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Abstract

The contamination of polar regions with mercury that is transported from

lower latitudes as inorganic mercury has resulted in the accumulation of

methylmercury (MeHg) in food chains, risking the health of humans and

wildlife. While production of MeHg has been documented in polar marine

and terrestrial environments, little is known about the responsible transfor-

mations and transport pathways and the processes that control them. We

posit that as in temperate environments, microbial transformations play a key

role in mercury geochemical cycling in polar regions by: (1) methylating

mercury by one of four proposed pathways, some not previously described;

(2) degrading MeHg by activities of mercury resistant and other bacteria; and

(3) carrying out redox transformations that control the supply of the

mercuric ion, the substrate of methylation reactions. Recent analyses have

identified a high potential for mercury-resistant microbes that express the

enzyme mercuric reductase to affect the production of gaseous elemental

mercury when and where daylight is limited. The integration of microbially

mediated processes in the paradigms that describe mercury geochemical

cycling is therefore of high priority especially in light of concerns regarding

the effect of global warming and permafrost thawing on input of MeHg to

polar regions.

Over the last few decades, concerns for the vulnerability

of polar regions to organic and inorganic contaminants

that originate in lower latitudes have increased. Mercury

(Hg) is among the most serious of these contaminants

due to its accumulation in polar food chains and the

resulting health risks to both humans and wildlife

(Macdonald et al. 2005; Dietz et al. 2009). Following

natural and anthropogenic emissions, Hg is transported

over long distances and globally distributed in its ele-

mental form, Hg(0), which is also referred to as gaseous

elemental Hg or GEM (Steffen et al. 2007; Pirrone et al.

2010). It is oxidized in the atmosphere and deposited

via dry (aerosols) or wet (rain and snow) deposition to

terrestrial and aquatic ecosystems. Asia is the dominant

source of GEM to the Arctic (Durnford et al. 2010),

rendering this region particularly vulnerable as emissions

from Asia are expected to increase in coming decades

(Streets et al. 2009). The Antarctic is contaminated

from sources in Africa, Australia, and South America

(Dommergue et al. 2010). Mercury deposition to

polar regions is enhanced by springtime atmospheric

Hg depletion events (MDE) in the High Arctic

(Schroeder et al. 1998; Lindberg et al. 2002), sub-Arctic

(Dommergue et al. 2003), and Antarctic (Ebinghaus et al.

2002) regions, resulting in rapid and massive deposition

of ionic Hg, Hg(II), from the atmosphere (Brooks et al.

2006; Skov et al. 2006). This springtime deposition is

thought to be due to the oxidation of GEM by halogen
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radicals and oxidized forms of halogens formed in sea

salt aerosols by photochemical transformations (Lindberg

et al. 2002; Brooks et al. 2006; Ariya et al. 2008).

How atmospherically deposited Hg(II) is converted

to the potent neurotoxic compound methylmercury

(MeHg) is the topic of this review. Our concerns in

relation to MeHg production and its availability to polar

food chains (Wren 1986) are due to human consump-

tion of contaminated seals and whales (Macdonald et al.

2005) and to possible neurological damage in apex

predators such as polar bears (Basu et al. 2009). In

humans, MeHg manifests its toxicity in a variety of

symptoms ranging from mild numbness of the extremi-

ties, blindness, impaired development of language, atten-

tion and memory skills (Krummel et al. 2005), and in

severe cases, death (Clarkson 2002; Mergler et al. 2007).

Recent research has shown that Hg found in the

highest trophic levels of Arctic food chains is almost

exclusively present in the methylated form (Campbell

et al. 2005; Loseto et al. 2008) and that blood and fatty

tissues of native human populations have elevated levels

of Hg (Van Oostdam et al. 2005; Butler Walker et al.

2006; Johansen et al. 2007; Donaldson et al. 2010).

Thus, the impact of Hg contamination in the Arctic is

similar to that described in temperate zones of the

world, raising the critical question of how Hg(II),

entering polar regions through atmospheric deposition,

becomes available for accumulation as MeHg in food

webs. The answers to this question are found in the

dynamics of the polar Hg biogeochemical cycle (Fig. 1),

i.e., within-ecosystem transformations play a critical role

in the toxicity and distribution of Hg. Post-depositional

Hg processes must therefore be understood before we

can link Hg deposition to Hg burdens in polar biota

(Macdonald & Loseto 2010).

In temperate zones, microbial activities critically im-

pact MeHg accumulation by carrying out biochemical

transformations. Recent reviews on Hg cycling in the

environment (Fitzgerald et al. 2007; Poissant et al. 2008;

Selin 2009) and on the role of microbes (Barkay et al.

