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Introduction

The harmful effects of anthropogenic noise on marine 
organisms as diverse as fish (Popper & Hastings 2009), 
marine invertebrates (Nedelec et al. 2014) and marine 
mammals (Richardson et al. 1995; Southall et al. 2007) 
are a worldwide problem directly linked to the increasing 
industrialization of the oceans (Boyd et al. 2011). Belugas 
(Delphinapterus leucas) are one of the most acoustically 
active cetacean species, producing an extensive array of 
sounds for a variety of purposes, including maintaining 
contact and social communication, detecting prey and 
navigating (e.g., Sjare & Smith 1986a, b; Vergara et al. 
2010; Vergara & Mikus 2019). Consequently, noise pollu-
tion from a number of sources (e.g., vessel traffic, seismic 
surveys, construction and dredging) represents a threat to 

belugas across much of their pan-Arctic range, given its 
potential for disrupting their behaviour or impairing their 
ability to communicate effectively.

The SLE beluga population is endemic to Canada and is 
reproductively and geographically isolated from other pop-
ulations (Brown Gladden et al. 1999; Postma 2017). This 
population was legally listed as endangered under Canada’s 
Species at Risk Act in 2016 because of its failure to recover 
from commercial and recreational hunting and recent 
decline (Mosnier et al. 2015), ongoing habitat degradation 
and projected increases in threats (COSEWIC 2014; Mosnier 
et al. 2015). In addition to a shortage of prey availability and 
high levels of contaminants, high noise levels and anthro-
pogenic disturbance have been identified amongst the three 
main threats to the recovery of this endangered population 
(DFO 2017, 2020; Williams et al. 2017).
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 In much of the Saguenay–St. Lawrence Seaway, belu-
gas are exposed to noise from recreational and commer-
cial vessel traffic (Simard et al. 2010; McQuinn et al. 
2011; Gervaise et al. 2012; Lesage, McQuinn et al. 2014). 
Of the portion of the SLE beluga population exposed to 
commercial marine traffic (15–53%), the vast majority 
(72–81%) are females with calves or juveniles (Lesage, 
McQuinn et al. 2014). Elevated numbers of beluga new-
born calves have been found dead in the SLE since 2008 
(Lesage, Measures et al. 2014), accompanied by an 
increased mortality of adult females from peripartum 
complications (dystocia) since 2010 (Lair et al. 2016). 
There are concerns that noise and disturbance may be 
one of the factors implicated in these unusually high 
mortalities (DFO 2014). The increased calf mortalities 
reported in 2010 and 2012 coincided with good weather 
conditions (favourable for boating) and peaks in recre-
ational boating activity, with higher than usual co-occur-
rences between belugas and boats in the critical habitat of 
belugas during summer months (Ménard et al. 2014).

One of the potentially adverse effects of increases in 
anthropogenic noise levels is acoustic masking, the reduc-
tion of the effective range over which a communication 
signal can be detected and decoded by conspecifics (e.g., 
Clark et al. 2009). This effective range is also known as 
the communication space of a signal, the area or volume 
around the vocalizing individual within which effective 
communication with conspecifics can be expected to 
occur (Marten & Marler 1977; Clark et al. 2009). It is 
largely a function of a signal’s SL (the sound level at 1 m 
from the vocalizing animal on the acoustic axis [Au 
1993]), the levels of background noise, the transmission 
loss of the signal between the signaler and the receiver, 
the critical frequency bandwidth of the animal’s auditory 
filter (Reichmuth 2012; Erbe et al. 2016) and the hearing 
capabilities of the listener (Brenowitz 1982; Miller 2006; 
Tervo et al. 2012).

The effects of noise on communication space have 
been documented for a few high-frequency odontocete 
species (a functional hearing group [see Southall et al. 
2019]), including short-finned pilot whales (Globicephala 
macrorhynchus; Jensen, Bejder, Wahlberg, Aguilar de Soto 
et al. 2009), bottlenose dolphins (Tursiops truncatus; 
Jensen, Bejder, Wahlberg, Aguilar de Soto et al. 2009; 
Jensen et al. 2012), killer whales (Orcinus orca; Bain & 
Dahlheim 1994; Au et al. 2004; Miller 2006) and belugas 
(Gervaise et al. 2012). The single beluga study that esti-
mated the maximum communication range of a beluga 
signal in natural and variable ambient noise conditions 
used a hypothetical vocalization with an assumed central 
frequency of 2.5 kHz (Gervaise et al. 2012). Although 
theoretical exercises with hypothetical signals are useful, 
evaluating the effects of noise on a commonly used signal 

of known acoustic characteristics and function would 
provide greater insight into beluga communication 
behaviour and the consequences of noise masking.

