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Abstract

Climate warming is especially pronounced in the Arctic, which has led to

decreased sea-ice coverage and substantial permafrost thawing. These changes

have a profound impact on the carbon cycle that directly affects the air�sea

exchange of carbon dioxide (CO2), possibly leading to substantial feedback on

atmospheric CO2 concentration. Several recent studies have indicated such

feedback but the future quantitative impact is very uncertain. To minimize

these uncertainties, there is a need for extensive field studies in order to achieve

both a better process understanding as well as to detect probable trends in these

processes. In this contribution, we describe a number of processes that have

been reported to be impacted by climate change and suggest a coordinated

international observational programme for their study.

It is well known that the Arctic is undergoing rapid and

substantial climate change, which has transformed the

environment. The most obvious manifestation of change

is the loss of permanent pack ice, which results in an ever

shrinking summer sea-ice coverage (Cavalieri et al. 1996;

Stroeve et al. 2012), but the thawing of the permafrost in

the Arctic Ocean’s drainage basins is equally striking

(e.g., Lawrence & Slater 2005). Many other more subtle

shifts in the environment have occurred, like more melt-

ponds, earlier melting, loss of snow cover, higher water

temperatures on the shelves in the summer and warmer

inflowing waters from the Atlantic and Pacific (e.g.,

Serreze et al. 2000; Shimada et al. 2006; Dmitrenko

et al. 2008; Palmer et al. 2014). All of these changes can

potentially alter the transformation and fluxes of carbon

in large parts of the Arctic Ocean.

Primary production likely shifts in strength and location

as a result of changes in light regimes and nutrient supply

as the summer sea-ice coverage decreases. Increased

wind-induced upwelling at the shelf break during sea-

ice-free conditions has been suggested to be an important

factor for supply of nutrients to the photic zone (Carmack

& Chapman 2003). To what degree changes in primary

production will translate into a higher sedimentation

rate of organic matter into the deep waters is not obvious,

even if substantial accumulation of ice algae at the

sediment floor has been reported (Boetius et al. 2013).

An increased primary production will have implications

for the surface water partial pressure of carbon dioxide

(pCO2), which in turn can exchange with the atmosphere

to a degree that is partly controlled by the sea-ice coverage.

Furthermore, the Arctic Ocean carbon cycle is affected by

surrounding land masses, for example, through increased

input of organic matter from rivers and from coasts that

are eroded as permafrost thaws (Vonk et al. 2014). The

objective of this contribution is to suggest observation

strategies for the study of potential transformations of the

Arctic Ocean carbon cycle caused by variable processes,

with the aim to better project future feedbacks to the

climate system.

In any assessment of the Arctic Ocean’s carbon cycle, it

is essential to consider the oceanographic setting and

therefore, especially, the water mass circulation (Fig. 1).

Much of the water that enters the Arctic Ocean from the

surrounding seas does so over large shelves. Inflowing

waters from the Pacific Ocean pass through the large

Bering and Chukchi seas before entering the deep central

basins. Some water also flows west into the East Siberian

Sea, while some flows to the east into the Beaufort Sea

before exiting to the north. A portion of the water from
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the Atlantic Ocean flows through the Barents Sea and

exits through the St. Anna Trough into the deep central

basin. A small quantity of Atlantic water flows into the

Laptev Sea with an even smaller fraction making it all the

way into the East Siberian Sea before flowing north into

the central basins. During the transit over the shelves,

substantial carbon transformation occurs, as described

below.

The general circulation of the surface waters is largely

determined by the dominating atmospheric pressure field

that governs the wind patterns. Because these pressure

fields vary on the decadal scale (e.g., the Arctic Oscilla-

tion), the front between the Pacific and Atlantic water

in the East Siberian Sea can shift substantially (e.g.,

Johnson et al. 1999). In the central basins, some water

flows from the Siberian shelf seas towards Fram Strait in

the so-called Transpolar Drift. Over the Canada Basin, the

Beaufort Gyre dominates the large-scale circulation. The

extents of both the Transpolar Drift and the Beaufort

Gyre are also determined by the pressure field.

