Supplementary file for: Kozak K., Kozioł K., Luks B., Chmiel S., Ruman M., Marć M., Namieśnik J. & Polkowska Ż. 2015. The role of atmospheric precipitation in introducing contaminants to the surface waters of the Fuglebekken catchment, Spitsbergen. *Polar Research 34*. Correspondence: Żaneta Polkowska' Department of Analytical Chemistry, The Chemistry Faculty, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk PL-80-233, Poland. E-mail: <u>zanpolko@pg.gda.pl</u>

Supplementary Fig. S1. A comparison of the chemical composition of waters in the stream, lake and bulk precipitation: (a) pH, electrical conductivity and total organic carbon (TOC) levels; (b) the concentrations of selected heavy metals.

Supplementary Fig. S2. Box and whisker plot (marking all quartiles and the extent of nonoutliers) of the concentrations of the five variables in the discriminant analysis model based on trajectory cluster classification. Li, Rb and Sb are presented on the left axis, while B and electrical conductivity (EC) are measured on the right axis.

Supplementary Fig. S3. Box and whisker plot of the concentrations of the five variables in the discriminant analysis model based on wind direction classification, marking all quartiles and the extent of non-outliers. Please note that Zn concentrations are plotted on the right Y axis.

Supplementary Fig. S4. The relationship between metal concentration and pH in the surface waters and atmospheric precipitation.

Supplementary Fig. S5. The occurrence of relationships between chosen elements and the total organic carbon (TOC) in the samples collected from (a) the Fuglebekken lake and (b) the Fuglebekken stream.

Supplementary Fig. S6. Relationships between the concentrations of Mn and As or total organic carbon (TOC) and Mn, as detected in (a) the Fuglebekken stream samples and (b) the precipitation samples.

Analytical techniques	Measure- ment range	Limit of detection	Limit of quantification	Coefficient of variance (%)	Measurement information	Reagents/ standards
Total organic carbon (mg/l)	0.15-100	0.030	0.10	0.1-5.0	Total organic carbon analyser TOC-VCSH/CSN, method of catalytic combustion (oxidation) with the use of nondispersive infrared detector (Shimadzu, Kyoto, Japan)	Potassium biphthalate, C ₆ H ₄ (COOH) FW204.23, purity 99.9% (Kanto Chemical Co., Tokyo, Japan)
Metals (µg/l)	0.005-1000	0.002	0.005			
Bi, U	0.01-1000	0.003	0.01			
Cs, Pb Ag, Ba, Cd, Co, Cu, Mo, Rb, Tl	0.05-1000	0.02	0.05	0.5-1.5	Elan DRC, gas fed to the atomizer Ar: 0.98 l/min, plasma gas Ar: 15 l/min	Inductively coupled plasma mass spectrometry standards, mix 10 ppm
As, Cr, Mn, Sr, Ni	0.10-1000	0.03	0.10		(PerkinElmer, Waltham, MA, USA)	(Inorganic Ventures, Christians- burg, VA, USA)
Al, Li, Zn	0.5-1000	0.2	0.5			0011)
В	5-1000	2	5			

Supplementary Table S1. Validation parameters, technical specifications and reagents used in the applied analytical procedures.

Supplementary Table S2. Reference materials.

Reference material no. 409	Simulated rainwater BCR-409, Institute for Reference Materials and Measurements, Geel, Belgium
Inorganic Ventures, Christiansburg, VA, USA Analytical reference material ANALITYK- CCS-4, CCS-6, CCS-1, IV-ICPMS-71A, Poland	10 mg L ⁻¹ concentration standards for: Ag, Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Cs, Mo, Ni, Pb, Sb, Se, Sr, V, Zn
Analytical reference material TM-DWS.2, Environment Canada, mixed standard	Al: 58.3 μ g L ⁻¹ , Sb: 3.20 μ g L ⁻¹ , As: 4.20 μ g L ⁻¹ , Ba: 146 μ g L ⁻¹ , Be: 13.4 μ g L ⁻¹ , Bi: 14 μ g L ⁻¹ , B: 81.0 μ g L ⁻¹ , Cd: 4.20 μ g L ⁻¹ , Cr: 44.4 μ g L ⁻¹ , Co: 64.2 μ g L ⁻¹ , Cu: 167 μ g L ⁻¹ , Cs: 0.04 μ g L ⁻¹ , Pb: 7.82 μ g L ⁻¹ , Li: 20.1 μ g L ⁻¹ , Mo: 66.7 μ g L ⁻¹ , Ni: 82.3 μ g L ⁻¹ , Rb: 0.42 μ g L ⁻¹ , Se: 8.69 μ g L ⁻¹ , Ag: 9.91 μ g L ⁻¹ , Sr: 243 μ g L ⁻¹ , Tl: 8.32 μ g L ⁻¹ , Sn: 12.1 μ g L ⁻¹ , U: 14.1 μ g L ⁻¹ , V:44.3 μ g L ⁻¹ , Zn: 379 μ g L ⁻¹