Despite many descriptions of the beluga whale’s exten-
sive vocal repertoire (Fish & Mowbray 1962; Sjare & 
Smith 1986a; Faucher 1988; Angiel 1997; Karlsen et al. 
2002; Belikov & Bel’kovich 2006, 2008; Panova et al. 
2012), and some progress correlating call rates and broad 
call classes with general behavioural states (e.g., Sjare & 
Smith 1986b; Belikov & Bel’kovich 2003), little is known 
about the particular function of most beluga communica-
tion signals. Those that function to establish or maintain 
contact between individuals are a notable exception, as 
much is currently known about these signals. A mounting 
body of work has established that belugas use broadband 
(200 Hz–144 kHz), long-duration (typically > 1s) pulsed 
contact calls for group cohesion during isolation (Vergara 
et al. 2010; Morisaka et al. 2013; Mishima et al. 2015; 
Panova et al. 2017; Vergara & Mikus 2019) and for 
mother–calf contact (Vergara & Barrett-Lennard 2008; 
Vergara et al. 2010; Ames & Vergara 2020). The broad-
band acoustic structure typical of beluga contact calls is 
shared with narwhals (Monodon monoceros), a closely 
related species (Shapiro 2006), and may have evolved to 
minimize masking by ambient noise in the Arctic (Vergara 
et al. 2010). This broadband structure differs markedly 
from the narrowband contact signals produced by delphi-
nids, such as bottlenose dolphins (Caldwell & Caldwell 
1965; review in Janik & Sayigh 2013), Indo-Pacific hump-
back dolphins (Sousa chinensis; Van Parijs & Corkeron 
2001) and Guiana dolphins (Sotalia guianensis; Duarte de 
Figueiredo & Simão 2009; Lima & Le Pendu 2014).

Beluga contact calls can be complex—with a stereo-
typed component (often tonal or pulsed-tonal) in the 
lower frequencies (below 20 kHz) overlapping the broad-
band pulse train—or simple, with only the pulse train but 
no overlapping component (Vergara & Mikus 2019). 
There is preliminary evidence that the stereotyped com-
ponent of complex contact calls may function as a vocal 
signature, encoding identity at the individual or familial 
level (Panova et al. 2017; Vergara & Mikus 2019). 
However, newborn beluga calves only produce simple 
pulse trains, developing their complex contact call as they 
age (Vergara & Barrett-Lennard 2008). Their initial pulse 
trains, the only call type that newborn belugas produce, 
are as broadband as the adult contact calls, but with less 
acoustic energy at high frequencies and lower pulse rep-
etition rates compared to adult contact calls (Vergara & 
Barrett-Lennard 2008; Ames & Vergara 2020).

Given that acoustic contact is critical in visually lim-
ited aquatic environments, the consequences of acoustic 
masking could be particularly adverse in the case of 
vocalizations that function to maintain contact between 
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mothers and their dependent but precocious calves 
(Kasuya 1995). Yet, the specific impacts of noise on 
mother–calf contact signals have never been studied in 
belugas and have been studied in only a few other ceta-
ceans, for example, North Atlantic right whales (Eubalaena 
glacialis; Tennessen & Parks 2016). Here, we model the 
communication space of both adults/sub-adults and new-
born beluga contact calls in the acoustic environment of 
Baie Sainte-Marguerite, an area of high residency 
(Lefebvre et al. 2012) for females and calves in the 
Saguenay–St. Lawrence Marine Park, where vessel traffic 
can be high at times during summer. We estimated the 
detection range of adult and calf contact calls under nat-
ural background noise conditions and modelled how this 
range changed in the presence of vessel noise. Our find-
ings shed light on the extent to which masking can com-
promise the mother–calf bond, which can inform species 
management plans both in the SLE and throughout the 
beluga’s pan-Arctic range.

Methods

ASLs of beluga contact calls

To evaluate the communication space of a signal, one 
would ideally need to know the SL of that signal, defined 
as its SPL at a nominal distance of 1 m from the source, 
expressed in dB re 1μPa at 1 m. When recordings at 1 m 
from the animal cannot be obtained, received SPLs are 
used to calculate the ASLs, defined as the back-calculated 
SPLs at 1 m distance from the sound source at an unknown 
angle from the acoustic axis (Mohl et al. 2000; Jensen, 
Bejder, Wahlberg & Madsen 2009; Wang et al. 2016).

Here, we used received levels of contact calls recorded 
from adult and sub-adult SLE belugas carrying DTAGs 
(Johnson & Tyack 2003) to estimate ASLs (details below). 
In addition, to have a more complete understanding of 
the distribution of ASLs used by adult and newborn belu-
gas when they emit contact calls, we estimated contact 
call ASLs from recordings made at an aquarium 
(Oceanogràfic, Valencia, Spain) at known distances from 
a calibrated hydrophone (specifications provided in the 
following sections). In all cases, the broadband ASL esti-
mates integrated calls from 500 Hz to 100 kHz, to cover 
the majority of energy contained in beluga broadband 
contact calls while also matching the frequency response 
and sampling rates of the acoustic recorders used in this 
study. The ASL estimates were calculated both in broad-
band (from 500 Hz to 100 kHz) for comparison with other 
studies as well as in 1/12 octave bands for our communi-
cation range estimates (see sections below on rationale for 
1/12 octaves and methods for communication range esti-
mates). The contact call data sets and ASL estimation are 
described below, and representative spectrograms are pro-
vided in Fig. 1.