The oceanographic state together with the geographic

conditions determine different biogeochemical regimes,

with very high primary production in the inflow shelves,

moderate to low primary production in the interior

shelves and low primary production in the central Arctic

Ocean (Carmack & Wassmann 2006). These conditions

have a substantial impact on the carbon cycle of the

Arctic Ocean. For instance, it has, up to the present, been

shown that the Arctic Ocean surface waters are, for the

most part, undersaturated with respect to carbon dioxide

Fig. 1 Dominating Arctic Ocean currents with inflowing relative warms surface currents (red) and colder surface currents (light blue) together with

intermediate and deep currents (burgundy and dark blue). Features of the Arctic Ocean are abbreviated as follows: Canadian Basin (CB), Makarov Basin

(MB), Amundsen Basin (AB), Nansen Basin (NB) and St. Anna Trough (St.AT).
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(CO2; Bates & Mathis 2009; Fransson et al. 2009;

Jutterström & Anderson 2010). This has been attributed

to cooling as well as primary production in the Barents

and Bering�Chukchi seas (the inflow shelves) before the

water enters the central regions where the sea-ice cover

hampers air�sea exchange (Kaltin & Anderson 2004;

Mathis et al. 2009). It is also in these marginal seas that

primary production is high compared to the other Arctic

shelf seas, as the inflowing waters constantly supply

nutrients (Sakshaug 2004). In particular, the extraordin-

ary supply of nutrients from the Pacific Ocean to the

Bering and Chukchi seas supports productivity that

is high in the global perspective, with new production

of up to 160 gC m�2 yr�1 (Springer et al. 1996; Hill &

Cota 2005).

The high productivity in the Chukchi Sea (bottom

depth mostly less than 50 m) results in a relatively large

supply of organic matter to the sediments, where much

is microbially decayed, and the resulting chemical con-

stituents released back to the bottom water (Fig. 2).

Chukchi shelf-bottom water, often enriched by brine

from sea-ice formation, flows off the shelf and into the

central Arctic Ocean, where it produces an extensive water

mass (the upper halocline) containing high nutrient,

high CO2 and low oxygen (Jones & Anderson 1986).

Export of nutrient-rich water has also been shown to

occur from the East Siberian Sea (e.g., Anderson et al.

2013) although primary production is not very high in

this interior shelf sea. Even though the productivity of

the Barents Sea is substantial, the deeper depths, often

more than 200 m, allow most of the organic matter to

decay before reaching the seafloor (Slagstad & Wassmann

1996). Consequently, the decay products are spread over

a greater salinity range and in a greater volume such that

the dense waters leaving the Barents Sea contain a

fainter chemical regeneration signature than the waters

leaving the Chukchi Sea.

The export production of the central Arctic Ocean has,

at least until recently, been very low (Anderson et al.

2003), and probably among the lowest in the global ocean

(Honjo et al. 2010). The low level of new production in the

central ocean is likely due to a weak supply of nutrients

to interior surface water, because these tend to be con-

sumed in the shelf seas. Added to this was the historically

dense cover by permanent pack ice in the central Arctic

Ocean, which may accumulate snow cover over several

years, limiting the light needed for primary production.

Of course, there is some productivity in the water column,

as well as within the sea ice and by algae hanging from the

sea ice (e.g., Wheeler et al. 1996; Krembs et al. 2011).

However, the majority of this produced organic matter is

not sedimented deep in the water column before becom-

ing degraded by microbes (Honjo et al. 2010; O’Brien et al.

2013; Ericson et al. 2014) The near-absence of a labile

particulate organic flux into the Arctic Ocean’s basins is

proven by the near constant concentrations of oxygen and

nutrients in the water column from depths of a few

hundred metres down to the bottom, nearly 4 km deep in

Fig. 2 Carbon transformation by marine primary production followed by sedimentation and microbial decay. In the shelf seas, much of the latter

occurs at the sediment surface where brine-enriched water transport the decay products to the deep central basins. Particulate organic carbon is

abbreviated to POC.
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some places. For these waters, transient tracers give

residence times of up to several hundred years at the

greatest depths (Schlosser et al. 1994). Furthermore, the

sediment accumulation rates in the central Arctic Ocean

are predominantly on the order of a few millimetres per

thousand years (Backman et al. 2004; Stein & Macdonald

2004).