2003; Barkay et al. 2005) are available. Microbes are

broadly distributed in polar environments, including air

(Polunin & Kelly 1952), snow (Larose, Berger et al.

2010), coastal lagoons (Poulain, Ni Chadhain et al. 2007),

soil (Connell et al. 2008), sea ice (Collins et al. 2010; Koh

et al. 2010), marine sediments (Yergeau et al. 2009) and

the water column (Galand et al. 2009). Bacteria and

bacteriophages have also been documented in frost

Fig. 1 The biogeochemical cycle of mercury in coastal marine environments in polar regions. Major reaction and transport pathways, provided as

numbers in parentheses in the figure, are: (1) atmospheric oxidation of Hg(0) to Hg(II); (2) photoreduction of newly deposited Hg(II) to Hg(0);

(3) biological reduction of Hg(II) to Hg(0); (4) evasion of Hg(0) to the atmosphere; (5) methylation of Hg(II) to CH3Hg by sulfate-reducing bacteria (SRB)

and iron-reducing bacteria (FeRB); (6) methylation of Hg(II) to CH3Hg by aerobic pathway and/or by photomethylation in snow; (7) methylation of

Hg(II) to CH3Hg by algae and phytoplankton in the water column; (8) photochemical degradation of diMeHg in the atmosphere; (9) biological

demethylation of CH3Hg to Hg(II); and (10) photochemical demethylation of CH3Hg in snow. Methylation pathways are highlighted by bold lettering.

Note that these reactions and pathways may take place in various compartments of polar regions; for the sake of simplicity they are only marked in

a representative compartment in the figure (see text for details). Dimethylsulfoniopropionate is abbreviated to DMSP, dimethylsulfide to DMS

and methylsulfonic acid to MSA.
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flowers (Bowman & Deming 2010), where Hg concen-

trations (as high as 5 nmol L�1 or 1 mg L�1) are more

than 10 times higher than in MDE snow (Douglas et al.

2005; Douglas et al. 2008) and almost a 1000-fold

higher than in Arctic inland locations (St. Louis et al.

2005). Because microbial activities have been documen-

ted in samples collected in both the Arctic (Kirchman

et al. 2007; Yergeau et al. 2009) and the Antarctic

(Manganelli et al. 2009), albeit at rates lower than

those in temperate regions, research on microbial activ-

ities in polar regions should be an important component

of efforts directed towards the understanding of how

Hg biogeochemistry is related to MeHg accumulation.

This need is highlighted by the paucity of published

peer-reviewed publications on the interactions of micro-

organisms with Hg in polar regions. While the numbers

of papers describing Hg or microbes in polar regions

are in the hundreds, search engines have only picked

up a single publication when the terms ‘‘microbes’’ OR

‘‘bacteria’’ OR ‘‘archaea’’ AND ‘‘mercury’’ AND ‘‘arctic’’

were used, and none when ‘‘antarctic’’ was replaced with

‘‘arctic’’ (Fig. 2).

Here we update our 2007 review paper and consider

the most recent information on Hg in cold environments

together with relevant information from research on

Hg and microbiology in temperate environments. We

synthesize these sources of information to propose

junctures where microbes critically affect the geochem-

ical cycle of Hg in polar regions (Fig. 1) and identify

research questions that address gaps in our understand-

ing of how microbes modulate the toxicity and mobility

of Hg in the Arctic and Antarctic regions (Table 1).

Microbial transformations of mercury in polar
environments

Our current view of the role of microorganisms in the

cycling of Hg in the environment is based on studies

that were initiated by the discovery of the toxicity of

MeHg to consumers of contaminated fish and shellfish

in the 1960s (Westöö 1966). Results from environmental,

geochemical, microbiological, biochemical, and molecu-

lar studies have converged to establish our current

view of the Hg biogeochemical cycle (Barkay et al.

2005; Fitzgerald et al. 2007; Selin 2009). Within that

paradigm, microbes impact the production of MeHg

directly by methylation and demethylation processes,

and indirectly by controlling the supply of Hg(II), the

substrate for methylation, by carrying out redox trans-

formations that affect transitions between Hg(II), and

Hg(0). These transformations and how they are likely

to be impacted by the unique conditions of cold envi-

ronments are discussed below.

