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Abstract

Studying the winter survival of forage grasses under a changing climate
requires models that can simulate the dynamics of soil conditions at low
temperatures. We developed a simple model that simulates depth of snow
cover, the lower frost boundary of the soil and the freezing of surface puddles.
We calibrated the model against independent data from four locations in
Norway, capturing climatic variation from south to north (Arctic) and from
coastal to inland areas. We parameterized the model by means of Bayesian
calibration, and identified the least important model parameters using the
sensitivity analysis method of Morris. Verification of the model suggests that
the results are reasonable. Because of the simple model structure, some over-
estimation occurs in snow and frost depth. Both the calibration and the
sensitivity analysis suggested that the snow cover module could be simplified
with respect to snowmelt and liquid water content. The soil frost module
should be kept unchanged, whereas the surface ice module should be changed
when more detailed topographical data become available, such as better esti-
mates of the fraction of the land area where puddles may form.
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Grasslands are important components of Norwegian ter-
restrial ecosystems. In order to investigate the impacts of
climate change, parts of the Norwegian research pro-
gramme Climate Change Effects on Winter Survival of
Perennial Forage Crops and Winter Wheat, and Plant
Diseases and Weed Growth and Control at High Latitudes
(WINSUR) are dedicated to developing a grassland model
to study the winter survival of different crops. The grass-
land model, currently simulating the regrowth dynamics
of timothy (Phleum pratense L.), has been developed by
van Oijen, Höglind et al. (2005). The same model will be
adapted to simulate the regrowth dynamics of perennial
ryegrass (Lolium perenne L.). During the winter, a signifi-
cant number of plants may die as a result of frost, ice
encapsulation, and other physical and biological stresses
(Larsen 1994). Snow cover provides insulation from
lethal freezing temperatures, while also reducing the
amount of photosynthetically active radiation at plant
level. However, a more variable winter climate in Norway

(Beldring et al. 2008) may lead to less snow cover, and
may thereby increase plant exposure to killing frosts
(Bélanger et al. 2002).

If the ground is frozen, water (rain or snowmelt) can
accumulate in small depressions, freeze and cause plants
to be encapsulated in ice. Ice encasement can severely
reduce gas exchange between the plant and the sur-
rounding atmosphere, leading to a transition from
aerobic to anaerobic respiration, and to the accumulation
of respiration products (especially CO2) to toxic levels
(Gudleifsson & Larsen 1993).

In order to make predictions about the effects of climate
change on plant performance over more than one
growing season, the grassland model needs an additional
set of functions to describe the winter survival of the
sward. The grassland model must be able to simulate
effects of winter climate on soil and soil surface processes.
The main objective of this work is to develop a simple
winter module that can easily be incorporated into the
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existing grassland model. Therefore, the structure of the
winter module needs to be kept as simple as possible.

Regarding the simulation of winter climate effects on
soil and soil surface conditions (e.g., snow cover and soil
frost), the literature provides examples of different
approaches (Benoit & Mostaghimi 1985; Flerchinger &
Saxton 1989; Jordan 1991; Vehvilainen 1992; Melloh
1999; Engeset et al. 2000; DeGaetano et al. 2001; Jansson
& Karlberg 2001; Kokkonen et al. 2006). We imple-
mented and tested different algorithms for snow cover
and soil frost that have already been applied to Nordic
conditions. Based on preliminary modelling work,
including site-specific model calibration, we developed a
new snow module using ideas from a snow model cur-
rently being used by the Norwegian Water Resources and
Energy Directorate (NVE) (Engeset et al. 2000). The NVE
model has 10 parameters, and is used throughout
Norway for operational snow forecasts. This model simu-
lates snow accumulation based on daily precipitation
rates and daily mean air temperature. Snowmelt is a
function of a degree–day temperature index, described by
a sinusoidal curve and daily mean air temperature. The
NVE model is mainly designed for hydrological purposes
(hydroelectricity production and spring flood warnings),
and thus simulates the liquid water equivalent of snow
water equivalent (SWE) (mm) and snowmelt run-off, but
not snow depth.

Different models for simulating snow accumulation
and snowmelt are described in the literature, ranging
from hydrological (Jordan 1991; Engeset et al. 2000;
Kokkonen et al. 2006) to combined agricultural and
hydrological applications (Flerchinger & Saxton 1989)
and soil–plant–atmosphere systems (Jansson & Karlberg
2001). These models simulate point estimates of a single-
layered homogeneous one-dimensional (z-direction)
snow cover, whereas Jordan (1991) presents a multi-
layered one-dimensional snow model. Melloh (1999)
provides a review of several snowmelt models. Compre-
hensive state-of-the-art snow models such as the COUP
model (Jansson & Karlberg 2001) with graphical user
interface and the SNTHERM model (FORTRAN-77 code;
Jordan 1991) are very complex and rich in parameters
(>100). The COUP model was considered as a potential
candidate early in the project, but the model version
available at that time required a special graphical user
interface, and therefore could not be incorporated into
the grassland model, which was developed using another
programming environment (MATLAB and Simulink).
The combination of a special user interface and extensive
data requirements (as regards number of parameters and
driving climate variables) makes it very difficult to incor-
porate state-of-the-art snow cover and soil frost models as
sub-modules into other models. The ability to incorporate

a snow and soil frost model into a larger grassland model
was our main motivation for developing a new model.
Our proposed model is simple: it only requires nine cali-
brated parameters and two input variables to simulate
daily values of the depths of snow cover, soil frost and
surface ice, and the temperature between the soil surface
and the snow cover.

A study comparing four models simulating soil frost
(Kennedy & Sharratt 1998)—the two finite difference
models SHAW and SOIL, and two energy balance
models—concluded that the simpler energy balance
models generally overestimate the frost depth. However,
one weakness of all four models compared by Kennedy &
Sharratt (1998) is the estimation of snow depth (one of
the energy balance models uses snow depth as an input).
Snow cover has a strong influence on the estimation of
soil frost depth, e.g., through snow depth and snow
density, with both affecting the thermal conductivity of
the snow cover. Therefore, accurate simulation of snow
cover is important for the simulation of soil frost depth.

As regards modelling the formation of ice on the soil
surface, we did not find examples in the literature of
models simulating this process or ice encapsulation of the
ground vegetation.

Following the conclusions by Kennedy & Sharratt
(1998), the present work describes a new model that
simultaneously simulates the depths of snow, soil frost
and surface ice, and explains how it was calibrated for
sites across Norway using Bayesian methods. We also
conducted a sensitivity analysis of the model using the
Morris method, which identifies the parameters to which
the model is most sensitive.