SLE adult and sub-adult contact calls. ASLs were 
estimated from 53 contact calls identified in recordings 
from two adults (20 and 13 calls) and two sub-adults (≥ 
four years old; 14 and six calls) carrying DTAGs. The sex 
of the animals was unknown, although the two adults 
were likely males, as inferred from the composition of 
their groups (predominantly large adults, no calves). The 
DTAGs were deployed during the summers of 2018 and 
2019, from an 8 m research vessel, using a handheld 
carbon fibre pole to attach the tag to a whale via suction 
cups (Fig. 2). The DTAGs record sounds continuously 

Fig.1  Representative spectrograms of the contact call data sets used for our ASL estimates (FFT at 2048 points with a 50% overlap, Hann window): (a) SLE 

(DLT18003), (b) Oceanogràfic aquarium female, (c) Oceanogràfic aquarium male, (d) Oceanogràfic aquarium three-day-old calf. 
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through two hydrophones positioned 43 mm apart, at a 
sampling rate of 240 kHz per channel. Only one individual 
was tagged at a time. The DTAGS were equipped with a 
VHF beacon that facilitated following the tagged whale 
and tracking and recovering the device when it released. 
The recording period lasted 4–13.5 hours (until the tag 
released), and focal follows of the tagged individuals were 
performed when possible. Each time the tagged whale 
was spotted during a surfacing sequence, the observer 
noted whether the animal was alone or in association 
with others.

To identify contact calls in recordings of tagged whales, 
we analysed a total of 93 hours and 22 minutes of acoustic 
data from 22 tagging events. Contact calls were identified 
visually (following Vergara & Mikus 2019) using Raven 
Pro 1.5 software (Cornell Lab of Ornithology) and adhered 
to the following criteria: (a) produced in series (i.e., two or 
more of the same calls within 10 seconds), with a series 
appearing more than once in the recording; (b) stereo-
typed (i.e., signals in a repertoire that have little variability 
in acoustic parameters between utterances); (c) little fluc-
tuation in amplitude within a series (as large fluctuations 
could indicate another animal swimming at various dis-
tances and orientations from the tagged whales); (d) pre-
dominant contact call type if more than one type was 
identified in the recording and (e) SNRs of more than 10 
dB, to exclude faint contact calls from distant animals (see 
Saddler et al. 2017). The SNR was calculated as the differ-
ence between the rms ‘inband power’ of the signal in the 
frequency band 500 Hz to 100 kHz, which contains most of 
the sound of interest for the broadband contact calls, and 
the inband power of the ambient noise period immediately 
preceding or following the signal (in the same frequency 
range and for a duration as close as possible to the signal).

Once contact call series were identified in DTAGs, 
those produced by the tagged beluga were further distin-
guished from those of nearby whales based on the AOA 

(Johnson et al. 2006). This was calculated with the fol-
lowing formula from Johnson et al. (2006): AOA =  
sin–1(τc/d), where c is the speed of sound in seawater, d is 
the hydrophone separation (43 mm) and τ is the time 
delay between the two hydrophone signals, measured by 
cross-correlation. Only contact calls with consistent AOAs 
that were ± 10 degrees from the mean AOA were consid-
ered as being produced by the tagged beluga (Jensen et al. 
2011; Perez et al. 2017). This condition was met by con-
tact call series in four of the DTAGs (n = 53 contact calls, 
mean SNR 24 ± 7 dB). For three of the four DTAG carriers 
for which identified contact calls met the AOA condition, 
visual observations and the scarcity of other calls in the 
recordings indicated a lack of association with other indi-
viduals at the time of contact call production.

We calculated the AOLs of the identified contact calls, 
defined as the received levels on the DTAG in a fixed but 
off-axis position on the body of the whale (Madsen et al. 
2005; Jensen 2020). Odontocetes generate sound below 
the blowhole, when air passes through two structural 
complexes formed by a fatty bursa embedded in a pair of 
phonic lips, causing them to open and slap together, cre-
ating vibrations (Cranford et al. 1996). Given that the 
DTAGs were placed each time within 1 m of the blowhole 
but not exactly at 1 m (Fig. 2), and always behind rather 
than in front of the sound generating structure and thus 
not in the path of the forward-directed sound beam 
(Madsen et al. 2005), we considered the AOLs as simple 
approximations of the ASLs for our model. The DTAG 
hydrophone channel with the higher amplitude was used 
for measurements of AOLs.

Oceanogràfic adult contact calls. We calculated ASLs 
for 16 contact calls from an adult female, Yulka (n = 10), 
and an adult male, Kairo (n = 6), recorded in isolation 
at Oceanogràfic, an aquarium in Valencia (Spain), at 
known distances from the hydrophone (ranging 12–15 
m), with the animals facing the hydrophone or at a slight 
angle to it. We used a calibrated icListen Ocean Sonics 
digital hydrophone sampling at a rate of 256 kHz (24-
bit resolution). The hydrophone was in a permanent 
position in the pool, at a depth of 1 m. We used cylindrical 
spreading to approximate transmission loss, as follows: RL 
+ 10*LOG10 (D), whereby RL is the received level and D is 
the distance from the hydrophone.