Sample type	Determined parameter/ analyte	Li (µg·L·1)	B (µg·L·l)	Al (µg·L·l)	V (µg·L·l)	Cr (µg·L·l)	Mn (µg·L·l)	Co (µg·L·l)	Ni (µg·L·l)	Cu (µg·L·l)	Zn (µg·L·l)	As (µg·L·l)	Se (µg·L·l)	Rb (µg·L·l)	Sr (µg·L·1)	(
	Min.	0.500	5.00	0.500	0.100	0,100	0.100	0.050	0.200	0.100	0.500	0.100	0.050	0.050	0.500	
Atmos-	Max.	0.800	23.0	13.7	0.400	1.30	14.2	0.800	2.20	5.00	1378	0.400	1.33	1.01	36.7	
pheric precipi-	Mean	0.600	11.5	1.63	0.218	0.465	1.44	0.150	0.476	0.664	28.9	0.175	0.279	0.146	3.87	
tation	Median	0.600	10.0	1.00	0.200	0.400	0.500	0.075	0.300	0.400	9.75	0.200	0.220	0.100	2.00	
	N	6	17	131	85	126	156	16	37	135	172	40	118	110	157	1
	Min.	0.500	5.00	0.500	0.200	0.300	0.100	1844	0.200	0.100	0.500	0.100	0.050	0.090	11.7	
Eucla	Max.	0.900	9.00	21.2	2.00	6.80	0.900	10-	0.400	2.60	9.90	1.00	0.960	0.530	95.9	
bekken	Mean	0.861	7.80	2.18	1.13	3.24	0.260	- 33 <u>63</u>	0.283	0.361	1.83	0.184	0.259	0.168	50.7	
stream	Median	0.700	9.00	1.40	1.10	3.45	0.15	:: ::	0.250	0.300	1.00	0.200	0.250	0.160	55.6	
	N	56	5	183	199	199	10	1177	6	188	61	123	165	199	199	Ý
	Min.	1.00	7.00	0.500	1.00	0.300	0.100	18-	433	0.100	0.500	0.100	0.080	0.170	58.4	
E.s.1.	Max.	1.40	7.00	4.90	1.90	6.60	0.600	10 11	-	0.900	2.10	0.300	0.610	0.270	101	
Fugle- bekken	Mean	1.18	7.00	2.06	1.47	2.63	0.350	825	<u>12</u> 87	0.549	1.11	0.191	0.349	0.202	73.3	
lake	Median	1.20	7.00	1.80	1.40	0.800	0.350	- 10 -0		0.600	0.950	0.200	0.365	0.200	72.8	
	N	61	1	33	61	61	2	10.00	<u>.</u>	55	14	57	60	61	61	4

Supplementary Table S3. Minimum, maximum and mean concentrations of different compounds determined in surface waters and precipitation.