Materials and methods

The snow model

Our snow module is based on ideas presented by Melloh
(1999, and references therein) and Engeset et al. (2000).
Whereas snow models used for hydrological purposes
usually simulate SWE, SnowFrostIce also simulates the
actual depth of the snow cover Sdepth (m). To run Snow-
FrostIce, the only required meteorological inputs are
daily values of mean air temperature Tair (°C) and pre-
cipitation rate P (mm d-1). The parameters, which need to
be locally calibrated, are listed in Table 1.

In SnowFrostIce, the precipitation form is determined
by a threshold temperature Trs (°C). If Tair > Trs, precipita-
tion falls as rain, Pr (mm d-1). Otherwise it falls as snow Ps

(mm day-1), with density rns (kg m-3). There is no inter-
mediate form for sleet. The snow cover consists of water
in solid state Sdry (mm) (snow and ice), and liquid state
Swet (mm). The threshold temperature Tmf (°C) determines
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whether snow is in the process of melting M (mm day-1),
when Tair > Tmf, or when liquid water within the snow
cover is in the process of refreezing Mrf (mm day-1), when
Tair < Tmf. The numerical values of Trs and Tmf are sampled
from the posterior distribution obtained in the Bayesian
calibration. As the model is calibrated locally, the esti-
mates of Trs and Tmf are different for each location. Instead
of using a constant melt rate (mm snowmelt per degree
celsius and day, also known as the degree–day tempera-
ture index method), we use a degree–day temperature
index K (mm °C-1 day-1), which is described by a sinusoi-
dal curve (see Eqn. 4). The reason for describing K by a
sinusoidal curve is to incorporate the seasonal variation.
Incoming radiation increases and the albedo of the snow
cover decreases in the spring. Thus K increases in spring.
In Norway, located between latitudes 58° and 71°N in the
Northern Hemisphere, the dates of the solstice are 21
December and 21 June. The sinusoidal curve is therefore
defined as having a period of 1 year, with a trough,
termed Kmin (mm °C-1 day-1), on 21 December, and a
crest, termed Kmax (mm °C-1 day-1), on 21 June. The
simulated snowmelt intensity M is proportional to the
number of degrees above Tmf (see Eqn. 5). To avoid situ-
ations such as Kmax < Kmin during the calibration, we
replaced Kmax by DKmax = Kmax - Kmin, and calibrated DKmax

(mm °C-1 day-1) (see Table 1).
Liquid water within the snow cover may refreeze. The

simulated refreezing intensity Mrf is proportional to the
number of degrees below Tmf (see Eqn. 6), where SWrf

(mm °C-1 day-1) is the degree–day temperature index for
refreezing. We calculated the potential retention capacity
of the snow cover as SWret*Sdry, where SWret (mm mm-1) is
the retention capacity of the snow cover. The snow water
equivalent, SWE, is defined as the sum of Sdry and Swet, and
the density of the snow cover rs (kg m-3) is defined as
SWE/Sdepth. As snow is accumulated on the surface of the
snow cover, there is a rapid metamorphosis as snow crys-
tals break down, and at lower snow depths densification
occurs at a slower rate, which is largely determined by the

overburden pressure (Gray & Morland 1995). In Snow-
FrostIce we make the assumption that the combined
effects of the metamorphosis of snow crystals and the
densification of the lower snow layers is captured by the
empirical compaction parameter x (mm mm-1 day-1). We
use the following equations (1–6) to describe the snow
cover dynamics.
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The snow model parameters to be calibrated are listed
in Table 1.

The soil frost model

When modelling soil frost we use an energy balance
approach. Our simple approach does not include an
annual energy budget for the soil system. SnowFrostIce
simulates only the lower frost boundary Fdepth (m), result-
ing in one frozen soil layer ranging from the soil surface
to Fdepth. For the soil–water balance, we use the routines
implemented in the grassland model by Höglind et al.
(2001) to obtain daily values of available soil water
content xw (m3 m-3) (i.e., what is left from surplus liquid
water after transpiration and evaporation is subtracted),

Table 1 Parameter description for the SnowFrostIce model. qmin and qmax represent parameter lower and upper boundaries; qmode and qdef represent

parameter mode and default values, respectively. When q i
emod values are presented, a beta prior distribution is used for parameter qi, otherwise a uniform

prior distribution is assumed between qmin and qmax.

Symbol Unit θ i
min θ i

max θ i
emod θ i

def References

Trs °C -5 5 0.5 0.5 Engeset et al. (2000)

Tmf °C -5 5 0.5 0.5 Engeset et al. (2000)

x mm mm-1 day-1 0 1 — 0.02 Thorsen & Haugen (2007)

DKmax mm °C-1 day-1 0 5 1.25 1.25 Engeset et al. (2000)

Kmin mm °C-1 day-1 0 5 2 2 Engeset et al. (2000)

SWrf mm °C-1 day-1 0 5 0.01 0.01 Engeset et al. (2000)

rns kg m-3 10 250 — 100 Judson & Doesken (2000)

SWret mm mm-1 0 1 0.1 0.1 Engeset et al. (2000)

lfs J m-1 °C-1 day-1 8.6 ¥ 104 21.6 ¥ 104 — 17.3 ¥ 104 Jansson & Karlberg (2001)
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which is used in the calculation of Fdepth. The soil layer is
parameterized as in the grassland model. SnowFrostIce
requires site-specific soil type parameters for soil water
retention, but the only soil parameter to be calibrated is the
thermal conductivity of the frozen soil lfs (J m-1 °C-1 day-1).

Our way of estimating the lower frost boundary Fdepth is
based on certain assumptions. Regarding surface tem-
perature, we follow along the lines of the assumption
made by Benoit & Mostaghimi (1985), that in any given
24-h period, the mean surface temperature of the soil or
snow cover can be approximated by the daily mean air
temperature for that same period. However, instead of
using the daily mean air temperature at the snow cover
surface when calculating Fdepth, like Benoit & Mostaghimi
(1985), whenever a snow cover is simulated we use a
simulated soil surface temperature Tsurf (°C) from Eqn. 15
as an approximation to the soil surface temperature to
incorporate the insulating effect of the snow cover. (Note
to Eqn. 7: during snow-free periods we assume Tsurf can
be approximated by Tair.) We assume a unidirectional
stationary flow of heat between Fdepth and the soil surface,
ignoring additional heat from, e.g., lower unfrozen soil
layers, percolating water, radiation and no freeze-point
depression. We further assume a linear variation in soil
temperature T(z) (°C) with respect to soil depth z (m) in
the frozen soil layer, and that all available soil water xw

within this layer freezes. It is the temperature difference
between the soil surface and Fdepth that drives the process
of soil frost formation in the model:

