Supplementary file for: Schade J.D., Seybold E.C., Drake T., Spawn S., Sobczak W.V., Frey K.E., Holmes R.M. & Zimov N. 2016. Variation in summer nitrogen and phosphorus uptake among Siberian headwater streams. *Polar Research 35*. Correspondence: John Schade, St. Olaf College, Environmental Studies Department, 1520 St. Olaf Avenue, Northfield, MN 55057, USA. E-mail <u>schade@stolaf.edu</u>

Supplementary Table S1. General definitions and equations for metrics describing nutrient uptake in streams developed from nutrient spiraling models. See Stream Solute Workshop (1990) and Doyle et al. (2003) for more detailed explanations.

Metric	Symbol	Unit	Equation	Description
Uptake length	S_w	m ⁻¹	$S_w = -1/k$	Average distance nutrient atom travels before removal from water column
Uptake flux	U	$\mu g m^{-2} h^{-1}$	$U = QC/w^* \; S_w$	Rate of nutrient loss from water column per area of stream bed
Uptake velocity	Vf	m ⁻¹ h ⁻¹	$v_f = U/C$	Rate of movement of nutrient atom from water column to stream bed

References

- Doyle M.W., Stanley E.H. & Harbor J.M. 2003. Hydrogeomorphic controls on phosphorus retention in streams. *Water Resources Research 36*, article no. 1147, doi. 10.1029/2003WR002038.
- Stream Solute Workshop 1990. Concepts and methods for assessing solute dynamics in stream ecosystems. *Journal of the North American Benthological Society* 9, 95–119.