(a)	ENE	WSW	WNW	E	SW	W	SSW	NW
ENE	0.00	1.65	2.57	1.82	9.30	3.90	2.52	10.35
WSW	1.65	0.00	1.72	2.04	8.20	2.48	3.71	10.51
WNW	2.57	1.72	0.00	2.72	9.03	3.25	3.83	9.78
Е	1.82	2.04	2.72	0.00	8.23	3.88	3.16	8.79
SW	9.30	8.20	9.03	8.23	0.00	10.96	11.04	14.42
W	3.90	2.48	3.25	3.88	10.96	0.00	3.46	8.73
SSW	2.52	3.71	3.83	3.16	11.04	3.46	0.00	7.10
NW	10.35	10.51	9.78	8.79	14.42	8.73	7.10	0.00
(b)	ENE	WSW	WNW	Е	SW	W	SSW	NW
ENE		0.57	0.77	0.51	0.00	0.38	1.00	0.00
WSW	0.57		0.98	0.59	0.00	0.91	0.96	0.01
WNW	0.77	0.98		0.83	0.02	0.93	0.99	0.11
E	0.51	0.59	0.83		0.00	0.53	0.99	0.04
SW	0.00	0.00	0.02	0.00		0.00	0.14	0.00
W	0.38	0.91	0.93	0.53	0.00		0.99	0.23
SSW	1.00	0.96	0.99	0.99	0.14	0.99		0.83
NW	0.00	0.01	0.11	0.04	0.00	0.22	0.92	

Supplementary Table S4. Squares of (a) Mahalanobis distances and (b) their significance levels for wind direction classes in the discriminant analysis model devised based on all parameters.