T z T z
T T

F
surf

surf

depth

( ) = +
−*

(7)

where Tsurf is the simulated temperature just above the
soil surface, T* (°C) is the temperature where soil water
freezes (we assume T* = 0°C). Following the assumption
regarding T(z), Eqn. 7 is only valid when Fdepth > 0. We
denote the heat flux density released when the soil
water freezes QE (J m-2 day-1). Following an existing idea
(Thorsen & Haugen 2007), we express QE using the above
assumptions as:

Q x L
F

t
E w w f

depth= −
∂

∂
ρ (8)

where xw is available soil water content, rw

(1000 kg m-3) is the density of water and Lf (335 kJ kg-1)
is the latent heat of fusion. When the soil cools down
during autumn and winter, the heat released (QE) when
the soil frost penetrates deeper into the soil is transported
through the previously frozen soil. Using Fourier’s equa-
tion for heat transport in one-dimensional form, we
express the heat transport through the frozen soil, termed
Qfs (J m-2 day-1), as:

Q
T z

z
fs fs= − ∂ ( )

∂
λ (9)

From the assumption of linear variation in soil tem-
perature T(z) with depth z in frozen soil, we obtain
∂ ( )

∂
T z

z
from Eqn. 7, and insert this into Eqn. 9:
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Equating Eqns. 8 and 10 and using the assumption
T* = 0°C, we obtain an algebraic expression for the rate of
change in Fdepth:

∂
∂

= −
F

t F
depth

depth

α
(11)

where α
λ

ρ
= fs surf

w w f

T

x L
. If we neglect the diurnal variation
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by solving this equation we can express the daily in-

crease in frost depth as F Fdepth
t

depth
t+( ) = ( ) −1 2

2α . Provided
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2 0α , we can express the rate of change in
Fdepth as follows:
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The presence of snow cover has an insulating effect on
the soil. Following Jansson & Karlberg (2001), we assume
a steady state heat flow through the frozen soil layer and
the snow cover. The heat flux density through the frozen
soil Qfs from Eqn. 10 thereby equals the heat flux density
through the snow cover Qsnow (J m-2 day-1):

Q Qfs snow= (13)
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= −
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λ λfs
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depth
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depth

T T

F

T T

S
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where ls (J m-1 °C-1 day-1) is the thermal conductivity
of the snow cover. The parameter ls is treated as a con-
stant, and is not calibrated. According to Jansson &
Karlberg (2001), a reasonable estimate for the ratio lfs/ls

in our situation is lfs/ls ª 10. We rearrange the above
equation to derive the following approximation of
Tsurf:

T T S Fsurf air depth depth≈ + ( )( )1 10 (15)

(Note: for the calculations, Fdepth > 0 when soil frost is
present.) In the case of an existing snow cover but no soil
frost (Fdepth = 0), we assume Tsurf to lie around 0°C. This
assumption is in accordance with observations made by
Iwata et al. (2008), and it is incorporated by an additional
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empirical expression preserving the insulating effect of
the snow cover:

T Tsurf air
Sdepth≈ −( )e γ (16)

where the empirical parameter g (m-1) is set to 65. This g
parameter is not calibrated.

Puddle formation and infiltration of meltwater

As we were unable to obtain topographical information
for any location during this study, we assume the hypo-
thetical field of interest to be an even, rectangular surface
sloping at a low angle towards a water-blocking barrier at
the lower end. The height of this barrier determines the
maximum depth of the surface puddle. This maximum
storage level is set to 50 mm. Baker & Spaans (1997)
report that infiltration from puddles can occur despite the
presence of a frozen soil layer of 20–40 cm. Based on this
observation, surface water (snowmelt and rain) in
SnowFrostIce is allowed to infiltrate into the soil if
Fdepth < 20 cm. This assumption is also confirmed by Iwata
et al. (2008). In reality, the surface water transfers heat to
the soil, and because the frozen soil initially remains cold
this may create a thin ice layer at the soil surface, which
impedes water infiltration and increases surface run-off
(Stähli et al. 2004). Therefore, when Fdepth penetrates
below 20 cm, we assume that the soil becomes imperme-
able to any further infiltration, and that the surface water
is re-directed to the puddle area. If the maximum depth
of the barrier at the end of the field is exceeded, the
additional surface water runs off. When the soil starts
thawing we let the infiltration rate of the puddle water
follow the thawing rate (in accordance with observations
by Hayashi et al. [2003]), until Fdepth > 20 cm, when the
remaining puddle water is drained as if the soil were
unfrozen.

Formation of ice layer

When a surface puddle is formed, the water may freeze
and form a basal ice layer. By regarding the puddle as an
extremely dilute soil, and setting the water content to
unity, we use the same approach to calculate Idepth (mm)

as we do for the soil frost. Provided Idepth
t( )( ) − >2

2 0β , we
get the following expression for the daily change in Idepth:
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where β
λ
ρ

= i surf

w f

T

L
, the thermal conductivity of ice is li

(19.4 ¥ 104 J m-1°C-1 day-1), the density of water is rw and
the latent heat of fusion is Lf.

Description of the locations and data used
in calibration

The SnowfrostIce model was calibrated using observed
depths of snow cover and the lower frost boundary. The
snow cover depth was measured in cm in accordance
with the Norwegian Meteorological Institute. The depth
of the lower frost boundary was measured in cm using a
frost tube, as described by DeGaetano et al. (2001) and
Iwata et al. (2008). We were unable to obtain informa-
tion on the accuracy of the observations. We were also
unable to obtain information on normal depths of snow
cover and soil frost. We therefore present values of mean
air temperature and precipitation sums from autumn to
spring, and frost sums. Table 2 presents a geographical
description of the locations, and Tables 3–6 provide a
summary of the climate for each location for the current
normal period in Norway (1961–1990), and for the cali-
bration and validation periods. For each location we
calculated the following from autumn to spring (i.e., from
1 September to 30 April): the mean 2 m air temperature,
denoted as mean(Tair); the temperature sum for days
when Tair < 0, denoted as STair; and the sum of daily
precipitation rates, denoted as SPrec.

During the calibration period at Kise (Table 3), the first
and third winters were both colder and had more frost
compared with the normal period. The second winter was
milder and had less frost. The first winter received more
precipitation compared with the normal period, whereas
the latter two winters were dryer. In the validation
period, all winters were slightly milder and had less frost
than normal: the first winter was dryer than normal,
whereas the latter two were wetter.