Fig. 2 The number of papers retrieved on 11 October 2010 from the ISI Web of Knowledge database, using the keywords indicated. The search was

performed using Boolean operators to avoid references to unrelated topics. The descriptor ‘‘microbes’’ is used for clarity and is based on a search that

was performed using the query Microbes OR Bacteria OR Archaea AND all other terms as indicated in the figure.
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Hg(II) methylation

Anaerobic microbes have been known for over 40 years

to methylate Hg (Jensen & Jernelöv 1969) and for the

last 25 years this activity has been attributed to

sulfate-reducing bacteria (SRB) in anoxic environments

(Compeau & Bartha 1985; Gilmour et al. 1992; King

et al. 2000). The mechanism of methylation may (Choi

et al. 1994) or may not (Ekstrom et al. 2003) be related

to the production of acetyl coenzyme A and methylco-

balamine (Ekstrom & Morel 2008). More recently,

methylation by some iron-reducing bacteria (FeRB) has

been suggested (Fleming et al. 2006; Kerin et al. 2006),

although when tested under environmentally relevant

conditions, only SRB produced significant amounts of

MeHg (Ranchou-Peyruse et al. 2009). Methylation

of Hg(II) by abiotic processes (Weber 1993; Siciliano

et al. 2005) may be indirectly related to biological

activities because of its dependence on biological pro-

ducts such as dissolved organic matter.

Formation of MeHg in the Arctic has been documented

in wetland soils (Loseto, Siciliano et al. 2004; Oiffer

& Siciliano 2009) and streams (Loseto, Lean et al. 2004),

in snow (Constant et al. 2007), in freshwater ponds

(St. Louis et al. 2005), in the marine water column

(Kirk et al. 2008), and in lakes and tundra water-

sheds (Hammerschmidt et al. 2006). Based on several

considerations we suggest that at least four different

methylation pathways contribute to MeHg formation and

accumulation is polar regions. These considerations

include: (1) the distribution of MeHg and microbial

communities in various compartments of the cryosphere;

(2) the unique physical properties of polar environments;

(3) advances in elucidating the microbial cold way of

life using genomic approaches (Methe et al. 2005); and

Table 1 A summary of the uniqueness of microbial transformations and research questions whose answers would enhance our understanding of Hg

biogeochemistry in polar regions.

Microbial transformation What is unique about this transformation in polar regions Questions/research needs

Methylation � Presence of diMeHg in coastal water (Pongratz

& Heumann 1999; Kirk et al. 2008)

� Snow as a matrix for Hg transformations and MeHg

transport (Constant et al. 2007).

� Marine sources for MeHg deposition in coastal regions

(St. Louis et al. 2005; Larose, Dommergue et al. 2010)

� What are the pathways for methylation and what

fraction of the deposited Hg is being methylated?

� What are the pathways for aerobic Hg methylation?

� Who methylates Hg in polar regions?

� What is the effect of permafrost thawing on

methylation rate and subsequent input of MeHg to

polar regions?

Demethylation � Oxidation of C1 compounds is slow in high latitudes

(Hines & Duddleston 2001)

� mer gene expression in Arctic biomass (Poulain,

Ni Chadhain et al. 2007)

� Photoreduction of MeHg in epilimnetic lake water

(Hammerschmidt & Fitzgerald 2006)

� What are the pathways for the degradation of MeHg

in polar regions?

Hg(II) reduction � Accumulation of dissolved gaseous Hg under sea ice

(Andersson et al. 2008)

� Hg-resistant bacteria are common in snowpacks

(Møller et al. 2011)

� High bioavailability of Hg(II) in freshly deposited snow

(Lindberg et al. 2002), Barkay & Kroer (unpubl. data)

� Interactions of microbes with Hg in structured

environments

� mer gene expression in Arctic biomass (Poulain,

Ni Chadhain et al. 2007) and its impact on Hg(II)

reduction

� Development of psychrophilic Hg biosensors

� The interactions of microbes in sea ice with Hg; role

of exopolysaccharide production

� Measurement of Hg concentrations in the complex

sea-ice matrix

� Further assess the evolution of Hg resistance in

polar areas

Hg(0) oxidation � High chloride concentrations in coastal marine

environments induce abiotic oxidation of Hg(0)

� A better understanding of Hg(0) oxidation in Hg

biogeochemistry
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(4) knowledge of the biochemistry and physiology of

microbial transmethylation reactions. With the exception

of methylation by SRB and FeRB, evidence for the

proposed pathways is lacking. They are highlighted

here because their occurrence in polar environments is

plausible when available data from polar regions are

synthesized with our current understanding of the

chemistry and biochemistry of Hg methylation.