An important way that the Arctic Ocean contributes to

the global carbon cycle is through the uptake of anthro-

pogenic CO2. The cooling of the high-salinity waters

flowing to the North along the Scandinavian coast results

in a water that is dense enough to flow southward over

the Scotland�Greenland ridge as a bottom current,

making a major contribution to the start of the global

conveyor belt (Mauritzen 1996). Also the high-salinity

waters that are produced from the sea-ice brine, mainly

in the polynyas distributed around the Arctic Ocean

continental margin, create waters dense enough to con-

tribute to this overflow (e.g., Jeansson et al. 2008). These

intermediate and deep water formation processes build

up the anthropogenic CO2 concentration to a level that

makes the Arctic Ocean inventory about twice as much

on a per-volume basis as the global mean (Tanhua et al.

2009).

Processes likely to be impacted and approaches
for their observation

Below, we emphasize several processes that will likely

dominate future changes in the Arctic Ocean carbon

cycle. As such, these processes contribute to the oceanic

feedback within the climate system through interactions

with the air�sea CO2 exchange. We also suggest ways of

observing shifts in carbon transformation and fluxes in

the Arctic Ocean.

Thawing permafrost adds terrestrial organic matter
to the shelf seas

The Arctic Ocean has a terrestrial drainage basin twice its

own area, making this ocean one of the most ‘‘terrestrial’’

in the world in terms of both received freshwater runoff

and organic carbon (Stein & Macdonald 2004). Further-

more, extensive land areas close to the coast of North

America as well as most of Siberia contain vast amounts

of terrigenous organic matter stored under permafrost

conditions (McGuire et al. 2009), as do some areas of the

continental shelves (Romanovskii et al. 2005; Vonk et al.

2012). Subaerial permafrost has an active upper zone

that thaws during summer and freezes during winter.

At the same time, many rivers, including five very large

ones (Lena, Yenesey, Ob, Mackenzie and Yukon), along

with numerous small ones, drain these areas, with the

largest discharge occurring during summer. Freshet deli-

vers huge quantities of both dissolved and particulate

organic matter into the Arctic shelf seas (Stein &

Macdonald 2004; McGuire et al. 2009). Furthermore,

coastal erosion adds particulate organic matter to the

coastal zone in amounts matching the river loads (Stein

& Macdonald 2004). The organic matter decays both in

the rivers as well as in the shelf seas (Alling et al. 2010;

Vonk et al. 2010), resulting in high pCO2 in water partly

isolated by stratification from immediate atmospheric

exchange (e.g., Pipko et al. 2010). Likely most of the

dissolved organic carbon (DOC), or coloured dissolved

organic matter (CDOM), gets trapped at the surface by

river-induced stratification, where much of it can become

photolysed away, and the CO2 is relatively free to ex-

change out into the atmosphere. In contrast, the particu-

late organic carbon (POC) sinks below the stratified surface

layer where metabolism can then convert it to CO2,

which is trapped below by stratification.

With rising temperatures, more permafrost thaws,

which potentially leads to intensified input of dissolved

and particulate terrestrial organic matter to the shelf seas

and further elevated pCO2 levels (Fig. 3). Particulate

carbon will likely derive from the release of old matter

due to riverbank and coastal erosion, whereas DOC may

be enhanced by altered vegetation and increased break-

down of organics in surface soils (Guo et al. 2007). In

areas heavily impacted by the Lena River discharge,

CO2 supersaturation has been observed in the middle of

summer even when all nutrients have been consumed by

primary production (Anderson et al. 2009). Furthermore,

decreasing sea-ice coverage over the shelves in late

summer leads to later sea-ice formation in the coastal

regions; the coasts are therefore more exposed to wave-

induced erosion when fall storms hit, further amplifying

the release of ancient organic matter to coastal seas (e.g.,

see Lantuit et al. 2012). If these processes leading to

supersaturated waters escalate due to climate change, it

would contribute a significant positive feedback consid-

ering that about 1700 Pg of organic carbon are presently

stored in the Arctic’s permafrost (Schuur et al. 2013).

