, 56.

Bauch H.A. 1994. Significance of variability in Turborotalita
quinqueloba (Natland) test size and abundance for
paleoceanographic interpretations in the
Norwegian–Greenland Sea. Marine Geology 121, 129–141.

Bauch H.A. 1996. Monitoring Termination II at high latitude
anomalies in the planktic foraminiferal record. Marine
Geology 131, 89–102.

Bauch D. & Bauch H.A. 2001. Last glacial benthic
foraminiferal d18O anomalies in the polar North Atlantic:
a modern analogue evaluation. Journal of Geophysical
Research—Oceans 106(C5), 9135–9143.

Bauch D., Darling K., Simstich J., Bauch H.A., Erlenkeuser
H. & Kroon D. 2003. Palaeoceanographic implications of
genetic variation in living North Atlantic Neogloboquadrina
pachyderma. Nature 424, 299–302.

Bauch H.A. & Erlenkeuser H. 2003. Interpreting
glacial–interglacial changes in ice volume and climate from
subarctic deep water foraminiferal d18O. In A.W. Droxler
et al. (eds.): Earth’s climate and orbital eccentricity: the marine
isotope stage 11 question. Geophysical Monograph Series 137.
Pp. 87–102. Washington, D.C.: American Geophysical
Union.

Bauch H.A., Erlenkeuser H., Fahl K., Spielhagen R.F., Weinelt
M.S., Andruleit H. & Henrich R. 1999. Evidence for a
steeper Eemian than Holocene sea surface temperature
gradient between Arctic and sub-Arctic regions.
Palaeogeography, Palaeoclimatology, Palaeoecology 145, 95–117.

Bauch H.A., Erlenkeuser H., Grootes P.M. & Jouzel J. 1996.
Implications of stratigraphic and paleoclimatic records of
the last interglaciation from the Nordic seas. Quaternary
Research 46, 260–269.

Bauch H.A., Erlenkeuser H., Jung S.J.A. & Thiede J. 2000.
Surface and deep water changes in the subpolar North
Atlantic during Termination II and the last interglaciation.
Paleoceanography 15, 76–84.

Bauch H.A., Erlenkeuser H., Spielhagen R.F., Struck U.,
Matthiessen J., Thiede J. & Heinemeier J. 2001. A
multiproxy reconstruction of the evolution of deep and
surface waters in the subarctic Nordic seas over the last
30,000 years. Quaternary Science Reviews 20, 659–678.

Bauch H.A. & Kandiano E.S. 2007. Evidence for early
warming and cooling in North Atlantic surface waters
during the last interglacial. Paleoceanography 22, PA1201,
doi: 10.1029/2005 PA001252.

Bé A.W. & Tolderlund D.S. 1971. Distribution and ecology of
living planktonic foraminifera in surface waters of the
Atlantic and Indian oceans. In B.M. Funnel & W.R. Riedel
(eds.): The micropaleontology of oceans. Pp. 105–149.
Cambridge: Cambridge University Press.

Berger A. 1978. Long-term variations of daily insolation and
Quaternary climatic changes. Journal of the Atmospheric
Sciences 35, 2362–2367.

Calvo E., Grimalt J. & Jansen E. 2002. High resolution U37K
sea surface temperature reconstruction in the Norwegian
Sea during the Holocene. Quaternary Science Reviews 21,
1385–1394.

Carstens J. 1991. Verteilung planktischer Foraminiferen in
der Wassersäule. (Distribution of planktic foraminifers
in the water column.) In J. Thiede & G. Hempel (eds.)
Die Expedition ARKTIS-VII/1 mit FS “Polarstern” 1990.
(The ARKTIS-VII/1 expedition with the RV Polarstern in 1990.)
Berichte zur Polarforschung 80, 60–62.

Carstens J., Hebbeln D. & Wefer, G. 1997. Distribution
of planktic foraminifera at the ice margin in the
Arctic (Fram Strait). Marine Micropaleontology 29,
257–269.

Chapman M.R. & Shackleton N.J. 1999. Global ice-volume
fluctuations, North Atlantic ice-rafting events, and
deep-ocean circulation changes between 130 and 70 Ka.
Geology 27, 795–798.