Table 2 Locations in Norway used for calibrating and validating the SnowFrostIce model. The fifth location, Karasjok, was only included in the validation,

and was not used in the calibration.

Location Grid Elevation (m a.s.l.) Climate Measurement calibration Period validation

Kise 60°77′N, 10°8′E 127 Interior, lake 1993–96 1996–99

Kvithamar 63°49′N, 10°88′E 40 Coastal 2001–03 2003–05

Vågønes 67°28′N, 14°45′E 30 Coastal 1998–2001 2001–03

Holt 69°65′N, 18°91′E 20 Coastal 1996–99 2005–07

Karasjok 69°28′N, 25°31′E 149 Interior — 1998–99

Modelling snow frost and ice S.M. Thorsen et al.
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At Kvithamar (Table 4), both winters in the calibration
period were milder than normal, but they had more frost.
The first winter was wetter, and the second winter was
dryer than normal. In the validation period, both winters
were milder and wetter compared with the normal
period.

At Vågønes (Table 5), all winters in the calibration
period were milder compared with the normal period, but
the first and third winters had more frost days, whereas
there were fewer frost days in the second winter. The first
two winters were wetter, and the third winter was dryer
than normal. In the validation period, both winters had
more frost than normal, but only the first winter was
milder than normal. The first winter was wetter than
normal, and the second was dryer.

At Holt (Table 6), all winters in the calibration period
were milder and had more frost than normal. The first
winter was wetter, whereas the latter two winters were
dryer than normal. Both winters in the validation period

were milder, had less frost and were wetter when com-
pared with the normal period.

The winter in the validation period at Karasjok
(Table 6) was approximately the same as the normal
period, but slightly wetter.

In addition to simulating Sdepth and Fdepth, SnowFrostIce
simulates the thickness of ice (Idepth) resulting from the
freezing of soil surface puddles. However, data on surface
ice were scarce, and there was no description of field
topography available, forcing us to make assumptions on
field topography. We therefore present full simulation
results for only two locations: Holt in Troms county and
Karasjok in Finnmark county. Based on data availability,
we chose four locations for site-specific calibration of the
model spanning the south–north variation in regional
climate. Table 2 gives a brief description of these loca-
tions. Karasjok was not included in the calibration.

Observations of surface ice cover were scarce, and data
were only available for two sites: Holt (1997/98 and

Table 3 Climate summary for Kise. Values are calculated for the months September–April for the current normal period in Norway (1961–1990), and for

the respective calibration and validation periods. Mean(Tair)(°C) is the average 2-m air temperature, S Tair (°C day) is the temperature sum on frost days and

SPrec (mm) is the recorded precipitation.

Sept–Apr 1961–90 1993/94 1994/95 1995/96 1996/97 1997/98 1998/99

Mean(Tair) -1 -2.5 1.1 2.2 0.8 1.2 0.2

STair -761 -1068 -400 -1214 -629 -439 -611

SPrec 340 368 294 188 273 421 436

Table 4 Climate summary for Kvithamar.

Sept–Apr 1961–90 2001/02 2002/03 2003/04 2004/05

Mean(Tair) 1.5 3.2 1.7 3.2 3.3

STair -269 -272 -385 -245 -225

SPrec 597 682 508 604 891

See Table 3 for abbreviations.

Table 5 Climate summary for Vågønes.

Sept–Apr 1961–90 1998/99 1999/2000 2000/01 2001/02 2002/03

Mean(Tair) 1.3 1.9 2.6 2.3 2.6 1.2

STair -284 -323 -264 -368 -330 -372

SPrec 811 902 1156 561 983 735

See Table 3 for abbreviations.

Table 6 Climate summary for Holt and Karasjok.

Sept–Apr 1961–90 1996/97 1997/98 1998/99 2005/06 2006/07 1998/99*

Mean(Tair) -0.8 (-8.3) -0.1 0.2 0.3 1.6 1.1 -8.5

STair -375 (-2199) -468 -483 -432 -317 -322 -2295

SPrec 765 (172) 804 627 578 831 817 207

Values within brackets represent the normal period for the Karsjok location.

* 1998/99 represents the Karasjok location.

See Table 3 for abbreviations.
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1998/99) and Karasjok (1998/99). Ice observations from
Holt came at a later stage in the project, so we had to use
observations on snow cover and frost depth from the
calibration period.

Bayesian calibration of the SnowFrostIce model

The SnowFrostIce model represents a simplification of
different physical processes. Parameters used in process-
based models have a physical meaning, but these are
seldom precisely known, or are at best difficult to
measure. We represented this uncertainty as a probability
distribution over the parameters. Thus, if we define a
parameter vector q for the model, then p(q) is said to be
a joint probability density function (pdf) expressing our
initial prior belief in the parameters. Given a data set D of
model outputs, we update the joint pdf of the parameters
by applying the Bayes theorem: p (q|D) = p(q)f(D|q)/f(D),
where p(q|D) is the posterior distribution of q given the
data D, f(D|q) is the likelihood of the data given the
model outputs using parameters q, and f(D) is a normal-
ization constant. In the Bayesian calibration of dynamic
models, a large number of model runs are carried out,
often using a Markov chain Monte Carlo (MCMC)
approach. We used the MCMC algorithm known as the
Metropolis Random Walk. For further details on using
Bayesian methods to calibrate complex models see van
Oijen, Rougier et al. (2005). The target posterior distribu-
tion was the stationary distribution of the Markov chain
produced by the Metropolis Random Walk.

Metropolis Random Walk

The general idea of the Metropolis Random Walk is to
walk randomly through the parameter space, running the
model at each visited point, eventually forming a Markov
chain. The starting point of this chain, q0, is randomly
chosen from the prior distributions for the parameters. A
new proposal parameter vector q� is then chosen based on
the current parameter vector qt:

′ = +q q dt (18)

where d is the step length vector. It is also important that
p(d) = p(–d), i.e., that there is an equal probability of
stepping in either direction from the current point. We
then compute the so-called Metropolis ratio:
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The next step is to generate a uniform random number
u ~ U(0,1), and to accept the proposal parameter vector q�

as the new qt+1 if u � r. Otherwise, let qt+1 = qt. The chain

consisting of all qt forms our Markov chain, which is our
sample from the posterior distribution.

The posterior distribution is therefore a combination of
prior knowledge and new information obtained from the
data using the likelihood function. Measurement errors
are used in the determination of how likely a model–data
mismatch might be, i.e., if the data are informative and
have a sharply peaked distribution (i.e., a small variance),
the resulting posterior distribution will be narrower and
more peaked than the prior distribution. This indicates
that the parameter uncertainty is reduced.