Observational approaches for terrestrial organic

matter. The Siberian shelves appear to offer the greatest

potential to deliver substantial change through the pro-

cesses described above. They receive much river discharge,

have substantial coastal erosion, cover vast areas and are

shallow (Fig. 3). Furthermore, these shelves have large

terrigenous drainage basins that appear to be undergoing

transition in their permafrost zones (e.g., Pokrovsky et al.

2012). Potential changes in the magnitude of terres-

trial organic matter degradation must be investigated by
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regular field studies of the water column over decadal time

periods to develop confident estimates of trends. This

approach is needed given that these shelf seas are dynamic

with, for example, river-plume distribution being highly

affected by dominating wind fields in any particular season

leading to variable extents of the CO2 supersaturated

regions (e.g., Pipko et al. 2010).

Ideally several transects from close to the river mouths

out to the shelf slope should be sampled (Fig. 4). The

Laptev Sea provides a suitable candidate for a transect

along about 1308E where previous studies funded by

various projects have built up a database spanning more

than a decade. The western East Siberia Sea presents

another area heavily impacted by terrestrial organic

matter, and a section along about 1558E provides another

suitable candidate. Water should be collected from the

surface to the bottom and determined for, in addition

to temperature and salinity, at least two of the carbon

system parameters*dissolved inorganic carbon (DIC),

total alkalinity (TA), pH and pCO2*as well as DOC, POC,

nutrients, oxygen and the isotopes 13C and 18O.

The seasonal variability of the river plume can, to some

extent, be investigated by ship-based investigations, but a

more fruitful and cost-efficient approach is likely by

satellite observations. This will give a qualitative view of

the general spreading of the river plume to which any

ship-based study can be compared. Moorings close to the

river mouth present a logistic challenge as the water is

quite shallow and ridges of sea ice can build up when the

wind pushes the ice towards land. However, moorings

are useful towards the shelf edge, but more for looking

at near-bottom shelf export into the interior ocean utili-

zing sensors for backscatter (e.g., O’Brien et al. 2006),

including any potential seasonal variability.

Fig. 3 Carbon transformation in shelf seas with substantial terrestrial organic carbon input. Composition estimates based on Goñi et al. (2005) and

Stein & Macdonald (2004). Particulate organic carbon and dissolved organic carbon are abbreviated to POC and DOC, respectively.

Fig. 4 Map with suggested transects for the study of the Arctic Ocean

carbon system: red for following the land, burgundy for studying the

boundary current contribution and blue for the central basins. Illustrated

are the sea-ice conditions at the minimum in September 2012 (white

shading) and with maximum in March 2012 demarcated by the black lines.
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Investigation of the water column properties would

benefit from complementary sediment studies, which

could be conducted as focused investigations of sedimen-

tary processes removing carbon through burial, or provid-

ing remineralized products from organic matter back to

the water column through benthic respiration. For exam-

ple, acoustic measurements could be used to determine

the sediment structure and layer thickness along the

section, and sediment cores*both long cores and shorter

multiple cores with undisturbed surface sediments*could

be applied to the determination of organic matter pro-

cesses, discriminating between marine and terrigenous

sources (e.g., Goñi et al. 2013). While such water column

studies ought to be performed regularly, say, every third

year, the sediment investigations can be done at longer

intervals, although they do need to cover the same total

timeframe of more than a decade.

Changes in the primary production

High primary production has always occurred over the

shelf seas receiving nutrients imported from the south,

like the Barents and Chukchi seas, with lower production

occurring over the interior shelf seas*Kara, Laptev, East

Siberian and Beaufort seas (Sakshaug 2004; Carmack

et al. 2006). The limiting factor for production has mainly

been the supply of nutrients, although light can play a

role in timing and location. In the central Arctic Ocean,

on the other hand, primary production has been low,

especially new primary production (Anderson et al. 2003).

Here, nutrient supply is restricted, but light conditions

under multi-year pack ice have also limited productivity.