Cortijo E., Duplessy J.-C., Labeyrie L., Leclaire H., Duprat J.
& van Weering T.C.E. 1994. Eemian cooling in the
Norwegian Sea and North Atlantic ocean preceding
continental ice-sheet growth. Nature 372, 446–449.

Cuffey K.M. & Marshall S.J. 2000. Substantial contribution
to sea-level rise during the last interglacial from the
Greenland ice sheet. Nature 404, 591–594.

Dansgaard W., Johnsen S.J., Clausen H.B., Dahl-Jensen D.,
Gundestrup N.S., Hammer C.U., Hvidberg C.S., Steffensen
J.P., Sveinbjörnsdottir A.E., Jouzel J. & Bond G. 1993.
Evidence for general instability of past climate from a
250-kyr ice-core record. Nature 364, 218–220.

Didié C. & Bauch H.A. 2000. Species composition and
glacial–interglacial variations in the ostracode fauna in the
northeast Atlantic during the past 200,000 years. Marine
Micropaleontology 40, 105–129.

Dokken T.D. & Jansen E. 1999. Rapid changes in the
mechanism of ocean convection during the last glacial
period. Nature 401, 458–461.

Eynaud F., Turon J.-L. & Duprat J. 2004. Comparison of the
Holocene and Eemian palaeoenvironments in the South
Icelandic Basin: dinoflagellate cysts as proxies for the

A “critical” climatic evaluation of the last interglacial (MIS 5e) records from the Norwegian Sea H.A. Bauch & H. Erlenkeuser

Polar Research 27 2008 135–151 © 2008 The Authors148



North Atlantic surface circulation. Review of Palaeobotany
and Palynology 128, 55–79.

Fairbanks R.G., Mortlock R.A., Chiu T.-C., Cao L., Kaplan A.,
Guilderson T.P., Fairbanks T.W., Bloom A.L., Grootes P.M.
& Nadeau M.-J. 2005. Radiocarbon calibration curve
spanning 0 to 50 000 years BP based on paired 230Th/
234U/238U and 14C dates on pristine corals. Quaternary
Science Reviews 24, 1781–1796.

Fronval T. & Jansen E. 1996. Rapid changes in ocean
circulation and heat flux in the Nordic seas during the last
interglacial period. Nature 383, 806–810.

Fronval T. & Jansen E. 1997. Eemian and early Weichselian
(140–60 ka) paleoceanography and paleoclimate in the
Nordic seas with comparisons to Holocene conditions.
Paleoceanography 12, 443–462.

Fronval T., Jansen E., Haflidason H. & Sejrup H.-P. 1998.
Variability in surface and deep water conditions in the
Nordic seas during the last interglacial period. Quaternary
Science Reviews 17, 963–985.

Funder S., Demidov I. & Yelovicheva Y. 2002. Hydrography
and mollusc faunas of the Baltic and the White Sea–North
Sea seaway in the Eemian. Palaeogeography,
Palaeoclimatology, Palaeoecology 184, 275–304.

Gouzy A., Malaizé B., Pujol C. & Charlier K. 2004. Climatic
“pause” during Termination II identified in shallow and
intermediate waters off the Iberian margin. Quaternary
Science Reviews 23, 1523–1528.

Grootes P.M., Stuiver M., White J.W.C., Johnsen S. &
Jouzel J. 1993. Comparison of oxygen isotope records
from the GISP2 and GRIP Greenland ice cores. Nature 366,
552–554.

Haake F.W. & Pflaumann U. 1989. Late Pleistocene
foraminiferal stratigraphy on the Vøring Plateau,
Norwegian Sea. Boreas 18, 343–356.

Hald M., Andersson C., Ebbesen H., Jansen E.,
Klitgaard-Kristensen D., Risebrobakken B., Salomonsen
G.R., Sarnthein M., Sejrup H.P. & Telford R.J. 2007.
Variations in temperature and extent of Atlantic Water in
the northern North Atlantic during the Holocene.
Quaternary Science Reviews 26, 3423–3440.