Defining prior probability distributions of
the parameters

Based on a literature review, we defined the likely ranges
[θ θi i

min max, ] and mode values for the nine parameters. For
parameters where range and mode value were suggested,
we used a beta distribution as prior. A suitable range was
only found for parameters x, rns and lfs. For these three
parameters we selected a flat uniform distribution within
their range [θ θi i

min max, ]. In the calibration process we
assumed the parameters to be independent a priori,
implying that their joint prior distribution is equal to the
product of their individual marginal pdfs. The parameters,
along with their prior distributions, are presented in
Table 1.

Defining the data-likelihood function

We used measurements on snow depth and lower frost
boundary for the calibration of SnowFrostIce. Specific
information about the precision of the measurements was
not available, so we used the same approach as van Oijen,
Rougier et al. (2005), and chose the standard deviation of
each measurement to be 30% of the mean value. To
avoid a standard deviation of zero (if the observed vari-
able was zero), the standard deviation was redefined as
σ ij

o = ⋅( )max . ; .0 1 0 3 Dij where Dij are the measurements on
output j at time i. Assuming the measurement errors to be
independent and Gaussian, we used Sivia’s (2006) for-
mulation, which was slightly modified to account for
model discrepancy:
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where σ ij
o represent the lower bounds on the

data noise, and the residual is represented by
R Mij ij ij ij

o= − ( )( )D q, X σ , where Mij(q *,X) are model
outputs using input variables X and parameterization
q*.
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Determining jumps in the Metropolis Random
Walk algorithm

The step length vector d in the Metropolis Random Walk
algorithm is very important in order to obtain conver-
gence of the Markov chain produced, i.e., the targeted
posterior distribution of the parameters. In our imple-
mentation, the new candidate value qi′ for parameter i
was ′ = +θ θ δi i

t
i, where di ~ N(0, ai). If the elements in the

step length vector d are too small, the random walk
algorithm will not move far enough from the current
point in parameter space qt when proposing a new can-
didate parameter vector q′, and consequently the
acceptance rate will be too large, and vice versa. In our
case, choosing ai so that the acceptance rate was between
0.15 and 0.5 (in accordance with Roberts 1996) was
attained by trial and error. Each element ai of the vector
d was chosen according to a ci i i i= −( )θ θmax min , where ci is a
constant found by trial and error, and (θ θi i

max min− ) is the
width of prior pdf of parameter qi.

Determining convergence of the Markov chains

A central issue when using an iterative simulation
method such as the Metropolis Random Walk algorithm
is to determine when the chain has converged to the
desired posterior distribution. One option, suggested by
Gelman & Rubin (1992), is to generate multiple chains
followed by calculating the scale reduction factor R̂ ,
which is used to determine the length of the “burn-in”
phase. The “burn-in” of the chain is the first part where
the chain is influenced by the starting point until it
reaches stationarity. We determined the “burn-in” phase
to last until ˆ .R < 1 2, following Gelman (1996): when

R̂ nears 1 it means that the Markov chains are essen-
tially overlapping. We randomly sampled two starting
points from the prior distribution, and used the R̂ to
determine when the two chains had converged to the
desired posterior distribution.

Sensitivity analysis of SnowFrostIce

When working with models, sensitivity analysis (here-
after referred to as SA) is recommended as part of the
process (Kokkonen et al. 2006). For the SA to be mean-
ingful, the practitioner should decide beforehand on how
to define the importance of the parameters, i.e., the type
of question the SA is expected to answer (Saltelli et al.
2008). In our case, we would like to know which of the
parameters can be fixed anywhere within their prior
bounds without affecting model outputs, i.e., which
parameters are not important. This is helpful in relation
to model simplification.

In order to identify non-important parameters in the
model, we carried out a screening exercise using the
improved sensitivity indices from the Morris method, as
described by Campolongo et al. (2007). This method is
relatively simple to implement.

The Morris method proposes two sensitivity measures,
the main purpose of which are to determine the model k
parameters that can be considered to be (i) not important,
(ii) linear and additive, or (iii) non-linear or involved in
interactions with other parameters. For each of the
parameters, two sensitivity measures are computed: m,
which evaluates the overall influence of the parameter on
the model output (main effect or elementary effect [EE]),
and s, which collectively evaluates all the higher order
effects resulting from non-linearity and/or interactions
with other parameters. The Morris method was originally
used for parameters following uniform distributions in [0,
1]. If the k parameters follow other distributions, Cam-
polongo et al. (1999) suggest that rather than sampling
directly from these distributions, the sampling should be
performed in the space of the quantiles of these k distri-
butions (i.e., each parameter is discretized into p levels,
and each quantile qp varies in [0,1], producing a
k-dimensional unit hypercube as the sampling space).
The actual parameter values would subsequently be
derived from their known distributions. In this SA of
SnowFrostIce, we investigated the k = 9 parameters from
the calibration (Table 1). The input space we used was the
sub-space W comprised of the k-dimensional unit hyper-
cube of the p = 6 equidistant quantiles in [0,1] from the
prior distribution of the parameters p(q). Outputs from
SnowFrostIce are time series, and for this SA we needed
a scalar value. Thus, for the simulation runs required in
the SA, we used as output the log-transformed likelihood
from Eqn. 20, i.e., log[f(D|q)], with the likelihood being
the probability of the observed data D given a certain
model parameterization q.

By randomly sampling parameter vectors q from W, and
calculating EE (for details, see Campolongo et al. 2007)
for each of the nine parameters, we obtained a sample
from the distribution for each EE, termed EEi ~ Fi(mi, si).
The sensitivity measures mi and si proposed by Morris are
the mean and standard deviation of Fi, respectively. To
estimate mi and si, the sampling strategy proposed by
Morris is to create r trajectories in parameter space W.
Each of these r trajectories contains (k + 1) points, and
results in k elementary effects (i.e., estimates of one EE
per parameter), leading to a total of r(k + 1) sample points
corresponding to the number of model runs required for
the complete SA. A very nice stepwise presentation of this
method is presented in Saltelli et al. (2008).

A high si value for parameter qi implies that the corre-
sponding EEi value for qi at one point in W is considerably
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different from another EEj value (I � j) for the same
parameter qi located somewhere else in W, i.e. that this
particular EE value is influenced by the values of the
other parameters or nonlinearities. A low value for si

suggests that the EEi value associated with qi is indepen-
dent from the values of the other parameters, and thus it
is not involved in interactions or nonlinearities.