(a)1234567810.003.626.523.244.897.203.897.8123.620.003.063.042.353.722.806.6436.523.060.002.862.722.462.355.6243.243.042.860.003.304.033.176.4054.892.352.723.300.003.043.465.2667.203.722.464.033.040.002.284.2073.892.802.353.173.462.280.004.4587.816.645.626.405.264.204.450.0073.892.802.353.173.462.280.004.4587.816.645.626.405.264.204.450.0073.892.802.353.173.462.280.004.4587.816.645.626.405.264.204.450.001012345678110.090.580.160.110.000.180.0320.090.990.110.790.040.420.0630.580.990.991.001.001.000.9140.16 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>									
1 0.00 3.62 6.52 3.24 4.89 7.20 3.89 7.81 2 3.62 0.00 3.06 3.04 2.35 3.72 2.80 6.64 3 6.52 3.06 0.00 2.86 2.72 2.46 2.35 5.62 4 3.24 3.04 2.86 0.00 3.30 4.03 3.17 6.40 5 4.89 2.35 2.72 3.30 0.00 3.04 3.46 5.26 6 7.20 3.72 2.46 4.03 3.04 0.00 2.28 4.20 7 3.89 2.80 2.35 3.17 3.46 2.28 0.00 4.45 8 7.81 6.64 5.62 6.40 5.26 4.20 4.45 0.00 1 2 3 4 5 6 7 8 1 0.09 0.58 0.16 0.11 0.00 0.18	(a)	1	2	3	4	5	6	7	8
2 3.62 0.00 3.06 3.04 2.35 3.72 2.80 6.64 3 6.52 3.06 0.00 2.86 2.72 2.46 2.35 5.62 4 3.24 3.04 2.86 0.00 3.30 4.03 3.17 6.40 5 4.89 2.35 2.72 3.30 0.00 3.04 3.46 5.26 6 7.20 3.72 2.46 4.03 3.04 0.00 2.28 4.20 7 3.89 2.80 2.35 3.17 3.46 2.28 0.00 4.45 8 7.81 6.64 5.62 6.40 5.26 4.20 4.45 0.00 . 1 2 3 4 5 6 7 8 1 0.09 0.58 0.16 0.11 0.00 0.18 0.03 2 0.09 0.99 0.11 0.79 0.04 0.42	1	0.00	3.62	6.52	3.24	4.89	7.20	3.89	7.81
3 6.52 3.06 0.00 2.86 2.72 2.46 2.35 5.62 4 3.24 3.04 2.86 0.00 3.30 4.03 3.17 6.40 5 4.89 2.35 2.72 3.30 0.00 3.04 3.46 5.26 6 7.20 3.72 2.46 4.03 3.04 0.00 2.28 4.20 7 3.89 2.80 2.35 3.17 3.46 2.28 0.00 4.45 8 7.81 6.64 5.62 6.40 5.26 4.20 4.45 0.00 7 3.89 2.80 0.58 0.16 0.11 0.00 0.18 0.03 6 7 8 1 0.09 0.58 0.16 0.11 0.00 0.18 0.03 2 0.09 0.99 0.11 0.79 0.04 0.42 0.06 3 0.58 0.99 0.99 <td< td=""><td>2</td><td>3.62</td><td>0.00</td><td>3.06</td><td>3.04</td><td>2.35</td><td>3.72</td><td>2.80</td><td>6.64</td></td<>	2	3.62	0.00	3.06	3.04	2.35	3.72	2.80	6.64
4 3.24 3.04 2.86 0.00 3.30 4.03 3.17 6.40 5 4.89 2.35 2.72 3.30 0.00 3.04 3.46 5.26 6 7.20 3.72 2.46 4.03 3.04 0.00 2.28 4.20 7 3.89 2.80 2.35 3.17 3.46 2.28 0.00 4.45 8 7.81 6.64 5.62 6.40 5.26 4.20 4.45 0.00 (b) 1 2 3 4 5 6 7 8 1 0.09 0.58 0.16 0.11 0.00 0.18 0.03 2 0.09 0.99 0.11 0.79 0.04 0.42 0.06 3 0.58 0.99 0.99 1.00 1.00 0.27 0.27	3	6.52	3.06	0.00	2.86	2.72	2.46	2.35	5.62
5 4.89 2.35 2.72 3.30 0.00 3.04 3.46 5.26 6 7.20 3.72 2.46 4.03 3.04 0.00 2.28 4.20 7 3.89 2.80 2.35 3.17 3.46 2.28 0.00 4.45 8 7.81 6.64 5.62 6.40 5.26 4.20 4.45 0.00 (b) 1 2 3 4 5 6 7 8 1 0.09 0.58 0.16 0.11 0.00 0.18 0.03 2 0.09 0.99 0.11 0.79 0.04 0.42 0.06 3 0.58 0.99 0.99 1.00 1.00 1.00 0.91 4 0.16 0.11 0.99 0.41 0.02 0.27 0.08 5 0.11 0.79 1.00 0.41 0.56 0.54 0.47 6 0.00 0.04 1.00 0.02 0.56 0.71 0.53 7	4	3.24	3.04	2.86	0.00	3.30	4.03	3.17	6.40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	4.89	2.35	2.72	3.30	0.00	3.04	3.46	5.26