Hald M., Ebbesen H., Forwick M., Godtliebsen F., Khomenko
L., Korsun S., Olsen L. & Vorren T.O. 2004. Holocene
paleoceanography and glacial history of the west
Spitsbergen area, Euro-Arctic margin. Quaternary Science
Reviews 23, 2075–2088.

Hebbeln D., Dokken T., Andersen E.S., Hald M. & Elverhoi
A. 1994. Moisture supply for northern ice-sheet growth
during the Last Glacial Maximum. Nature 370, 357–360.

Hillaire-Marcel C., de Vernal A., Bilodeau G. & Weaver A.J.
2001. Absence of deep-water formation in the Labrador
Sea during the last interglacial period. Nature 410,
1073–1077.

Imbrie J., Boyle E.A., Clemens S.C., Duffy A., Howard W.R.,
Kukla G., Kutzbach J., Martinson D.G., McIntyre A.,
Mix A.C., Molfino B., Morley J.J., Peterson L.C., Pisias
N.G., Prell W.L., Raymo M.E., Shackleton N.J. &
Toggweiler J.R. 1992. On the structure and the origin of

major glaciation cycles: 1. Linear responses to
Milankovitch forcing. Paleoceanography 7, 701–738.

Johannessen T., Jansen E., Flatøy A. & Ravelo A. 1994.
The relationship between surface water masses,
oceanographic fronts and paleoclimatic proxies in surface
sediments of the Greenland, Iceland, Norwegian seas.
In R. Zahn et al. (eds.) Carbon cycling in the glacial ocean:
constraints on the ocean’s role in global change. Pp. 61–85.
Berlin: Springer.

Jung W.Y. & Vogt P.R. 2004. Effects of bottom water
warming and sea level rise on Holocene hydrate
dissociation and mass wasting along the
Norwegian–Barents continental margin. Journal of
Geophysical Research—Solid Earth 109(B6), doi: 10.1029/
2003JB002738.

Kandiano E.S. & Bauch H.A. 2002. A case study on the
application of different planktic foraminiferal size fractions
for interpreting late Quaternary paleoceanographic
changes in the polar North Atlantic. Journal of Foraminiferal
Research 32, 245–251.

Kandiano E.S., Bauch H.A. & Müller A. 2004. Sea surface
temperature variability in the North Atlantic during the
last two glacial–interglacial cycles: comparison of faunal,
oxygen isotopic and Mg/Ca-derived records.
Palaeogeography, Palaeoclimatology, Palaeoecology 204,
145–164.

Kellogg T.B. 1980. Paleoclimatology and paleoceanography
of the Norwegian and Greenland seas: glacial–interglacial
contrasts. Boreas 9, 115–137.

Koç N., Jansen E. & Haflidason H. 1993. Paleoceanograhic
reconstructions of surface ocean conditions in the
Greenland, Iceland and Norwegian seas through the last
14 ka based on diatoms. Quaternary Science Reviews 12,
115–140.

Koerner R.M. 1989. Ice core evidence for extensive melting
of the Greenland ice sheet in the last interglacial. Science
244, 964–968.

Kukla G.J. & Went E. (eds.) 1992. Start of a glacial. Proceedings
of the NATO Advanced Research Workshop on Correlating

Records of the Past. NATO ASI Series 1. Vol. 3. Heidelberg:
Springer.

Lambeck K., Purcell A., Funder S., Kjær K., Larsen E. &
Möller P. 2006. Constraints on the Late Saalian to early
Middle Weichselian ice sheet of Eurasia from field data
and rebound modelling. Boreas 35, 539–575.

Lehman S.J., Sachs J.P., Crotwell A.M., Keigwin L.D. &
Boyle E.A. 2002. Relation of subtropical Atlantic
temperature, high-latitude ice rafting, deep water
formation, and European climate 130 000–60 000 years
ago. Quaternary Science Reviews 21, 1917–1924.

Martinson D.G., Pisias N.G., Hays J.D., Imbrie J., Moore T.C.
& Shackleton N.J. 1987. Age dating and the orbital theory
of the ice ages—development of a high-resolution 0 to
300,000 years chronostratigraphy. Quaternary Research 27,
1–29.