To avoid type II errors of failing to identify important
parameters, Campolongo et al. (2007) suggest replacing
m by m*, an estimate of the mean of the distribution of the
absolute values of the elementary effects Gi, i.e., |EEi| ~
Gi(m*i, si). To properly characterise non-influential param-
eters, one must therefore simultaneously consider the
vectors m* and s (see Fig. 1 for SA results for the Kise site).

When conducting the SA, we tried the same approach
for all locations. First, we sampled trajectories from the
prior distribution and calculated m* and s. Then, we
sampled from the posterior distribution and calculated m*
and s. Sampling trajectories from the prior distribution
gave very similar results for all sites (as did those for Kise;
Fig. 1). When we sampled from the correlated posterior
distribution, the results in m* and s were different
when comparing sites. For all but one site the same
non-important parameters were identified, but highly
correlated parameters influenced the results. For
example, at Kise, the parameter Trs was wrongly recog-
nized as being non-important. This illustrates that the
Morris method can produce different results depending
on whether the parameters are correlated or not. We did
not find examples in the literature of how to handle
correlated parameters when using the Morris method. Trs

is an important parameter, as was clearly shown when
sampling trajectories from the prior distribution. Based

on this observation, we decided to use the assumed
uncorrelated prior distribution when sampling trajecto-
ries for the screening exercise.

Model validation and predictive uncertainty

The data sets for each location were divided in two: one
part was used for calibration and the other was used for
validation (Table 2). To evaluate the predictive uncer-
tainty of the model after calibration, we sampled 20
parameter sets from the posterior distribution, and calcu-
lated the subsequent mean and standard deviations of the
model outputs.

Results

Results from the Bayesian calibration

The main result of the Bayesian calibration procedure is
the estimated joint posterior distribution of the model
parameters. This correlated multidimensional joint distri-
bution is difficult to visualize, so we present the marginal
posterior distribution for single parameters.

We determined the success of the calibration by evalu-
ating the estimated marginal posterior distributions. If
they are narrower than their corresponding prior distri-
bution, this indicates that the parameter uncertainty has
been reduced. The calibration at each location used two
chains of length 300 000, and a unique step length vector
for that location.

The part of the Markov chains succeeding the burn-in
point, which we determined as the point from where R̂
remains below 1.2, comprises the marginal posterior dis-
tribution of the parameter (Gelman 1996). The right
column of Fig. 2 shows plots of R̂ for the parameters x,
rns and Trs, and the centre column shows the estimated
marginal posterior distribution for the same parameters.
Panels in the left column in Fig. 2 show trace plots of the
Markov chains for parameters x, rns and Trs calibrated at
the Kise site. These trace plots are used to verify that the
two chains for each parameter stabilize around the same
value, and that the posterior distribution is properly
explored.

In order to visualize the marginal posterior distribu-
tions for all locations simultaneously, we fitted
continuous distributions to the samples from the poste-
rior generated by the MCMC. They are shown, together
with the prior distributions, in Fig. 3. The marginal pos-
terior distributions are either multimodal, skewed or
both. It was therefore informative to present both the
maximum posterior estimate and the median value of q
(qMAP and �q, respectively) from the marginal posterior
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distributions as summary statistics (see Table 7), comple-
mented by plots of the marginal posterior distributions
in Fig. 3 showing posterior parameter uncertainty. The
parameter vector qMAP represents the single best param-
eter vector at the different locations. For most of the
parameters, when comparing the marginal posterior

distributions in Fig. 3 with their respective prior distribu-
tion (black lines), it is clear that the calibration process
reduced the prior parameter uncertainty. However, for
the parameters related to liquid water in the snow cover,
SWrf and SWret, we can see that measurements on snow
depth alone did not provide enough information to

Fig. 2 Panels in top row show results for

parameter x; centre row shows results for

parameter rns; bottom row shows results

for parameter Trs. Panels in the left column

show trace plots of the two parallel chains (red,

chain 1; black, chain 2). Panels in the centre

column show the marginal posterior distribu-

tion of the parameter p(qi|D). Panels in the right

column show the scale reduction factor R̂ ,

calculated at every 20th iteration.
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depart from our prior estimates (for the Kise site, they are
more peaked). For the precipitation threshold tempera-
ture, Trs, the parameter uncertainty was least reduced at
Kvithamar compared with the other locations. For Tmf,
the parameter uncertainty was reduced more at Kise and
Holt than at Kvithamar and Vågønes. For Kvithamar, the
median value of Tmf (see Table 7) was larger than the
median value of Trs (this is shown in Fig. 4b, where
the green line is located slightly above the red line). The
uncertainty in DKmax and Kmin was reduced for Kise and
Holt, but for Kvithamar and Vågønes there was not much
improvement. The parameter uncertainty was reduced
for the remaining x, rns and lfs.

Results from the sensitivity analysis

At each of the locations used in the calibration, we ran-
domly generated r = 100 different trajectories for the
computation of EE, i.e., r(k + 1) = 1000 parameter vectors
were sampled from W, and thus 1000 model runs were
used for the SA. The results were very similar for each
location. Figure 1 shows the sensitivity indices m*i and si

for each parameter for the Kise site. We find the param-
eters SWret, SWrf and DKmax in the lower left-hand corner,
and the remaining parameters are almost linearly spread.
Inspection of histograms of the sampled parameter values
suggests that the ranges of the prior intervals were
adequately explored.

The parameter lfs was excluded from the SA because
Sdepth affects Fdepth, and not vice versa.

Validation of the model

The SnowFrostIce model was validated at all locations
used in the calibration. For each of the locations we
sampled 20 parameter vectors from the posterior distri-
bution, and calculated the mean and standard deviation
of the model output. Variation in model output is shown

as the mean � one standard deviation (Fig. 5). If the
median value of Trs is close to that of Tmf they appear as
one line in the sub-figures. See Table 7 for these param-
eter values. The validation at the Kise site shows little
variation in model output. At this site, Sdepth is overesti-
mated for the winter of 1997/98. This is as expected when
considering that Tair < Trs for most of the precipitation
events (see Fig. 4a). Frost depth at Kise during 1997/98
is initiated earlier than observed, in addition to being
slightly underestimated. Fdepth during the 1998/99 winter
is overestimated: frost rates that were too high initially
caused Fdepth to be shifted downwards compared with
observations. The validation for Kvithamar (Fig. 5b)
shows more variability in model output compared with
Kise, especially towards the end of springtime for Sdepth.
The data points here are captured within this variation.
At Vågønes (Fig. 5c), model performance for Sdepth is quite
good, but Fdepth is overestimated (more severely during
2001/02 than 2002/03). At Holt (Fig. 5d), the Sdepth is
overestimated during 2005/06 (as with Kise in 1997/98)
because Tair < Trs for most of the precipitation events of
that winter. Note the events between January and May
2006 with P > 20 mm (Fig. 4d), where precipitation is
simulated as snow. Fdepth looks reasonably accurate, but a
complete thaw is predicted too early for both validation
years. Variation in model output is in general higher for
Kvithamar and Holt than for Vågønes and Kise. Figure 6
shows all output (snow cover, soil frost and surface ice)
for Holt (1997/98) and Karasjok (1998/99). We had no
data to calibrate SnowFrostIce for Karasjok. For Karasjok,
we sampled the parameter values from p(q|D) obtained
for Kise, as both locations have an interior climate. Holt
and Karasjok were the only locations where ice observa-
tions were available.