Over the last few years, substantial production of micro-

plankton (Arrigo et al. 2012), algae anchored in troughs

and depressions under ice floes (Boetius et al. 2013) and

generally higher primary production (Brown & Arrigo

2012) have been reported. These increases in organic

production in the upper ocean are suggested to be a

result of changes in the summer sea ice, which is thinner,

covers less ocean area and contains more melt-ponds.

Furthermore, the changes in sea-ice condition appear to

have led to a substantive flux of particulate matter to the

basins (Boetius et al. 2013). Model simulations suggest

that primary production in an Arctic Ocean with less

summer sea ice may change most in the seasonal ice zone

(Wassmann et al. 2010). Furthermore, remote sensing of

ocean colour has been used to infer that substantial

increases in chlorophyll concentrations have occurred

during the last decade (Arrigo et al. 2008). However,

direct observations are limited and cannot directly be

coupled to changing sea-ice conditions, whereas remote

sensing data are not accurate enough over a sufficient

long time to state a trend.

Observational approaches for primary production.

In a future with less sea ice during the productive seasons,

there will be variable light conditions, making primary

production spatially patchy. Furthermore, the balance

between ice-algal production and pelagic production will

likely change as light penetrates deeper in the ocean, and

first-year sea ice that melts completely may produce brief

episodes of vertical flux involving organic mats that,

nevertheless, are important in terms of total annual

production. These circumstances set special constraints

on observations, emphasizing a need for high temporal

or spatial coverage, or both. Spatial coverage of surface

water can be achieved by continuous measurements

during research cruises, while temporal coverage that

includes ice cover and open water can only be made by

autonomous measurements. The latter are likely best

accomplished by buoys attached to sea-ice floes as this

would allow for measurements of the upper waters with

less risk of destroying the instruments by pressure ridges

(Krishfield et al. 1993; Honjo et al. 1995). However, there

is also a need for time series in open water areas, which

likely are best achieved by deploying drifting buoys

for shorter summer periods. In conjunction with samples

collected or measurements made in the water column,

complementary measurements of ocean properties should

be made by remote sensing. Presently, such measurements

could include parameters like temperature, ice cover and

condition of melt, and ocean colour (chlorophyll, CDOM),

all of which would help interpret data collected along

sections or by buoys. The temporal frequency and spatial

coverage of these investigations cannot be too high/large

but will, in practice, be set by economic limitations.

Parameters to be determined depend on the platform,

but for the autonomous instrumentation they should

include temperature, salinity, chlorophyll, pCO2, oxygen

and other relevant fluorescence properties. With the

development of technology, these parameters may be

expanded to measure a greater suite of relevant proper-

ties. The same properties should be determined in the

surface water during cruises, but could be complemented

by other constituents like argon/oxygen ratio, nutrients,

DIC or TA, 18O, 13C, DOC and filtration of the water

to measure particulate inorganic carbon (PIC) and POC

or establish the biological species composition. Further-

more, it would be useful to estimate primary productivity

from incubation experiments. Complementary measure-

ments at intervals of all the organic and inorganic

constituents (particulate and dissolved) of the carbon

system together with 13C and 14C for selected profiles

would permit a more sophisticated understanding of
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processes affecting terrestrial and marine components

of the carbon system and their evolution over time (see,

e.g., Griffith et al. 2012).

Traditionally, remote sensing has been applied to a

wide variety of physical properties including currents,

waves, sea level, ice distribution and so on, but the direct

application to the carbon system has been more limited.

Evaluation of chlorophyll from ocean colour measure-

ments has been an important focus for remote sensing

in the Arctic and elsewhere, and these sorts of data

have been applied to determining trends in primary

production (e.g., Petrenko et al. 2013). However, as these

sensors only see the surface layer, different methods have

been applied to achieve the depth integrated primary

production. Typically, these methods have been devel-

oped in other areas than the Arctic Ocean and are

therefore not designed for some of the specific conditions

encountered in ice-covered seas, such as in the marginal

ice zone. Furthermore, the algorithms for computing

chlorophyll from the spectral signals include some un-

certainties in regions of much suspended matter, as

occurs in waters affected by the enormous rivers entering

the Arctic shelf seas. Ocean colour may also be used to

determine terrigenous CDOM under the right conditions

(e.g., Salisbury et al. 2001), and imaginative use of

remote sensing has assisted the interpretation of inor-

ganic carbon fluxes in the Arctic Ocean (Else et al. 2008;

Lauvset et al. 2013). Other applications will likely be

developed during the coming years that could prove even

more important for monitoring the Arctic Ocean’s carbon

system.