Methylation by SRB and FeRB

The large component of coastal shelves in the Arctic

Ocean (Macdonald & Loseto 2010) and the high summer

productivity of coastal lagoons (Galand et al. 2008)

highlight the likely importance of methylation by SRB

and FeRB in anoxic sediments as a possible source of

MeHg (pathway 5 in Fig. 1). However, Loseto, Siciliano

et al. (2004), who detected low abundance of SRB and

failed to detect Deltaproteobacteria and genes encoding for

the disulfite reductase enzyme in soil DNA extracts,

concluded that methylation was not mediated by SRB.

This conclusion may have been premature because if

methylating SRB are a minor component in the soil

community, the sensitivity of the molecular methods

may have not been sufficient to detect them. For

example, we were recently able to attribute methylation

in an Adirondack wetland to SRB only when experi-

ments with metabolic enhancers and inhibitors and

highly sensitive molecular methods were employed

(Yu et al. 2010). Therefore, the involvement of SRB

in methylation in polar regions, especially in anoxic

sediments of coastal environments, where sulfate

reduction is likely the dominant respiratory pathway,

remains to be examined. This involvement is supported

by observations that SRB are abundant in Arctic

coastal marine sediments such as in Svalbard, Norway

(Ravenschlag et al. 2001), and in Antarctic sediments

(Purdy et al. 2003) and that psychrophilic SRB isolated

from the same sediments actively reduced sulfate at

in situ temperatures (Knoblauch et al. 1999; Bruchert

et al. 2001). To the best of our knowledge, the role

of FeRB in methylation in polar regions has not been

explored though iron, like sulfate, reduction readily

occurs in cold environments (Finke et al. 2007).

Methylation in the marine water column

The production of mono- and dimethylmercury (diMeHg)

in the Arctic marine environment (pathway 7 in Fig. 1),

recently documented by Kirk et al. (2008) in mid- to

bottom depth in the Canadian Arctic Archipelago and

in the Hudson Strait and Hudson Bay, is likely a part

of the larger story of MeHg production in the

marine water column thought to be associated with the

remineralization of particulate organic carbon in oxygen

minima zones (Monperrus et al. 2007; Cossa et al. 2009;

Sunderland et al. 2009). Which organisms are involved

in marine water column methylation is currently not

known, but these may not be anaerobic microbes as

suggested by the failure to detect such microbes at

depth where MeHg accumulated (Malcolm et al. 2010).

Methylation by phytoplankton and/or their exudates

is a possibility as previously reported in a coastal Antarctic

water column (Pongratz & Heumann 1999). A possible

mechanism for the phytoplankton-associated methyla-

tion was very recently proposed by Larose and co-

workers (Larose, Dommergue et al. 2010) implicating

transmethylation reactions that are involved in the

degradation of the phytoplankton osmolyte dimethylsul-

foniopropionate (DMSP) (Bentley & Chasteen 2004).

Together, these studies challenge the current paradigm

that only anaerobic conditions support significant MeHg

build up (or net rates of methylation) and underscores

the need for more discovery based fundamental research

examining mechanistics aspects of Hg methylation.

Snowpacks: in-snow methylation vs. transport
from marine sources

One unique aspect of MeHg accumulation in coastal

Arctic environments is a high concentration of MeHg in

meltwater at the initiation of snowmelt (Loseto, Lean

et al. 2004; St. Louis et al. 2005) suggesting accumulation

of MeHg in snowpacks where anaerobic environments

are uncommon (pathway 6 in Fig. 1). Positive correla-

tions between MeHg and chloride or methanesulfonates,

a product of DMSP degradation (Bentley & Chasteen

2004), and total Hg and chloride (St. Louis et al. 2007)

in snowpacks suggest a marine source for Hg. We can

speculate that MeHg and diMeHg produced in the

marine water column (Kirk et al. 2008; Cossa et al.

2009) may evade from productive leads and polynyas

followed by deposition onto sea-ice and terrestrial

systems (St. Louis et al. 2005). The photodegradation of

the highly volatile diMeHg to MeHg in the atmosphere

(Niki et al. 1983) could be a part of this process.

In-snow methylation of bioavailable Hg(II), however,

cannot be ruled out. For example, methylation in tundra

snowpacks was suggested by correlations between the

proportion of total Hg as MeHg and heterotrophic

bacterial counts and concentrations of suspended solids

(Constant et al. 2007; Kirk et al. 2008). Experiments

T. Barkay et al. Microbial transformations of Hg in polar regions
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using bioreporters (Selifonova et al. 1993; Golding et al.