Oceanogràfic newborn contact calls. We used 
Ames & Vergara’s (2020) ASLs from 65 broadband 
pulse trains produced by a male beluga calf, Kylu 
(born at Oceanogràfic on 15 November 2016), during 
his first month of life (days 2–28). The same digital 
sampling set-up as that described for the Oceanogràfic 
adult calls was used. The vocalizations were assigned 
to the calf when he was isolated in one of the pools or 
if they coincided with the emission of bubble streams, 

Fig. 2  DTAG deployment on a sub-adult beluga, using a handheld carbon 

fibre pole, within 1 m of the blowhole. 
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a methodology commonly used in vocal development 
studies of odontocetes (McCowann & Reiss 1995; 
Bojanowski et al. 2000; Killebrew et al. 2001; Mello & 
Amundin 2005; Morisaka, Shinohara & Taki 2005; Fripp 
& Tyack 2008; Vergara & Barrett-Lennard 2008; Bowles 
et al. 2015). The calf produced broadband pulse trains 
almost exclusively during his first month, presumably 
rudimentary contact calls (Ames & Vergara 2020). Ames 
& Vergara subsampled those pulse trains for which the 
distance of the calf to the hydrophone during sound 
production was known (distances ranged 1.5–17 m), and 
during which the calf was either facing the hydrophone 
or at a slight angle to it, but not facing completely 
away from the hydrophone (all 180° angle orientations 
were discarded). Cylindrical spreading was used to 
approximate transmission loss, in the same way as for 
the aquarium adults, described above.

Critical bandwidth and audiogram of receiver. 
We used the beluga audiogram from Erbe et al. (2016) 
based on measured hearing thresholds pooled from all 
individuals tested for both AEP and behavioural methods 
(White et al. 1978; Awbrey et al. 1988; Johnson et al. 
1989; Popov & Supin 1990; Erbe & Farmer 1998; Klishin 
et al. 2000; Ridgway et al. 2001; Finneran et al. 2002; 
Finneran et al. 2005; Mooney et al. 2008; Castellote et al. 
2014). The critical bandwidth measures the width of the 

auditory filter within which masking can occur. Noise 
effectively masks a signal when it is within a critical 
bandwidth of frequency around the desired signal. For 
belugas, 1/12 of an octave is likely the best current 
estimate of the noise-masking potential (Erbe 2000). 

Ambient noise recordings  

Ambient noise recordings took place at Baie Sainte-
Marguerite, a small delta at the confluence of the 
Saguenay and Sainte-Marguerite Rivers, 12 nautical 
miles upstream from the mouth of the Saguenay Fjord, 
in the SLE, Canada (Fig. 3). This bay is an area of high 
residency for female belugas and their calves, used for 
socialization and resting and where females care for 
their young (Lefebvre et al. 2012; DFO 2018). The 
depth is 118 m in the centre of the Saguenay at its deep-
est channel, decreasing to 10 m closer to the head of the 
Sainte Marguerite River. Only 1.5 km separate the bay’s 
intertidal zone from the opposite shore of the Saguenay 
River, and this, in addition to the steep bathymetry of 
the area, means that any vessel entering the bay or 
transiting the river, ensonifies the whole area from 
shore to shore.

We used two factory-calibrated passive acoustic moni-
toring devices. A SoundTrap HF300 (Ocean Instruments, 

Fig. 3  The SLE study area, Canada, indicating the location of the hydrophone in Baie Sainte-Marguerite, an area of high residency for SLE beluga females 

and calves, where ambient noise was recorded in this study (numbers indicate depth in metres). 
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New Zealand) with a flat frequency response from 20 Hz 
to 150 kHz (± 3 dB), –172.7 dB re 1V/µPa sensitivity, 
16-bit resolution and a sampling rate of 288 kHz was 
deployed at a depth of 15–20 m. The device recorded con-
tinuously during the three following periods in the sum-
mer of 2017: 24 July to 29 July, 31 July to 8 August and 
9 August to 18 August, for a total of 23 days of recordings. 
The SoundTrap was tethered to our observation platform 
(described below) with a sink line, moored to an anchor 
and attached to a buoy to keep it suspended just above 
the riverbed. In addition, on days when we accessed the 
observation tower, we deployed a calibrated icListen HF 
hydrophone (Ocean Sonics), with a frequency response 
of 10–200 kHz, 24-bit resolution and a sampling rate of 
256 kHz. This device also streamed sound in real time 
through a speaker so that we could listen to the belugas 
while conducting visual observations.

Visual observations

We conducted visual observations from a 6-m high obser-
vation tower, with a 1.5 × 3 m platform, erected during 
the spring tide window at the mouth of the Sainte-
Marguerite River, at 48°15′2.83″N 69°58′0.83″W. Except 
for the periods coinciding with very low tides, the tower 
was surrounded by water and the whales often swam 
near it, undisturbed by our presence.

We used a fixed two-minute interval scan sampling 
technique (Martin & Bateson 2007) to document vessel 
data (number and type of boats running during the 
two-minute interval, and distance category from the 
hydrophone). Every 30 minutes, we also documented the 
presence or absence of belugas in the bay, number of ani-
mals in the herd and herd composition.

Herd composition and contact call usage 

In order to examine the extent of contact call usage in the 
repertoire of SLE belugas and evaluate whether this call 
type is favoured in herds of females and calves, we paired 
data on contact call production and herd composition. 
We analysed 24.5 hours of recordings obtained on 22 dif-
ferent days of visual observations of beluga herds in Baie 
Sainte-Marguerite in 2017 and 2018. Herd composition 
was noted for all herd encounters and divided into the 
following two general categories: (a) all adults and sub-
adults, (b) adults, sub-adults and calves and/or yearlings. 
Contact calls were identified in spectrograms using Raven 
Pro 1.5 (Cornell Lab of Ornithology), following Vergara & 
Mikus (2019). A chi-square test of homogeneity was con-
ducted to test the difference in the proportion of contact 
call usage in the two types of herd using SPSS statistics 
software (Laerd Statistics 2016).