Increased sedimentation of organic matter to the
deep sea

Change in primary production is an important factor

by itself as are impacts on higher trophic levels. However,

for changes in primary production to affect the net

air�sea flux in the Arctic Ocean, alteration in the organic

sedimentation out of the upper waters is required.

Recycling of organic matter within the waters of the

winter mixed layer will only have a seasonal impact

and will not modify net inter-annual fluxes. Given that

vertical fluxes within the interior Arctic Ocean are

presently very low (Honjo et al. 2010; O’Brien et al.

2013), even a small change*especially into the older

basin waters*could have a major effect on the Arctic

Ocean’s carbon budget.

A change in vertical flux can come about by a shift in

the magnitude of primary production at the surface or,

more likely, by shifts in the species composition of both

primary and secondary producers. One example is the

sea-ice diatom Melosira arctica that recently was found

freshly deposited in large quantities at the deep-sea floor

(4000 m) of the central Arctic basins (Boetius et al. 2013).

If this enhanced vertical flux is a result of sustained

productivity, it will have a notable effect on the vertical

carbon transport out of the mixed layer. However, the

ultimate limiting factor of export production is nutrient

supply, which will set the upper limit to flux out of the

mixed layer. The exact magnitude of nutrient supply to

interior ocean surface water is determined mainly by the

influx of waters from the surrounding oceans, but also by

the input from river runoff and to a lesser degree by

mixing of nutrients from subsurface waters to the surface

layer. The reason why the latter has a minor impact on

the carbon transport to deeper layers is that at the same

time as nutrients are supplied so will be the companion

metabolic product: inorganic carbon. Only deviations in

the P:N:C ratio of the supply relative to that of export

production counts.

Observational approaches for sedimentation of

organic matter. Observation of shifts in export produc-

tion is difficult to accomplish over a short time scale

because it is very patchy on both temporal and spatial

scales. Hence, there is a need for a long-term approach

with very accurate investigations aimed at capturing the

integrated signal accumulated in intermediate and deep

waters of the central basins. This would require tradi-

tional cruises where waters at different depths from the

bottom to the surface are analysed for oxygen, nutrients

and the carbon system parameters. It is well known that

most of the organic matter from plankton that sediments

through the water column is degraded at shallower

depths and only a small fraction reaches the very deep

layers. However, larger algae, like those that grow at the

bottom of sea ice, sediment much faster when shed as

algal mats, and can therefore easily reach the seafloor

before degradation (Boetius et al. 2013). As shown below,

it would be suitable to perform these traditional cruises

with a frequency of about every five years.

To get a perspective on the magnitude of changes

one can expect if the export production increases in the

central Arctic Ocean, we can make a computation of the

constraints. Assuming that an average of 2 Sv of seawater

of a 1 mmol L�1 phosphate concentration enters the

photic zone of the Arctic Ocean annually and that one

quarter (productive season) of this is consumed within

the shelf seas during the growing season, the supply to

the deep central Arctic Ocean would be 47�109 mol yr�1.

Distributing this evenly throughout the deep ocean area,

4737�109 m�2, implies a supply of about 0.01 mol m�2

yr�1. If all this phosphate were to be consumed by

primary production in the photic zone and all of the
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resultant organic matter exported from the mixed

layer to then decay over a 1000-m-thick water column

beneath the mixed layer, the phosphate concentration

would increase by ca. 0.01 mmol L�1 yr�1. Using the

classical RKR ratio (Redfield et al. 1963) of P:C:O2 of

1:106:-135, the shift in both oxygen and DIC would be

approximately 1 mmol L�1. A change of that order would

be possible to observe in a 5�10 year period, but for this

to be relevant for the bottom waters fast-sinking organic

matter, like sea-ice algae, would be required. Measure-

ments of oxygen, nutrients and DIC should be comple-

mented by a determination of the transient tracer

field, for example, chlorofluorocarbons (CFCs) or sulphur

hexafluoride (SF6), in order to deduce potential changes

in ventilation as well as the input of anthropogenic CO2.