2002) suggested that a significant proportion of Hg(II)

deposited during MDE in Barrow, Alaska, was bioavail-

able (Scott 2001; Lindberg et al. 2002). Similarly, five

out of 12 surface/top layer snow samples collected

during or following a snowstorm at Station Nord,

north-east Greenland, in spring 2010, had significant

amounts of bioavailable Hg (Barkay & Kroer unpubl.

data). Moreover, organic compounds, such as dicar-

boxylic acids, are present in Arctic snow (Kawamura

et al. 1996) and may serve as a carbon and energy

source for microorganisms (Amato et al. 2007) that

may be involved in methylation processes. Our direct

bacterial counts showed 2�105 cells per ml of melted

snow from the Canadian High Arctic and 1�103 cells

per ml of melted snow from north-east Greenland

(Møller et al. 2011) while melted snow from Antarctica’s

dry valleys had 200�5000 cells per ml (Alfreider et al.

1996; Carpenter et al. 2000; Segawa et al. 2005). Amato

et al. (2007) reported 2�104 and 6�104 cells per ml

in snow accumulated over a glacier on Spitsbergen,

Svalbard, and in a seasonal snowpack bordering the

Arctic Ocean, respectively. Microbes in snow may be

metabolically active, as indicated by the reduction of

2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium

chloride, a respiratory indicator (Alfreider et al. 1996)

and by low, but detectable, levels of protein and nucleic

acid synthesis at in situ temperatures (Carpenter et al.

2000). This suggests the possibility that microbes in snow

may methylate Hg. This proposition, like methylation in

the oxygenated marine column (see above), implies

methylation by aerobic microorganisms. Many aerobic

microorganisms may methylate Hg, e.g., bacteria

belonging to the Pseudomonas, Enterobacter, Bacillus, and

Staphylococci genera and fungi such as Aspergillus niger,

Scopulariopsis brevicattlis and Saccharomyces cerevisiae (Vonk

& Sijpesteijn 1973), and the activity of these microbes

may be environmentally relevant but remains to be

demonstrated.

Photomethylation

It has long been known that MeHg may be formed

in solutions containing various organic molecules in

response to light (Hayashi et al. 1977) and more recently

Siciliano et al. (2005) showed that photomethylation

in northern temperate ecosystems depended on the

presence and size of dissolved organic matter. This

process may affect MeHg formation in snow (pathway

6 in Fig. 1) and other cold environments where biological

processes produce dissolved organic matter (Calace et al.

2005).

As has been the case with studies of methylation in

temperate regions, direct experimentation using pure

cultures of active microbes (Choi et al. 1994), labora-

tory incubations (Yu et al. 2010), and testing in in-

tact and/or manipulated environmental incubations

(Hammerschmidt et al. 2006; Monperrus et al. 2007)

are needed to distinguish the relative importance of the

four proposed methylation pathways to the accumula-

tion of MeHg in polar regions. This research will benefit

greatly from the availability of the sequenced genomes

of psychrophilic microbes (Methe et al. 2005) and the

metagenomes of microbial communities from cold en-

vironments (Larose, Berger et al. 2010). We hypothesize

that methylation by anaerobic bacteria is prominent

considering the large magnitude of coastal shelves

and inputs from river discharge to the high Arctic

(Macdonald & Loseto 2010). Yet, considering that both

poles, the Arctic in particular, are highly influenced

by processes in the marine environment, methylation

in water column, and by aerobic microbes, may be a

significant contributor to the MeHg pool in polar regions.

Methylmercury degradation

Because they consume MeHg, demethylation reactions

impact net methylation rates and thus the net production

of this neurotoxic substance. Three demethylation

processes*photodegradation (Sellers et al. 1996) and

two microbially mediated processes (Schaefer et al. 2004;

Barkay et al. 2005)*are known. Photodegradation, a

process mediated by ultraviolet radiation (Lehnherr &

St. Louis 2009) and enhanced by the presence of organic

ligands (Zhang & Hsu-Kim 2010), is the dominant

mechanism for demethylation in surface water. It has

been invoked as the sole process responsible for the

degradation of MeHg in the eplimnitic water of a highly

oligotrophic freshwater Arctic lake (Hammerschmidt

& Fitzgerald 2006). To the best of our knowledge,

MeHg degradation has not been examined in the

euphotic zone of sediments or samples from coastal

marine environments in polar regions.