Noise profile analysis

We used MATLAB R2017b and scripts modified from 
Merchant et al. (2015)  to analyse 23 days of SoundTrap 
data from the three contiguous deployments, splitting the 
wav files into one-minute duration files and measuring 
power spectral density levels for each one-minute file 
with an FFT window size that matched the sampling rate 
(288 000 samples), a 50% overlap and Welch’s averaging 
(Merchant et al. 2015). This is the first step required to 
model the communication range of adult and calf contact 
calls under various noise level conditions in Baie 
Sainte-Marguerite.

We manually reviewed 241 hours and 20 minutes of 
SoundTrap recordings while visualizing them on spectro-
grams. This amounts to about 10 of the 23 days of deploy-
ment, including 12.3 daytime periods (05:30 to 20:00) 
and 6.6 nighttime periods (20:00 to 05:30). We cross-
checked the recordings with our visual notes (for the 
daytime periods) and verified potential vessel and/or 
beluga presence in the bay by visual and aural inspection 
of the audio recordings, in order to have a sample of time 
periods with (1) natural ambient noise (neither boat 
noise nor whale sounds), (2) boats (but no whales), (3) 
whales (but no boats) and (4) both boats and whale 
sounds. For this paper, we considered one or more boats 
running up or down the river within 2 km of the hydro-
phone as ‘boats present.’ Familiarizing ourselves with 
boat noise confirmed by visuals to be within 2 km of the 
hydrophone during daytime periods enabled us to 
approximate the same distance when relying exclusively 
on spectrograms for nighttime periods (note that vessel 
noise was very infrequent at night; see results).

Communication range estimates

The communication range of each contact call was esti-
mated as the maximum range at which the signal is still 
audible (SNR > 0 dB) by a conspecific in at least one of 
the 1/12 octave bands analysed, after accounting for 
transmission loss (adapted from Miller 2006 and Wang 
et al. 2016). For comparison, we also estimated the detec-
tion range within which all 1/12 octave bands in the 
broadband calls (integrated from 500 Hz to 100 kHz), and 
half of the 1/12 octave bands, would still be audible.

To obtain estimates of the communication space of 
beluga contact calls, we used ALS estimations of the con-
tact calls, transmission loss, our measurements of ambi-
ent noise under no-boat conditions and when boats were 
present in Baie Sainte Marguerite, and the beluga audio-
gram from Erbe et al. (2016). For the propagation of the 
beluga contact calls, we used the approximate spreading 
loss coefficient for the Saguenay River reported in Fig. 8 
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of McQuinn et al. (2011), ca. 18 dB. Frequency depen-
dent absorption was also included in our calculations. In 
each 1/12 octave band and at each distance, either the 
beluga hearing curve or the noise level, whichever was 
greater, was subtracted from the estimated beluga contact 
call received level in that 1/12 octave band. This resulted 
in a signal excess, or the number of dB that the contact 
call would be above the noise level or hearing curve at 
that distance for that 1/12 octave band. The model con-
sidered the distance at which the signal excess reached 
zero in all 1/12 octave bands analysed (see Erbe [2000] 
for measurements of beluga hearing thresholds in noise 
that corroborate Fletcher’s equal power assumption of 
SNR = 0 dB). For each contact call, a MATLAB code cal-
culated signal excess for each one-minute noise file for 
both ‘no boat’ and ‘boat’ conditions (when no belugas 
were present, to avoid conspecific masking as a con-
founding factor), to generate distribution curves of all 
possible communication ranges in all noise scenarios in 
Baie Sainte-Marguerite. In permutating every contact call 
and every one-minute noise file, the model took into 
account all of the variability in our data. For example, to 
estimate communication ranges for the DTAG calls (n = 
53) in the presence of boat noise (2220 minutes with 
boats and no whales), the model ran 117 660 permuta-
tions (2220*53), and to estimate range in quieter condi-
tions (9978 minutes with no boats and no whales), the 
model ran 528 834 permutations (9978*53).

Results 

Herd composition and contact call usage

Of the 22 different herd encounters in Baie Sainte-
Marguerite (on 22 different days), 12 consisted of adults, 
sub-adults and newborn calves (mean herd size 39 ± 17), 
one consisted of adults, sub-adults and yearlings (herd 
size 30) and nine had only large adults (often males) and 
sub-adults, with neither newborns nor yearlings (mean 
herd size 18 ± 10 individuals). A total of 26  753 calls 
emitted during these 22 herd encounters were catego-
rized into ‘contact call’ or ‘other type’ for herds with ver-
sus without newborns/yearlings. There was a statistically 
significant difference between the proportion of contact 
calls produced by herds with calves or yearlings com-
pared to herds comprised of older individuals (χ2(1) = 
97.53, p < 0.001), with contact calls being used signifi-
cantly more often in herds with newborns and/or year-
lings (11.8%) than in adult/sub-adult herds (6%).