7 3.89 2.80 2.35 3.17 3.46 2.28 0.00 4.45 8 7.81 6.64 5.62 6.40 5.26 4.20 4.45 0.00 (b) 1 2 3 4 5 6 7 8 1 0.09 0.58 0.16 0.11 0.00 0.18 0.03 2 0.09 0.99 0.11 0.79 0.04 0.42 0.06 3 0.58 0.99 0.99 1.00 1.00 1.00 0.91 4 0.16 0.11 0.99 0.41 0.02 0.27 0.08 5 0.11 0.79 1.00 0.41 0.56 0.54 0.47 6 0.00 0.04 1.00 0.02 0.56 0.71 0.53 7 0.18 0.42 1.00 0.27 0.54 0.71 0.57 8 0.03 0.06 0.91 0.08 0.47 0.53 0.57	6	7.20	3.72	2.46	4.03	3.04	0.00	2.28	4.20
8 7.81 6.64 5.62 6.40 5.26 4.20 4.45 0.00 (b) 1 2 3 4 5 6 7 8 1 0.09 0.58 0.16 0.11 0.00 0.18 0.03 2 0.09 0.99 0.11 0.79 0.04 0.42 0.06 3 0.58 0.99 0.99 1.00 1.00 1.00 0.91 4 0.16 0.11 0.99 0.41 0.02 0.27 0.08 5 0.11 0.79 1.00 0.41 0.56 0.54 0.47 6 0.00 0.04 1.00 0.02 0.56 0.71 0.53 7 0.18 0.42 1.00 0.27 0.54 0.71 0.57 8 0.03 0.06 0.91 0.08 0.47 0.53 0.57	7	3.89	2.80	2.35	3.17	3.46	2.28	0.00	4.45
(b)1234567810.090.580.160.110.000.180.0320.090.990.110.790.040.420.0630.580.990.991.001.001.000.9140.160.110.990.410.020.270.0850.110.791.000.410.560.540.4760.000.041.000.020.560.710.5370.180.421.000.270.540.710.5780.030.060.910.080.470.530.57	8	7.81	6.64	5.62	6.40	5.26	4.20	4.45	0.00
(b)1234567810.090.580.160.110.000.180.0320.090.990.110.790.040.420.0630.580.990.991.001.001.000.9140.160.110.990.410.020.270.0850.110.791.000.410.560.540.4760.000.041.000.020.560.710.5370.180.421.000.270.540.710.5780.030.060.910.080.470.530.57			r	-	r				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(b)	1	2	3	4	5	6	7	8
20.090.990.110.790.040.420.0630.580.990.991.001.001.000.9140.160.110.990.410.020.270.0850.110.791.000.410.560.540.4760.000.041.000.020.560.710.5370.180.421.000.270.540.710.5780.030.060.910.080.470.530.57	1		0.09	0.58	0.16	0.11	0.00	0.18	0.03
3 0.58 0.99 0.99 1.00 1.00 1.00 0.91 4 0.16 0.11 0.99 0.41 0.02 0.27 0.08 5 0.11 0.79 1.00 0.41 0.56 0.54 0.47 6 0.00 0.04 1.00 0.02 0.56 0.71 0.53 7 0.18 0.42 1.00 0.27 0.54 0.71 0.57 8 0.03 0.06 0.91 0.08 0.47 0.53 0.57	2	0.09		0.99	0.11	0.79	0.04	0.42	0.06
40.160.110.990.410.020.270.0850.110.791.000.410.560.540.4760.000.041.000.020.560.710.5370.180.421.000.270.540.710.5780.030.060.910.080.470.530.57	3	0.58	0.99		0.99	1.00	1.00	1.00	0.91
5 0.11 0.79 1.00 0.41 0.56 0.54 0.47 6 0.00 0.04 1.00 0.02 0.56 0.71 0.53 7 0.18 0.42 1.00 0.27 0.54 0.71 0.57 8 0.03 0.06 0.91 0.08 0.47 0.53 0.57	4	0.16	0.11	0.99		0.41	0.02	0.27	0.08
60.000.041.000.020.560.710.5370.180.421.000.270.540.710.5780.030.060.910.080.470.530.57	5	0.11	0.79	1.00	0.41		0.56	0.54	0.47
7 0.18 0.42 1.00 0.27 0.54 0.71 0.57 8 0.03 0.06 0.91 0.08 0.47 0.53 0.57	6	0.00	0.04	1.00	0.02	0.56		0.71	0.53
8 0.03 0.06 0.91 0.08 0.47 0.53 0.57	7	0.18	0.42	1.00	0.27	0.54	0.71		0.57
	8	0.03	0.06	0.91	0.08	0.47	0.53	0.57	