Furthermore, determination of POC and PIC at different

depth levels can give indications of the export, although

the patchy nature of sedimentation makes it essential to

evaluate the data with care. The use of sediment traps

could provide better seasonal coverage, but they need to

be deployed over several years in order to yield robust

statistics, over time, in any potential trend in sedimenta-

tion rate. Such traps would need to have the capacity to

capture both the background vertical flux and episodic

events from sinking algal mats. The ratio in POC to PIC is

relevant for the plankton species composition and adds

to the issue of ocean acidification. On a longer time scale

it would, of course, also be relevant to collect sediment

samples and to photograph the sea bottom.

Increased air�sea exchange in an ocean with less
summer sea-ice coverage

In the summer surface waters of the ice-covered central

Arctic Ocean, pCO2 is largely undersaturated relative

to the atmosphere (Bates & Mathis 2009; Jutterström &

Anderson 2010). This undersaturation is sustained by

primary production and cooling of the inflowing waters

in the Bering/Chukchi and Barents seas, together with

an exchange between ocean and atmosphere that is

restricted by the ice cover. With loss of the permanent

pack ice, which leads to less sea-ice coverage in summer

and more open leads and cracks in the ice in winter, gas

exchange will likely be amplified.

Seasonal variability of pCO2 has been determined

at the southern margin of the central Arctic Ocean, for

example, during the International Polar Year Circumpolar

Flaw Lead System Study (Barber et al. 2010). As the

surface waters in that region were heavily impacted by

the interaction with the bottom and the surrounding

shelf seas (Else et al. 2011), one cannot interpolate these

data to the central Arctic Ocean.

Observational approaches for air�sea exchange.

With the new sea-ice state of the Arctic Ocean, there

have been several scientific cruises to the interior regions

during summer by ships from various nations. An im-

mensely improved view of pCO2 distribution would

result if these ships were to be equipped with continuous

measurement systems for pCO2 in surface water using

a seawater loop installed in the hull. Ideally, this type

of measurement should be conducted widely over the

entire ocean but, practically, the best that could be

achieved for the Arctic would be to instrument all

research vessels. However, there is also an urgent need

to get a better knowledge of the seasonal development

of pCO2 in the upper central Arctic Ocean. There are

sensors available for long-term observations of pCO2,

and it would be feasible to mount these in ice-tethered

moorings at a depth of 5�10 m below the bottom of the

ice. An alternative, and also complementary, approach

would be to extend the network of stations measuring

air pCO2 around the Arctic, and combine these with

a good atmospheric transport model. Such a data set

might allow for a definitive determination of changes

in air CO2 resulting from air�sea exchange, especially

if such measurements were complemented by oxygen

measurements to help deconvolute any changes in the

contribution from the terrestrial biosphere.

Sea-ice-produced brine increases carbon
sequestration by ventilation

It is well known that the upper halocline of the Canadian

Basin is enriched in nutrients as a result of shelf processes

in the Chukchi�East Siberian Seas region (e.g., Jones &

Anderson 1986). The cause of this signature includes a

chain of processes where the produced organic matter

sinks to the shallow bottom of this extensive region

towards the end of the productive season (Fig. 2). This

time period coincides with the start of sea-ice formation,

which results in the expulsion of brine and formation

of a thin, high-salinity bottom layer. The organic matter

decays, and the resulting chemical constituents, for

example, nutrients and CO2, accumulate in the bottom

water. Over time, the nutrient- and CO2-rich, highly

saline bottom water flows north towards the shelf slope

where it interleaves with interior water at a level that

matches its density (Figs. 2, 3).

The flux of CO2 between the atmosphere and the sea is

largely determined by the exchange across the surface

water film. It has been suggested that this exchange is

very efficient during sea-ice production (Anderson et al.