Matthiessen J. & Knies J. 2001. Dinoflagellate cyst evidence
for warm interglacial conditions at the northern Barents

A “critical” climatic evaluation of the last interglacial (MIS 5e) records from the Norwegian SeaH.A. Bauch & H. Erlenkeuser

Polar Research 27 2008 135–151 © 2008 The Authors 149



Sea margin during marine oxygen isotope stage 5. Journal
of Quaternary Science 16, 727–737.

McManus J., Bond G., Broecker W., Johnsen S., Labeyrie L.
& Higgins S. 1994. High-resolution climate records from
the North Atlantic during the last interglacial. Nature 371,
326–329.

Montoya M., Crowley T.J. & von Storch H. 1998.
Temperatures at the last interglacial simulated by a
coupled ocean–atmosphere climate model. Paleoceanography
13, 170–177.

Müller U.C. & Kukla G.J. 2004. North Atlantic Current and
European environments during the declining stage of the
last interglacial. Geology 32, 1009–1012.

Nesje A. & Kvamme M. 1991. Holocene glacier and climate
variations in western Norway: evidence for early Holocene
glacier demise and multiple Neoglacial events. Geology 19,
610–612.

Nørgaard-Pedersen N., Mikkelsen N., Lassen S.J.,
Kristoffersen Y. & Sheldon E. 2007. Reduced sea ice
concentrations in the Arctic Ocean during the last
interglacial period revealed by sediment cores off northern
Greenland. Paleoceanography 22, PA1218, doi: 10.1029/
2006PA001283.

Oppo D.W., Horowitz M. & Lehman S.J. 1997. Marine core
evidence for reduced deep water production during
Termination II followed by a relatively stable substage 5e
(Eemian). Paleoceanography 12, 51–63.

Otto-Bliesner B.L., Marshall S.J., Overpeck J.T., Miller G.H.
& Hu A. 2006. Simulating Arctic climate warmth and
icefield retreat in the last interglaciation. Science 311,
1751–1753.

Overpeck J.T., Otto-Bliesner B.L., Miller G.H., Muhs D.R.,
Alley R.B. & Kiehl J.T. 2005. Paleoclimatic evidence for
future ice-sheet instability and rapid sea-level rise. Science
311, 1747–1750.

Pflaumann U. 1988. Plankton-Foraminiferen in der
Sedimentoberfläche. (Planktic foraminifers in surface
sediments.) Berichte aus dem Sonderforschungsbereich 313,
175–177. Kiel: University of Kiel.

Pflaumann U., Duprat J., Pujol C. & Labeyrie L.D. 1996.
SIMMAX, a modern analog technique to deduce Atlantic
sea surface temperatures from planktonic foraminifera in
deep-sea sediments. Paleoceanography 11, 15–35.

Rasmussen T.L., Balbon E., Thomsen E., Labeyrie L. & van
Weering T.C.E. 1999. Climate records and changes in deep
outflow from the Norwegian Sea ~150–55 ka. Terra Nova
11, 61–66.

Rasmussen T.L., Thomsen E., Kuijpers A. & Wastegård S.
2003. Late warming and early cooling of the sea surface in
the Nordic seas during MIS 5e (Eemian interglacial).
Quaternary Science Reviews 22, 809–821.

Rasmussen T.L., Thomsen E., van Weering T.C.E.
& Labeyrie L. 1996. Rapid changes in surface and deep
waters at the Faeroe Margin during the last 58,000 years.
Paleoceanography 11, 757–771.

Riesebrobakken B., Balbon E., Dokken T., Jansen E.,
Kissel C., Labeyrie L., Richter T. & Senneset L. 2006.

The penultimate deglaciation: high-resolution
paleoceanographic evidence from a north–south transect
along the eastern Nordic seas. Earth and Planetary Science
Letters 241, 505–516.

Riesebrobakken B., Dokken T., Otterå O.H., Jansen E., Gao
Y. & Drange H. 2007. Inception of the northern European
ice sheet due to contrasting ocean and insolation forcing.
Quaternary Research 67, 128–135.

Riesebrobakken B., Jansen E., Andersson C., Mjelde E. &
Hevrøy K. 2003. A high-resolution study of Holocene
paleoclimatic and paleoceanographic changes in the Nordic
seas. Paleoceanography 18, 1017, doi: 10.1029/
2002PA000764.