Microbial pathways for the degradation of MeHg are

distinguished by the redox state of the gaseous carbon

products of demethylation. In reductive demethylation,

methane is produced and in the oxidative process the

product is both carbon dioxide and methane. We

(Schaefer et al. 2004) and others (Marvin-Dipasquale

et al. 2000; Gray et al. 2004) have shown that the

choice between these processes is to a large extent

controlled by environmental factors. Reductive demethy-

lation is mediated by the organomercury lyase enzyme,

which is a part of the Hg resistance (mer) system in

Microbial transformations of Hg in polar regions T. Barkay et al.
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bacteria (see below). This process is favoured at a high

redox potential and high concentrations of Hg since

expression of mer operon genes is induced by inorganic

divalent Hg (Schaefer et al. 2004; Barkay et al. 2010).

Oxidative demethylation is favored at low redox poten-

tials and at a broad range of Hg concentrations and is

most likely related to C1-pathways in anaerobic prokar-

yotes (Marvin-Dipasquale & Oremland 1998). The occur-

rence and rates of C1 metabolism in microbes from cold

environments have been getting a lot of attention due

to anticipated effects of global warming on the release

of carbon from large frozen reservoirs in permafrost

and polar tundra. While methanogenesis (Rivkina et al.

2004; Berestovskaya et al. 2005) and methanotrophy

(Berestovskaya et al. 2005) were detected in permafrost,

rates were drastically impacted by a drop in the incuba-

tion temperature. Moreover, degradation of C1 com-

pounds such as methylbromide or acetate, common in

temperate soils (Hines et al. 1998), is rarely observed

at high latitudes proximal to polar areas (Hines &

Duddleston 2001). Based on these observations the

likelihood for oxidative MeHg degradation in polar

regions is currently low but may increase should the

carbon cycle be altered by warmer conditions. Never-

theless, demethylation plays an important role in deter-

mining MeHg production and availability to food chains

and its occurrence and mechanisms in cold environments

need to be addressed.

Redox transformations of inorganic Hg

Redox transformations between the ionic and elemental

Hg forms affect MeHg production by controlling the

amount of the substrate that is available for methylation

(Fitzgerald et al. 1991). Among the reduction processes,

photoreduction dominates in surface water (Krabbenhoft

et al. 1998; Amyot et al. 2004; O’Driscoll et al. 2004;

Poulain, Amyot et al. 2004; Garcia, Amyot et al. 2005;

Zhang et al. 2006) and snow (Lalonde et al. 2002; Lalonde

et al. 2003) and is thought to result in the evasion of most

of the Hg that is deposited onto snow (Lindberg et al.

2002; Dommergue et al. 2003) or condensed into frost

flowers (Douglas et al. 2008). The impact of photoreduc-

tion on Hg that is deposited during springtime MDE was

recently confirmed by showing a large negative mass-

independent fractionation of Hg isotopes (Sherman

et al. 2010) thought to be exclusively induced by light

mediated reactions (Bergquist & Blum 2007; Kritee et al.

2009).

There are several microbial Hg reduction processes

and chief among them is mediated by the inducible

Hg resistance (mer) operon in Hg-resistant bacteria,

which impacts the partition of Hg into the gaseous phase

in some environments (Barkay 1987; Barkay et al.

2005). The enzyme mercuric reductase, MerA, encoded

by the merA gene, is the core function of the mer

operon, which also encodes for Hg transport and for an

elaborate system that regulates expression of the operon.

Some operons also encode for the organomercury lyase

and microbes carrying such mer operons reductively

degrade MeHg (see above). The mer operon is broadly

distributed among Bacteria (Barkay et al. 2010) and

Archaea (Simbahan et al. 2005) from diverse environ-

ments (Osborn et al. 1997; Barkay et al. 2010). The

presence of Hg resistant bacteria in samples from polar

environments (Møller et al. 2011) and the demonstration

of merA gene expression in samples from the High

Arctic (Poulain, Ni Chadhain et al. 2007) suggest that

Hg resistant microbes may be endemic and active in

cold regions, a conclusion that is also supported by the

presence of mer gene homologs in the genomes of several

psychrophilic bacteria from polar environments (Barkay

et al. 2010). Resistant bacteria accounted for 0�31%

of the total number of the cultured bacteria in High

Arctic snow and for approximately 2% in sea-ice brine

and freshwater (Møller et al. 2011) and for up to 3%

in permafrost sediments (Petrova et al. 2002; Mindlin

et al. 2005), and for 1�68% in Antarctic seawater

(De Souza et al. 2006; Miller et al. 2009).