Characteristics of the Baie Sainte-Marguerite 
soundscape 

The Leq (equivalent rms sound level) showed some short 
duration but high-amplitude events when integrated across 
the 23 days of data (Fig. 4). The bimodal distribution 
between 100 Hz and 10 kHz may be driven by beluga calls 

Fig. 4 Power spectral density levels over the 23-day recording period at Baie Sainte-Marguerite. SPD is the spectral probability density. L5, L25, etc. are 

exceedance levels (i.e., L5 means sound levels exceed this 5% of the time). Leq is the rms level. Wenz lines are the limits of prevailing noise (Wenz 1962).
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or boat noise. Figure 5 provides the broadband noise cumu-
lative probability plots for 241 hours of recordings that were 
manually verified and split (minute by minute) into the 
four pre-defined categories. When belugas were present in 
the bay, vessel noise emanating from one or more vessels 
was confirmed 23% of the time (520/2271 minutes). In 
total, vessel noise was confirmed 19% of the time 
(2744/14  479 minutes). Splitting the manually verified 
recordings into daytime and nighttime hours (sunrise 05:30 
to sunset 20:00), vessel noise occurred during 24% of the 
daytime recordings (2540/10 729 minutes) and 5% of the 
nighttime recordings (204/3751 minutes).

Broadband ASLs of beluga contact calls

Adult and sub-adult contact calls. The sample of 53 
complex contact calls recorded from temporarily tagged 

adult and sub-adult belugas in the SLE had a mean ASL of 
150.1 ± 7.5 dB re 1 μPa at 1 m and a median of 150.3 dB re 
1 μPa at 1 m, slightly louder than the ASLs for the sample of 
16 complex contact calls produced by the two adult belugas 
housed at Oceanogràfic, with a mean of 146.8 ± 5.8 dB re 1 
μPa at 1 m and a median of 147.9 dB re 1 μPa at 1 m. Table 
1 lists the ASLs of calls produced by each individual, in 
addition to the peak frequencies and duration of the calls.

Newborn calls. The pulse trains emitted by the newborn 
beluga calf during its first month of life had a mean ASL of 
126.7 ± 8.4 dB re 1 μPa at 1 m and a median of 127 dB re 1 
μPa at 1 m, about 20 dB quieter than the ASLs from adult 
contact calls in the same aquarium (Table 1). A detailed 
study of this calf’s vocal development showed a significant 
increase of ASLs with age (Ames & Vergara 2020), with a 
12 dB increase in mean ASL after the first week of life: ASL 
increased from an average of 120 ± 5.8 dB re 1 μPa at 1 m 
and a median of 121.1 dB re 1 μPa at 1 m from days 2 to 
7 to an average ASL of 132.7 ± 5.1 dB re 1 μPa at 1 m and 
a median of 132.8 dB re 1 μPa at 1 m from days 14 to 28.

Communication range

Adult and sub-adult contact calls.  The estimated 
communication range of SLE adult/sub-adult beluga 
broadband contact calls in the absence of boat noise had 
a median of 6.7 km, based on the 1/12th octave band 
audible to the greatest distance (IQ range 3.4–20.9 km, 
Fig. 6, Table 2). In a noisy environment, with levels 
like those recorded in Baie Sainte-Marguerite during 
summer, the estimated communication distance for adult 
and sub-adult contact calls could be reduced by 57%, 
to a median range of 2.9 km, although this distance 
could be as short as 1.2 km (Table 2). These ranges were 
larger than the modelled communication ranges for the 

Table 1  Beluga contact call data sets, peak frequency, duration (delta time) and ASLs. All calls were broadband and had a maximum frequency equal to 

the Nyquist frequency (120–128 kHz).

Data set n
Contact call 

type

Peak frequency (kHz) Delta time (s) ASL (dB re 1 μPa at 1 m)

Mean ± SD Median Mean ± SD Median Mean ± SD Median

SLE (DTAGs) DLT18002 

(sub-adult)
6 Complex 2.1 ± 1.5 2.1 0.9 ± 0.2 0.9 151.4 ± 1.3 150.8

DLT18003 

(sub-adult)
14 Complex 7.4 ± 4.2 8.4 1.2 ± 0.5 1.4 140.2 ± 1.1. 140.1

DLT18011 

(adult)
13 Complex 5.3 ± 2.3 4.1 0.7 ± 0.04 0.7 150.2 ± 2.4 150.2

DLT19008 

(adult)
20 Complex 5.1 ± 0.7 4.8 1.0 ± 0.3 1.0 156.6 ± 5.6 157.7

Aquarium Adult female 13 Complex 12.2 ± 1.1 12.2 1.1 ± 0.1 1.2 144.0 ± 4.6 144.6

Adult male 6 Complex 11.3 ± 1.6 12.0 1.4 ± 0.2 1.4 151.6 ± 4.2 150.6

Newborn calf 65 Simple 5.6 ± 8.6 3.9 0.7 ± 0.4 0.7 126 ± 8.4a 127.0 a

aMean and median ASL for the newborn calf from Ames & Vergara (2020).

Fig. 5  Broadband sound pressure level cumulative probability plots for 

the four manually verified periods for 241.33 hours of recordings. 
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aquarium female’s contact calls, which had a median of 
2.3 km (IQ range 1.7–3.9 km) in the absence of boats, 
with a potential 36% reduction in range in the presence 
of boat noise.

For comparison, the median distance at which all 
1/12 octave bands in the broadband calls emitted by wild 
belugas would be audible by a conspecific was much 
smaller (given the poor transmission of the very high-fre-
quency components of these broadband calls). This was 
the case both in the absence of boats (40 m) and in their 
presence (20 m), still showing a 50% reduction. The 
range at which half of the 1/12th octave bands reached 
an SNR > 0dB was reduced by 39% with boats present 
(410–250 m).