Sarnthein M. & Tiedemann R. 1990. Younger Dryas-style
cooling events at glacial terminations I–VI at ODP-Site
658: associated benthic d13C anomalies constrain meltwater
hypothesis. Paleoceanography 5, 1041–1055.

Sarnthein M., van Kreveld S., Erlenkeuser H., Grootes P.M.,
Kucera M., Pflaumann U. & Schulz M. 2003.
Centennial-to-millennial-scale periodicities of Holocene
climate and sediment injections off the western Barents
shelf, 75°N. Boreas 32, 447–461.

Schröder-Ritzrau A., Andruleit H., Jensen S., Samtleben C.,
Schäfer P., Matthiessen J., Hass H.C., Kohly A. & Thiede J.
2001. Distribution, export and alteration of fossilizable
plankton in the Nordic seas. In P. Schäfer et al. (eds.):
The northern Atlantic: a changing environment. Pp. 81–104.
Berlin: Springer.

Seidenkrantz M.-S. & Knudsen K.L. 1997. Eemian climatic
and hydrographical instability on a marine shelf in
Northern Denmark. Quaternary Research 47, 218–234.

Shaffer G., Olsen S.M. & Bjerrum C.J. 2004. Ocean
subsurface warming as a mechanism for coupling
Dansgaard–Oeschger climate cycles and ice-rafting events.
Geophysical Research Letters 31, L24202, doi: 10.1029/
2004GL020968.

Siddall M., Bard E., Rohling E.J. & Hemleben C. 2006.
Sea-level reversal during Termination II. Geology 34,
817–820.

Simstich J. 1999. Die ozeanische Deckschicht des Europäischen
Nordmeers im Abbild stabiler Isotope von Kalkgehäusen
unterschiedlicher Planktonforaminiferenarten. (Variations in the
oceanic surface layer of the Nordic seas: the stable isotope record of
polar and subpolar planktonic foraminifera.) Berichte-Reports,
Institut für Geowissenschaften, Universität Kiel 2. Kiel: Institute
of Geosciences, University of Kiel.

Van Nieuwenhove N. & Bauch H.A. 2008. Last interglacial
(M15 5e) surface water conditions at the Vøring Plateau
(Norwegian Sea), based on dinoflagellate cysts. Polar
Research 27, 175–186 (this issue).

Van Nieuwenhove N., Bauch H.A. & Matthiessen J.
2008. Last interglacial surface water conditions in
the eastern Nordic seas inferred from dinocyst and
foraminiferal assemblages. Marine Micropaleontology 66,
247–263.

Veum T., Jansen E., Arnold M., Beyer I. & Duplessy J.-C.
1992. Water mass exchange between the North Atlantic

A “critical” climatic evaluation of the last interglacial (MIS 5e) records from the Norwegian Sea H.A. Bauch & H. Erlenkeuser

Polar Research 27 2008 135–151 © 2008 The Authors150



and the Norwegian Sea during the past 28,000 years.
Nature 356, 783–785.

Vogelsang E. 1990. Paläo-Ozeanographie des Europäischen
Nordmeeres anhand stabiler Kohlenstoff- und Sauerstoffisotope.
(Paleoceanography of the Nordic seas on the basis of stable carbon
and oxygen isotopes.) Berichte aus dem Sonderforschungsbereich
313. Kiel: University of Kiel.

Winn K., Glos R., Averdieck F.R. & Erlenkeuser H. 2000. On
the age of the marine Eem in northwestern Germany.
Geologos 5, 41–56.

Winograd I.J., Coplen T.B., Landwehr J.M., Riggs A.C.,
Ludwig K.R., Szabo B.J., Kolesar P.T. & Revesz M. 1992.
Continuous 500 000-year climate record from vein calcite
in Devils Hole, Nevada. Science 258, 255–260.

A “critical” climatic evaluation of the last interglacial (MIS 5e) records from the Norwegian SeaH.A. Bauch & H. Erlenkeuser

Polar Research 27 2008 135–151 © 2008 The Authors 151