2004; Miller et al. 2011; Else et al. 2012), leading to

promoted net air�sea flux as long as there is a differential
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in pCO2 across the interface. Consequently, increased

sea-ice production following a larger open water area in

the summer could lead to more brine production and

therefore an amplified uptake of CO2 from the atmo-

sphere. In the shallow shelf seas, the CO2 concentration

would build up in the high-salinity bottom waters that

flow off into the deep basin. If the sea-ice production also

starts farther away from the coast, where there is less

influence from freshwater runoff, it could lead to a

higher salinity of the bottom water and therefore also

a potential to penetrate deeper into the water column

of the deep basins. There are indications that this has

occurred during the last decade in the region north of the

New Siberian Islands (Anderson et al. 2013).

Observational approaches for carbon

sequestration. The production of brine-enriched

water occurs at various places around the Arctic Ocean,

especially in regions of polynyas. However, if the waters

are too deep, or freshwater inputs too large, the brine

is mixed with surrounding waters before it reaches the

bottom and no high-salinity bottom water is formed.

Also, for atmospheric CO2 to be sequestered, the waters

must be undersaturated with respect to CO2 when the

sea ice is produced. The conditions of high producti-

vity sustained by nutrients from inflowing waters, brine

production and shallow water depths (550 m) are met

over the shelf region spanning the area from the New

Siberian Islands to the Alaskan coast (Fig. 2). Observa-

tions should be focused in this area. Preferably several

sections covering the region from the outer shelf and

across the slope into the deep basin should be investi-

gated (Fig. 4). The approach would be to take sequences

of stations where water is collected at several depths with

emphasis on the salinity range of about 32.5 and higher

down to the bottom (e.g., see figure 7 in Weingartner

et al. 1998).

As the dominating flow pattern along the shelf slope is

from west to the east, sections at several longitudinal

locations would provide information on both potential

formation regions as well as temporal variability. These

studies should include the determination of at least two

of the carbon system parameters (DIC, TA, pH and pCO2),

nutrients, oxygen and the isotopes 13C and 18O, and pre-

ferably also transient tracers to get a view of the venti-

lation rate of the deeper waters. There is annual

variability in the sea-ice coverage of the shelf seas, and

there is therefore likely also variability in the chemical

signals of the waters leaving the shelves. For trends to be

detected, such studies need to be repeated regularly over

a time period of at least a decade.

Summary and conclusions

The Arctic Ocean’s carbon cycle is uniquely sensitive

to warming because of the extensive influence of ice

on land and over the sea. In the adjacent drainage

basins, permafrost contains large quantities of terrige-

nous carbon. With thawing, this carbon may be released

as ancient POC due to riverbank and coastal erosion, and

younger DOC produced by changing vegetation and a

more active surface layer in the soil. After reaching

the ocean, metabolism of this carbon in shelf-bottom

waters can then lead to greater contributions of DIC

to interior ocean basins through thermohaline processes.

Over the sea, the large-scale shift of permanent pack

ice to seasonal ice will affect ocean processes such as

atmosphere�ocean exchange, primary production, verti-

cal flux of organic matter and the production of brine

over shelves. These processes together then have the

potential to affect the net exchange of CO2 with the

atmosphere to a degree that influences climate. To address

the question of how warming will affect the Arctic’s land

and ocean regions to a level at which realistic scenarios

of the future can be proposed, there is a need for joint

coordinated international observations.

Much can be gained by planning combinations of

observations that fit well together, both when it comes

to the observational areas but also in the application of

common sampling methods. Today several nations have

research vessels that can operate throughout most of the

Arctic Ocean during summer, making the potential for

such international coordination great.
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and radiocarbon constraints on sources and degradation of

terrestrial organic carbon along the Kolyma paleoriver

transect, East Siberian Sea. Biogeosciences 7, 3153�3166.

Vonk J.E., Semiletov I.P., Dudarev O.V., Eglinton T.I., Andersson

A., Shakhova N., Charkin A., Heim B. & Gustafsson Ö. 2014.
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