The 1/12th octave frequency bands that were audible 
for the longest distances for the SLE calls had a median 
of 4.9 kHz both in quiet and noisy conditions. This is 
near the frequency range of the putative signature ele-
ment of the SLE calls, which had a median peak 

frequency of 4.8 kHz (n = 53). To illustrate the reduction 
in range in a single call for each one of the 1/12 octave 
bands analysed (centre frequencies 487–97 163 Hz), we 
selected the contact call from our SLE DTAG data set 
that had an ASL equalling the median ASL of the set 
(150.28 dB re 1 μPa at 1 m). In the absence of boat 
noise, most 1/12 octave bands between 2 and 10 kHz 
would be audible to a conspecific between 1 and 3 km 
away (Fig. 7). The centre frequency of the 1/12 octave 
band that extends the furthest is 4.8 kHz (reaching 3.5 
km). In the presence of boat noise, none of the 1/12 
octave bands would be audible beyond 700 m for this 
particular call.

Newborn calls. The median communication range for 
newborn beluga calls was only 360 m in the absence of 
boat noise (IQ range 140–1070 m) and might be reduced 
by 53%, to a median of 170 m (IQ range 60–390 m) in 
the presence of boat noise. The 1/12 octave frequency 
bands that were audible at the furthest distances had a 

Fig. 6  Histograms showing distribution curves of modelled communication range of adult/sub-adult beluga contact calls produced by belugas carrying 

DTAGs (SLE). (a) Maximum communication distances under ‘no boats’ (top) and ‘boats’ (bottom) scenarios. (b) 1/12 octave centre frequencies of maxi-

mum communication distances under ‘no boats’ (top) and ‘boats’ (bottom) scenarios. The count on the y axis is the number of model iterations for each 

combination of one call and one-minute noise file that falls in a specific distance or frequency bin.  

Table 2 Median and interquartile ranges for estimates of communication range of beluga contact calls under ‘no boats’ and ‘boats’ noise conditions, 

indicating percentage reduction in range under noise levels like those recorded when boats were present in Baie Sainte Marguerite. Median and inter-

quartile ranges for the 1/12 octave band centre frequency of maximum distance are also presented.

Call data set Noise environment
Max distance (m) Frequency of max distance (Hz)

Median IQ range % reduction Median IQ range

Adults/sub-adults, DTAGs SLE No boats 6680 3370–20 990 57 4870 4340–6494

Boats 2890 1220–8900 4870 4870–9173

Adult female, aquarium No boats 2330 1730–3780 36 11 548 10 292–13 725

Boats 1490 860–2430 13 725 11 548–13 725

Newborn, aquarium No boats 360 140–1070 53 3255 2738–4097

Boats 170 60–390 3255 1223–36 517
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median of 3.3 kHz in the absence of boats, and 3.6 kHz in 
boat noise (Fig. 8, Table 2).

Using the newborn call that had an SL equaling the 
median ASL of the set (127 dB re 1 μPa at 1 m, day 5 of 
life) to illustrate the potential reduction in range for each 
of the 1/12 octave bands, the maximum audible distance 
in the absence of boats would be 300 m, and less than 150 
m in boat noise (Fig. 9).

Discussion

The mother–calf bond in belugas and other delphinids is 
maintained primarily through vision at close ranges 

(Krasnova et al. 2009; Karenina et al. 2010; Hill et al. 
2017) and acoustically when calves venture beyond a few 
metres, where visual contact becomes ineffective (e.g., 
Smolker et al. 1993). The present study provides the first 
data on ASLs and the communication range of contact 
calls in captive and wild belugas of different age classes. 
Previous studies had established that these calls are used 
between mothers and calves to regain or maintain con-
tact with one another, and also by adults and juveniles for 
group cohesion (Vergara & Barrett-Lennard 2008; Vergara 
et al. 2010), and the current study further confirms that 
these calls are used preferentially in herds with new-
borns. Despite the unavoidable shortcomings of all 

Fig. 7  Maximum communication range of each 1/12 octave band of a representative adult/sub-adult contact call in our data set (the call with the median 

source level) under ‘no boats’ (a) and boats (b) conditions. For each 1/12 octave band and at each distance, we subtracted the beluga hearing curve or 

the noise level, whichever was greater, from the received level. The ‘signal excess’ is the number of dB re 1 µPa that the beluga call is above the noise 

level or hearing curve. 

Fig. 8 Histograms showing distribution curves of modelled maximum communication ranges using calls recorded from a newborn beluga at Ocean-

ogràfic (Valencia). (a) Maximum communication distances under (top) ‘no boats’ and (bottom) ‘boats’ scenarios. (b) 1/12 octave centre frequencies of 

maximum communication distances under (top) ‘no boats’ and (bottom) ‘boats’ scenarios. The count on the y axis is the number of model iterations for 

each combination of one call and one-minute noise file that falls in a specific distance or frequency bin. 
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modelling in characterizing real world complexity (e.g., 
Tennessen & Parks 2016), our study illustrates how 
changing levels of underwater noise affect the communi-
cation range of adult/sub-adult and infant belugas and 
demonstrates particularly strong masking effects for the 
underdeveloped calls of newborns.