Supplementary Table S5. Squares of Mahalanobis distances (a) and their significance levels (b) for air mass trajectory clusters in the discriminant analysis model devised based on all parameters.

Supplementary Table S6. The discriminant model for wind direction classes, with the variable number truncated to five (model parameters: Wilks's lambda = 0.61, approximate F (35.54) = 1.94, p < 0.002).

	Wilks's lambda	Partial Wilks's lambda	F to remove (7.13)	р	Tolerance
Zn	0.66	0.92	1.53	0.16	0.99
As	0.65	0.93	1.39	0.22	0.59
Rb	0.71	0.86	3.06	0.01	0.61
Cd	0.69	0.88	2.42	0.02	0.99
Pb	0.65	0.93	1.37	0.23	0.98

Supplementary Table S7. The discriminant model for air mass trajectory clusters, with the variable number truncated to five (model parameters: Wilks's lambda = 0.70, approximate F (35.56) = 1.45, p < 0.048).

	Wilks's lambda	Partial Wilks's lambda	F to remove (7.13)	p	Tolerance
Li	0.75	0.93	1.52	0.17	0.22
В	0.73	0.96	0.86	0.54	0.30
Rb	0.76	0.92	1.69	0.12	0.42
Sb	0.76	0.92	1.74	0.10	0.76
EC	0.77	0.91	1.95	0.07	0.16

Non-biological sample type	Determined compounds/ compound groups	Identified content/scope	References
Air	Ni, Hg, Pb, Cd, Cu, Zn, Mn, As, Cr, Co, V	0.005-1790 (pg m ⁻³)	Berg et al. 2004; Berg et al. 2008
Seawater, groundwater, surface water	Cd, Zn, Cu, Pb, Cr, Mn, Fe, Co, Ni, Fe, Mg, Li, Na, Rb, Cs, Be, Ca, Sr, Ba, Si	0.01-183 (μg L ⁻¹)	Drbal et al. 1993; Headley 1996; Banks et al. 1998; Banks et al. 1999; Burzyk et al. 2004; Ahn et al. 2009
(stream, river, lake, spring)	Li, Be, B, Al, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Tl, Pb, Bi, U	$0.0001-95.9 \ (\mu g \ L^{-1})$	our research
Glacier ice (surface samples and ice cores)	Cd, Zn, Cu, Pb, Cr, Mn, Fe, Co, Ni, Mg	0.0001-0.0255 (µg L ⁻¹)	Drbal et al. 1993
Snow	Ca, K, Mg, Na	0.005-232.3 (mg L ⁻¹)	de Caritat et al. 2005
Procinitation	Cu, Zn, Pb, Fe, Ni, Mg	0.01-12 (µg L ⁻¹)	Headley et al. 1996
Trecipitation	Li, Be, B, Al, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Tl, Pb, Bi, U	0.0001-1378 (µg L ⁻¹)	our research
Waste rock pile	Fe, Al, Mn, Zn, Ni, Cu, Cr, As, Cd, Pb	0.06-109000 (µg L ⁻¹)	Søndergaard at al. 2008
Sediment	Cd, Zn. Cu, Pb, Cr, Co, Ni, As, Hg, Sb, Sc, Ti, V, Mn	0.031-46413.9 (µg g ⁻¹)	Siegel et al. 2000; Burzyk et al. 2004; Evenset et al. 2007; Lu et al. 2013
Peat profile	Cu, Zn, Pb, Fe, Ni, Mg	3.2-1120 (µg g ⁻¹)	Headley et al. 1996
Rock pile	Al, Cr, Mn, Fe, Ni, Zn, As, Pb	0.1-166888.3 (µg g ⁻¹)	Elberling et al. 2007

Supplementary Table S8. Metal concentrations in non-biological environmental samples collected in Svalbard.

Coal	Al, Si, P, S, K, Ca, Ti, V, Mn, Fe, Ga, As, Se, Sr, Y, Zr, Nb, Cd, Sn, Sb, Ba, Pb, Ga	0.03-15215 (µg g ⁻¹)	Orheim et al. 2007; Lewińska-Preis et al. 2009
Soil	Al, As, Sb, Se, Tl, Ba, Co, Cu, Ni, Pb, Cr, Mn, Fe, Be, Cd, Mg, Ti, Zr, Zn, Mo, Te, Sn, Li, B, V, Sr, Rb, Ce, U, Sc, La	0.00006-679 (μg g ⁻¹)	Plichta & Kuczyńsk 1991; Gulińska et al. 2003; Melke 2006; Luks & Głowacki 2007; Askaer et al. 2008

References

- Ahn I.Y., Ji J. & Park H. 2009. Metal accumulation in sea urchins and their kelp diet in an Arctic fjord (Kongsfjorden, Svalbard). *Marine Pollution Bulletin* 58, 1571-1577.
- Askaer L., Schmidt B.L., Elberling B., Asmund G. & Jónsdóttir I.S. 2008. Environmental impact on an Arctic soil–plant system resulting from metals released from coal mine waste in Svalbard (78° N). *Water, Air, & Soil Pollution 195*, 99–114.
- Banks D., Siewers U., Sletten R.S., Haldorsen S., Dale B., Heim M. & Swensen B. 1999. The thermal springs of Bockfjorden, Svalbard: II: selected aspects of trace element hydrochemistry. *Geothermics* 28, 713-728.
- Banks D., Sletten R.S., Haldorsen S., Dale B., Heim M. & Swensen B. 1998. The thermal springs of Bockfjord, Svalbard: occurrence and major ion hydrochemistry. *Geothermics* 27, 445-467.
- Berg T., Aas W., Pacyna J., Uggerud H.T. & Vadset M. 2008. Atmospheric trace metal concentrations at Norwegian background sites during 25 years and its relation to European emissions. *Atmospheric Environment* 42, 7494–7501
- Berg T., Kallenborn R. & Stein M. 2004. temporal trends in atmospheric heavy metal and organochlorine concentrations at Zeppelin, Svalbard. *Arctic, Antarctic, and Alpine Research 36*, 284- 291.
- Burzyk J., Zjawiony I. & Figiel M. 2004. Rozmieszczenie i prawdopodobne źródła metali ciężkich w wodach i sedymentach fiordu Hornsund (SW Spitsbergen). (Distribution and possible sources of heavy metals in waters and sediments of the Hornsund fiord, SW Spitsbergen.)
 Paper presented at the XXX International Polar Symposium. 23-25 September, Gdynia, Poland.
- Drbal K., Elster J. & Komárek J. 1992. Heavy metals in water, ice and biological material from Spitsbergen, Svalbard. Polar Research 2, 99-101.