The regulator of mer expression, MerR, plays a

critical role in determining where and under which

conditions Hg(II) reduction by MerA occurs. Expression

of the mer-operon is repressed in the absence of Hg

and is quantitatively induced in its presence (Summers

1992; Brown et al. 2003). Because of this requirement

for induction, MerA-mediated reduction has been con-

sidered of little relevance to transformations of Hg in

natural environments (Morel et al. 1998). Indeed, a

series of studies, performed in several environments

that were impacted by various sources of Hg, showed

mRNA transcripts of the merA gene in highly contami-

nated environments, whereas microbial biomass from

environments with low levels of contamination con-

tained low to non-detectable levels of these transcripts

(Nazaret et al. 1994; Hines et al. 2000; Poulain, Amyot

et al. 2004; Schaefer et al. 2004). Based on these

observations one would not expect merA expression and

reduction of Hg(II) by polar microbial communities

where Hg concentrations are in the pM range during

most times of the year (Steffen et al. 2002; St. Louis

et al. 2005). We were, therefore, surprised when merA

transcripts were detected in microbial biomass associated

with algae that were collected in a coastal lagoon and

a sea-ice lead in the Canadian High Arctic in the

T. Barkay et al. Microbial transformations of Hg in polar regions
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summer of 2005 where total Hg concentrations were ca.

10 pM (Poulain, Ni Chadhain et al. 2007). Numerous

reasons may account for this apparent discrepancy. The

absolute Hg concentrations required for mer induction

depend on the complicated issue of bioavailability and

how it is impacted by interactions with ligands in the

environment (Barkay et al. 1997; Crespo-Medina et al.

2009). In environments with low concentrations of

ligands, induction may take place at very low Hg

concentrations. For example, induction of the mer-lux

bioreporter in laboratory incubations was documented

at sub-pM Hg concentrations when ‘‘clean conditions’’

were employed (Kelly et al. 2003). The slow rates of

transcript degradation in cold environments (Vlassov

et al. 2005), might furthermore explain the detection of

merA transcripts in polar microbiota.

Alternatively, the highly heterogeneous nature of

microbial habitats in polar regions may lead to locally

high concentrations of Hg in micro-niches where mer

induction may take place. The effect of heterogeneous

micro-environments on the distribution of Hg and on

selection of resistant bacteria was recently demonstrated

(Slater et al. 2008); selection extended to a distance of

B500 mm from Hg foci created by the impregnation of

fiber with Hg chloride (Slater et al. 2010). Sea

ice, the habitat for most of the microbial biomass in

coastal polar environments, may contain niches where

both Hg and microorganisms are concentrated. It is

likely that Hg, like other solutes in sea ice (Eicken

2003), is highly concentrated in brine channels where

actively metabolizing microorganisms were documented

(Deming 2002; Junge et al. 2004). Our hypothesis

on the localized proximity of microbes to Hg in brine

channels is also supported by the observations that

microbes in brine channels during winter are associated

with particles (Junge et al. 2004), that a significant

fraction of atmospherically derived Hg is bound to

particles (Schroeder & Munthe 1998), and that Hg in

snow*especially in marine environments*is almost

exclusively associated with particles (Poulain, Garcia

et al. 2007). However, the discovery of copious produc-

tion of exopolysaccharides by microbes in sea ice

(Krembs & Deming 2008), proposed as a cryoprotec-

tion mechanism (Marx et al. 2009), may suggest an

alternative mechanism for Hg tolerance whereby Hg is

sequestered extracellularly as has been shown for other

metals in other environments (Teitzel & Parsek 2003).

The possibility that resistance to Hg among sea-ice

bacteria in brine channels is not mediated by mer

systems is supported by a low number of Hg resistant

culturable bacterial counts in brine samples extracted

from sea ice at Station Nord in north-east Greenland

(Møller et al. 2011).

Bioreduction of Hg, unrelated to the mer system, may

be associated with the activity of microorganisms in fresh

and salt waters via pathways still to be determined.

These could be related to both heterotrophic and/or

phototrophic activities (Ben-Bassat & Mayer 1978;

Mason et al. 1995; Poulain, Amyot et al. 2004; Rolfhus

& Fitzgerald 2004; Wiatrowski et al. 2006; Wiatrowski

et al. 2009).

How significant is microbial reduction of Hg(II)

in Hg geochemistry in polar regions? Numbers of merA

transcripts in Arctic microbial biomass (Poulain, Ni

Chadhain et al. 2007) and numbers of Hg resistant

bacteria in snowpacks (Møller et al. 2011) were used

to answer this question. Using Acuchem modeling soft-

ware (Braun et al. 1988) and a custom-designed kinetic

code, Poulain, Ni Chadhain et al. (2007) showed that

at equilibrium and when 5% of bacterial cells were

considered active 65% of the elemental Hg (Hg[0]) was

biogenic at the surface of the Arctic ocean while at a

depth of 10 m with diminishing UVA and UVB radiation

this fraction increased to 94%. Likewise, an almost

20-fold increase in the potential reduction rate was

predicted in snowpacks at Station Nord with sampling

depth increasing from about 83 to 105 cm. Comparison

with reduction rates measured in snow from the

Canadian High Arctic (Dommergue et al. 2003) suggested

that an average of up to 2% of the total reduction

could be biological and that bacterial reduction became

increasingly important with snow depth (Møller et al.