Discussion and conclusions

In this paper we present a new model for the simulation
of snow depth, soil frost depth and depth of surface

Table 7 Parameter values for SnowFrostIce that gave the highest posterior density qMAP, and the median values �q for the sites Kise, Kvithamar, Vågønes

and Holt.

Parameter Kise Kvithamar Vågønes Holt

qi qMAP(i)
�θ i( ) qMAP(i)

�θ i( ) qMAP(i)
�θ i( ) qMAP(i)

�θ i( )

Trs -0.1 -0.1 -0.6 1 2.3 2 3.1 3

Tmf -1.4 -1.5 3.1 2.1 0.7 1.3 -3 -2.3

x 0.02 0.02 0.025 0.12 0.15 0.13 0.01 0.02

DKmax 4.5 3.6 0.79 1.5 1.8 1.5 0.5 2

Kmin 1.1 1 0.43 1.6 0.2 2.3 2.6 3.5

SWrf 0.002 0.48 0.87 0.68 2.61 0.63 3.65 0.78

rns 128 124 216 89 84 95 250 231

SWret 0.32 0.07 0.21 0.22 0.18 0.22 0.35 0.2

lfs (¥104) 8.6 8.8 12.6 10.3 17.6 13.1 13.7 13.8
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ice cover. We calibrated the model by means of well-
documented Bayesian methods, and conducted a
qualitative sensitivity analysis. As far as we know this
practice is still relatively new for this kind of model. The
results presented here, both regarding assumptions about
prior pdfs and the resulting posterior pdfs, and the simple
yet very effective method of sensitivity analysis, are
useful for the modelling community.

A study comparing four models simulating soil frost
(Kennedy & Sharratt 1998)—the two finite differ-
ence models SHAW and SOIL, and two energy balance
models—concluded that the simpler energy balance
models generally overestimate frost depth. However, one
weakness of the models (investigated by Kennedy &
Sharratt) that also simulate snow cover is the estimation
of snow depth. Snow cover has a strong influence on the
estimation of soil frost depth, e.g., through snow depth
and snow density, both affecting the thermal conductivity

of the snow cover. Therefore, accurate simulation of snow
cover is important for the simulation of soil frost depth.

Our new model SnowFrostIce for simulating the effects
of winter climate on the soil surface is designed to be
included in a grassland model. This restricts SnowFrostIce
with regards to the number of parameters included. We
calibrated SnowFrostIce against independent data from
four locations in Norway, capturing climatic variation
from south to north and from coastal to inland areas. We
also identified the key parameters by conducting a sensi-
tivity analysis.

It is important to bear in mind that SnowFrostIce rep-
resents simplifications of real-world processes, which are
described at various levels of complexity. Some of the
parameters used have a physical interpretation, but they
are seldom measured, and quantitative data are scarce in
the literature. This means that the parameters, and
thereby the model outputs, are subject to uncertainty.
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Fig. 4 Climate during validation period for locations (a) Kise, (b) Kvithamar, (c) Vågønes and (d) Holt. Solid lines show the daily mean air temperature Tair

(blue) and bars show daily precipitation; median values from the posterior distribution of the threshold temperatures for precipitation Trs (red) and

snowmelt/refreezing Tmf (green). See Table 7 for parameter values.
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The Bayesian method we used aims to quantify and
reduce these uncertainties, rather than maximizing the
model fit. When selecting an optimal parameter set for a
simulation run for a specific location, we chose the
parameter values that maximized the posterior distribu-
tion qMAP (Table 7). A consequence of this procedure was
that these specific parameter values must be interpreted
accordingly (i.e. reducing model uncertainty), rather
than given a clear-cut physical interpretation.

When carrying out the Bayesian calibration, it was
difficult to obtain convergence of the Markov chains for
the parameters relating to liquid water in the snow cover
(SWret and SWrf). This may imply that the calibration data
were not sufficient for improving the prior knowledge
related to these parameters.

The estimated posterior distribution is different for each
location. We expected some regional differences for the
melting parameters Kmin and DKmax as a result of regional
differences in radiation, altitude (m a.s.l.) and ocean
vicinity, for example, but not for the threshold tempera-
tures for precipitation Trs and snowmelt/refreezing Tmf, or
for the density of new snow rns. This might indicate that
the model needs geographical adjustments and a func-
tional description of rns. The differences in the results for
the thermal conductivity of frozen soil lfs were expected,
as the soil types are different for each of the locations.

A reason for the erroneous estimation of Sdepth could be
that the calibrated value of Trs is wrong, leading to
observed rain being simulated as snow, or vice versa. In
addition, by using daily mean air temperatures, the model
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Fig. 5 Validation of the SnowFrostIce model describing the variation between model output and observed values on depths of snow and soil frost at

(a) Kise, (b) Kvithamar, (c) Vågønes and (d) Holt. Solid lines (mean � SD) show Sdepth (blue) and Fdepth (red); observed snow cover depth (*); observed lower

frost boundary (�).
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might associate incorrect air temperatures with precipita-
tion events. For instance, the observed air temperature
could be below 0°C for most of the day, followed by above
0°C at the end of the day, resulting in a mean daily
temperature below Trs. If precipitation had been observed
as rain by the end of the day, it would still have been
simulated as snow. The overestimation of Sdepth might
result from important processes being omitted, e.g., the
heat content of rain is not incorporated in the model, so
this kind of additional snowmelt is not included. A third
reason for the erroneous estimation of Sdepth might be the
redistribution of snow by wind, a factor not taken into
account in the model.