Headley A.D. 1996. Heavy metal concentrations in peat profiles from the High Arctic. Science of the Total Environment 177, 105-111.

de Caritat P., Hall G., Gislason S., Belsey W., Braun M., Goloubeva N.I., Olsen H.K., Scheie J.O. & Vaive J.E. 2005. Chemical composition of Arctic snow: concentration levels and regional distribution of major elements. *Science of the Total Environment 336*, 183-199.

Elberling B., Søndergaard J., Jensen L.A., Schmidt L.B., Hansen B.U., Asmund G., Zunić T.B., Hollesen J., Hanson S., Jansson P.E. & Friborg

- T. 2007. Arctic vegetation damage by winter-generated coal mining pollution released upon thawing. *Environmental Science & Technology* 41, 2407-2413.
- Evenset A., Christensen G.N., Carroll J., Zaborska A., Berger U., Herzke D. & Gregor D. 2007. Historical trends in persistent organic pollutants and metals recorded in sediment from Lake Ellasjøen, Bjørnøya, Norwegian Arctic. *Environmental Pollution 146*, 196-205.
- Gulińska J., Rachlewicz G., Szczuciński W., Barałkiewicz D., Kózka M., Bulska E. & Burzyk M. 2003. Soil contamination in High Arctic areas of human impact, central Spitsbergen, Svalbard. *Polish Journal of Environmental Studies 12*, 701-707.
- Lewińska-Preis L., Fabiańska M.J., Ćmiel S. & Kita A. 2009, Geochemical distribution of trace elements in Kaffioyra and Longyearbyen coals, Spitsbergen, Norway. *International Journal of Coal Geology* 80, 211-223.
- Lu Z., Cai M., Wang J., Yin Z. & Yang H. 2013. Levels and distribution of trace metals in surface sediments from Kongsfjorden, Svalbard, Norwegian Arctic. *Environmental Geochemistry and Health* 35, 257-269.
- Melke J. 2006, The contents of selected trace elements in the soils of Bellsund, Spitsbergen. Polish Journal of Soil Science 39, 21-32.
- Luks B. & Głowacki P. 2007. Zanieczyszczenia gleby metalami ciężkimi w rejonie Polskiej Stacji Polarnej Hornsund. (Soil contamination with heavy metals in the vicinity of the Polish Polar Station, Hornsund.) In R. Przybylak et al. (eds.): *Abiotyczne środowisko Spitsbergenu w latach 2005-2006 w warunkach globalnego ocieplenia*. (*Abiotic environment of Spitsbergen in the period 2005-2006 in terms of global warming.*) Pp. 267-279. Toruń, Poland: University of Mikołaja Kopernika.
- Orheim A., Bieg G., Brekke T., Horseide V. & Stenvold J. 2007. Petrography and geochemical affinities of Spitsbergen Paleocene coals, Norway. *International Journal of Coal Geology* 70, 116–136.
- Plichta W. & Kuczyńska I. 1991. Metal contents in soils of Kaffiøyra, Spitsbergen. Polish Polar Research 12, 183-193
- Siegel F.R., Galasso J.L., Kravitz J.H. & Basinger W.D. 2000, The Svalbard western coast: site of baseline geochemistry and incipient contamination. *Environmental Geology 39*, 816-822.