2011). There is therefore a potential for microbial

reduction to affect Hg mobility in the Arctic, especially

at depth and under sea ice where light and the flux

of dissolved gaseous Hg (DGM) to the atmosphere are

limited. This conclusion is consistent with observations

of enhanced DGM concentrations recorded underneath

sea ice (Andersson et al. 2008). Our results and analyses

suggest that most of the DGM pool in the Arctic Ocean

could be of a microbial origin. Further studies should

expend these preliminary findings.

The microbial oxidation of Hg(0) to Hg(II) is the

part of the Hg biogeochemical cycle about which we

know the least. To date, most research efforts have

examined abiotic mechanisms of light and dark oxidation

(Lalonde et al. 2001; Lalonde et al. 2004; Poulain,

Lalonde et al. 2004; Raofie & Ariya 2004; Sheu & Mason

2004; Garcia, Poulain et al. 2005; Whalin & Mason 2006).

Bacterial enzymes known for their role in the response to

oxidative damage, such as catalases and hydroperoxi-

dases, oxidize Hg(0) in organisms that are common in

natural waters and soils (Smith et al. 1998). Further-

Microbial transformations of Hg in polar regions T. Barkay et al.

8
(page number not for citation purpose)

Citation: Polar Research 2011, 30, 15469, DOI: 10.3402/polar.v30i0.15469



more, Siciliano et al. (2002) related specific rates of Hg(0)

oxidation by lake microbial biomass to variations in DGM

concentrations. How these microbially-mediated oxida-

tive processes affect Hg speciation in polar regions, and

especially their impact on the fate of DGM, has not been

examined.

Conclusions and future needs

The study of Hg (micro)biogeochemistry in polar

environments is at its early stages, but the synthesis of

information available from temperate regions together

with what we know about the distribution of Hg in

polar regions and about microbiology in cold environ-

ments points to the uniqueness of Hg cycling in polar

regions (Table 1). As in temperate environments, MeHg

is accumulated by aquatic food chains but the methyla-

tion pathways themselves and the sites where methyla-

tion occurs may differ from those in lower latitudes.

A particularity of polar ecosystems is the enhanced

vulnerability of marine and coastal environments to

Hg accumulation due to enhanced deposition during

springtime.

Global warming poses a major challenge to the mana-

gement of Hg contamination in polar regions. Increased

temperatures are likely to directly affect Hg biogeochem-

istry by enhancing the rates of microbial transformations

and yearly productivity as polar summers are lengthened.

In addition, open waters created with the accelerated

melting of sea ice are likely to result in higher inputs

of halogen aerosols to the atmosphere and the sub-

sequent enhanced deposition of RGM with precipitation.

The impact of these changes on both microbial and

abiotic methylation as well as MeHg degradation and

redox transformations of inorganic Hg will determine

future trends in MeHg accumulation in polar regions.

Thawing permafrost may be an increasing source of

MeHg to polar ecosystems. One may expect an increased

production of MeHg in polar regions as a consequence

of global warming considering the known relationship

of enhanced methylation with increased oxidation of

organic matter (Kelly et al. 1997; St. Louis et al. 2004)

and the increased cycling of carbon (Davidson & Janssens

2006; Heimann & Reichstein 2008) together with the

release of Hg from peat (Klaminder et al. 2008) when

permafrost thaws. Considering the enormous magnitude

of carbon that is sequestered in permafrost and the

projection for rapid permafrost thawing (Lawrence &

Slater 2005), an evaluation of how this change can

affect Hg biogeochemistry is needed.

A better description and understanding of Hg trans-

port and transformations in sea-ice microbial habitats

is warranted. These marine environments are character-

ized by spatially and temporally fractured unique envir-

onments in terms of their physical, chemical, and

biological features. These niches may alter, or modulate,

the pathways of microbial transformations of Hg relative

to their characteristics in temperate environments. Our

current state of knowledge provides us with a starting

point for studies on Hg transformations in polar regions,

and such studies promise to add new dimensions to

our perception of the mechanisms and pathways that

determine Hg toxicity and facilitate life in its presence.
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