The number of available observations for the calibra-
tion is important. Using data from two and three years

is not sufficient to capture the interannual variation in
snow cover and soil frost. The limited number of obser-
vations on both snow cover and soil frost at the same
location has an effect on the results of the calibration. In
a preliminary study, the snow module of SnowFrostIce
was calibrated for the Kise location using two, four, six,
eight and finally 10 years of snow depth observations
(Roer et al. unpubl. ms.). Including more data resulted
in a narrower posterior distribution, but convergence
was also increasingly harder to obtain. Including more
observations also resulted in a shift in the location of
the posterior parameter distribution. This showed
that the interannual variation in winter weather will
affect the results of the calibration. As long as more data
are included, the results are likely to keep varying until
the whole spectrum of weather conditions is included.
Ideally, we should have had observations comprising a
full climate period (30 years) to capture the variation
within a normal period. In the study comparing 33
snowpack models by Rutter et al. (2009) only two
years of observations were available. In the present
study, the data set was split in two in order to con-
duct the validation, which would otherwise have had
to be postponed until more observations became
available.

The parameters related to snowmelt (Tmf, Kmin and
DKmax) are less uncertain for Kise than for the other loca-
tions (see Fig. 3). This contributes to less uncertainty in
the snow depth simulation at Kise compared with the
other locations. At Kvithamar, in addition to the uncer-
tainty of Tmf, this parameter also has a high numerical
value compared with the other locations (Table 7). This
leads to more uncertainty in the melting period at Kvith-
amar, and also to a delayed onset of snowmelt in the
simulations compared with, for example, Kise. The
results from the sensitivity analysis showed that Tmf and
Kmin were the most important parameters related to
snowmelt. It is therefore reasonable to attribute the
uncertainty and delay in snowmelt mainly to the uncer-
tainty of the parameters Tmf and Kmin.

In this study we used the likelihood of a sampled param-
eter set, given the data (see Eqn. 20), as a scalar output
when calculating the sensitivity indices m* and s. If, on the
other hand, we were to use daily simulated snow depth
values as the scalar output in the SA, for example, we
would have to calculate one pair of m* and s for each of
these Sdepth values. This would provide an answer to the
question of which parameters were most important on
which day during the whole simulation period. However,
performing two SA—where the first SA uses depth of
snow cover on a specific day during midwinter, and the
second SA uses depth of snow cover on a specific day
towards the end of winter—might give further indications
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of which parameters are most important regarding snow-
melt in cold and mild periods, respectively.

The purpose of our SA was to identify key parameters
in the model. Here, we used the Morris screening method
to identify the non-important parameters. In Fig. 1, the
parameters SWrf, SWret and DKmax are recognized as being
less important (low values for m* and s). Following the
way in which we defined parameter importance in our
SA, the SA results suggest that varying these parameters
within their prior bounds would not markedly affect the
model output. We can also find support for this conclu-
sion in the calibration results. Figure 3 shows that the
posterior distribution for the three non-important param-
eters has not changed much compared with the prior
distribution, implying that no new information is added
through the data.

The ability of SnowFrostIce to simulate the maximum
depths of snow cover and soil frost is presented in Fig. 7.
The points lie close to the 1:1 line, indicating satisfactory
model performance. The maximum depths of snow cover
and soil frost are good indices to show the trends of the
snow cover and soil freezing in each winter, and they are
both appropriately estimated by the model.

The approach to calculating soil frost, by balancing
energy, is similar to that proposed by Benoit &
Mostaghimi (1985). Although we made some critical
assumptions (e.g., estimation of the soil surface tempera-
ture, a constant thermal conductivity of frozen soil and a
constant thermal conductivity of snow), we have shown
that when tested on independent data sets (see Fig. 7),
the ability of SnowFrostIce to estimate the maximum
lower frost boundary is also quite good.

The simulation of ice cover at Holt and Karasjok were
based on the assumptions outlined in the sections
“Puddle formation and infiltration of meltwater” and
“Formation of ice layer”. The results shown in Fig. 6
indicate that our simple approach is a sound starting point
for further development of the ice layer module.

We conclude that our simple yet effective method for
modelling depths of snow cover, lower frost boundary
and soil surface ice provides reasonable results, making it
suitable for incorporation into more complex models.

Continued work

In order to simulate damage to plants as a result of ice
encasement, for example, there is a need for a better
description of local field topography, such as quantifying
the part of the study area that can potentially be covered
by surface puddles. This will be of help when simulating
the number of plants dying because of ice-related stresses.
These refinements should be followed by further model
validation.

The results from the calibration and SA indicate scope
for model improvement. A modification motivated by the
calibration results is a functional description of rns. In
addition, the results from the SA suggest lumping
together (or disregarding) the processes related to liquid
water within the snow cover, and replacing the sinusoidal
snowmelt function by a constant melt rate.
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Nomenclature

Fdepth simulated depth of lower frost boundary (m)
Idepth simulated thickness of surface ice cover (m)
K degree–day temperature index for snowmelt (mm °C-1 day-1)
Kmin minimum value of K (mm °C-1)
Kmax maximum value of K (mm °C-1)
Lf latent heat of fusion (J kg-1)
M snow melt rate (mm day-1)
Mrf refreezing rate (mm day-1)
P precipitation rate (mm day-1)
Pr simulated daily precipitation rate as rain (mm day-1)
Ps simulated daily precipitation rate as snow (mm day-1)
QE heat flux density from freezing of soil water (J m-2 day-1)
Qfs heat flux density through frozen soil (J m-2 day-1)
Qsnow heat flux density through snow cover (J m-2 d-1)
Sdry water constituent of snow cover in solid state (snow and ice) (mm)
Swet liquid water constituent of snow cover (mm)
SWE snow water equivalent (mm)
SWret retention capacity of snow cover (mm mm-1)
SWrf degree–day temperature index for refreezing of liquid water within snow cover (mm °C-1 day-1)
Sdepth depth of simulated snow cover (m)
Tair daily mean air temperature at 2 m height (°C)
Tsurf simulated temperature in void between soil surface and snow cover (°C)
Trs daily mean air temperature below which precipitation is simulated as snow (°C)
Tmf daily mean air temperature below which water within snow cover refreezes (°C)
T* daily mean air temperature below which soil water freezes (°C)
xw volumetric content of available soil water (m3 m-3)
z soil depth (m)
g empirical parameter (m-1)
lfs thermal conductivity of frozen soil (J m-1 °C-1 day-1)
li thermal conductivity of surface ice cover (J m-1 °C-1 day-1)
ls thermal conductivity of snow cover (J m-1 °C-1 day-1)
rns density of falling new snow (kg m-3)
rw density of water at 0°C (kg m-3)
rs density of snow cover (kg m-3)
x snow cover compaction parameter (mm mm-1 d-1)
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