SL measurements for aquatic species are difficult to 
obtain because the precise location of the vocalizing ani-
mals cannot always be determined accurately (Casey et 
al. 2016). The mean broadband ASLs of adult and sub-
adult beluga contact calls reported here are within the 
range of SL

rms
 of odontocete sounds reported in the liter-

ature, such as Indo-Pacific humpback dolphins (138.5 ± 
6.8 and 137.2 ± 7.0 dB re 1 μPa depending on location 
[Wang et al. 2016]), killer whales (155.3 ± 6.5 dB re 1 
μPa, Holt et al. 2011), Blainville’s beaked whales 
(Mesoplodon densirostris; range 123–149 dB re 1μPa 
[Aguilar de Soto et al. 2012]), bottlenose dolphins (158 ± 
0.6 dB re 1μPa [Janik 2000]; 146.7 ± 6.2 dB re 1μPa 
[Jensen et al. 2012]; median 138 dB re 1μPa [Frankel 
et al. 2014]), spotted dolphins (Stenella frontalis; median 
138 dB re 1μPa [Frankel et al. 2014]) and white-beaked 
dolphins (Lagenorhynchus albirostris; 148 ± 12 dB re 1μPa 
or 139 ± 12 dB re 1μPa, depending on method [Rasmussen 
et al. 2006]). The only other study that documented SLs 
of beluga calls looked at narrow-band tonal signals rather 
than broadband pulsed calls and found a mean SL

rms
 of 

143.8 ± 6.7dB re 1 μPa at 1 m, for a sample of 52 whistles 
with a dominant frequency between 1.5 and 5 kHz (Le 
Bot et al. 2016).

Our modelled median communication ranges for adult 
and sub-adult beluga calls in the ambient noise levels of 

Baie Sainte-Marguerite indicate a potential reduction to 
less than half the distance (57% reduction) in the pres-
ence of boats. The only other published estimation of the 
communication range of a wild beluga call used a hypo-
thetical narrowband beluga signal in natural ambient 
noise conditions and estimated a range of 4.5 km with a 
potential reduction in noise to 1.5 km 50% of the time 
and to 0.6 km 25% of the time in the high traffic area at 
the mouth of the Saguenay Fjord (Gervaise et al. 2012).

The detection range of individual vocalizations is greatly 
influenced by their SLs. We have shown here that new-
born calves produce calls with ASLs that are on average 22 
dB lower than adults or sub-adults, and that their calls are 
particularly weak during the first week of life. This corrob-
orates previous studies that describe the initial pulse trains 
produced by a male beluga newborn calf at the Vancouver 
Aquarium as ‘barely audible’ low-energy calls (Vergara & 
Barrett-Lennard 2008: 129), and those produced by two 
additional captive calves at the same aquarium as having 
low acoustic energy and slower pulse repetition rates rela-
tive to later calls (Vergara 2011). Our ASL estimates trans-
late into a more restricted communication range (i.e., < 
500 m) for newborn beluga calls that can be nearly 5% 
that of adults and sub-adults. The modelled median com-
munication range for the mother of this calf, which was 
about a third that of the SLE whales in quiet conditions 
(commensurate with the slightly lower ASLs of her calls), 
was still over six times the range of the soft calf calls.

Recent studies of calls produced by mother–calf pairs 
in mysticetes—humpback whales (Megaptera novaeangliae; 
Videsen et al. 2017), southern right whales (Eubalaena 
australis; Nielsen et al. 2019) and North Atlantic right 

Fig. 9 Maximum communication range of each 1/12 octave band of a representative newborn beluga call in our data set (the call with the median source 

level, day 5 of life), under (a) ‘no boats’ and (b) ‘boats’ noise conditions. For each 1/12 octave band and at each distance, we subtracted the beluga 

hearing curve or the noise level, whichever was greater, from the received level. The ‘signal excess’ is the number of dB re 1 µPa that the beluga call is 

above the noise level or hearing curve. 

http://dx.doi.org/10.33265/polar.v40.5521


Citation: Polar Research 2021, 40, 5521, http://dx.doi.org/10.33265/polar.v40.552112
(page number not for citation purpose)

Noise impacts on beluga contact calls� V. Vergara et al.

whales (Eubalaena glacialis; Parks et al. 2019)—have also 
reported low output energy and small communication 
spaces, although this applied to both members of the pair, 
not only to the calves. In these studies, the importance of 
low-amplitude signals to maintain contact between 
mothers and calves is proposed as a cryptic strategy to 
reduce the risk of attracting aggressive male escorts 
among humpback whales or, for humpback, southern 
right and North Atlantic right whales, predators like killer 
whales and white sharks (Carcharodon carcharias). Belugas 
are also known to be preyed on by killer whales in vari-
ous populations (Reeves & Mitchell 1988; Frost et al. 
1992; Shelden et al. 2003) and to use estuaries as a strat-
egy to avoid such predation (Michaud 2005). Aggression 
by adult males towards newborn calves has been observed 
(Michaud, unpubl. data). In Russia’s White Sea, beluga 
mothers tend to position themselves between their calves 
and approaching males, and beluga mother–calf pairs 
show evasive behaviour and leave the main group when 
males approach (Krasnova et al. 2006). In view of this, it 
is possible that the quiet calls of beluga newborn calves 
evolved as a cryptic strategy.

The small communication space of newborn beluga 
calls makes them particularly sensitive to increases in 
underwater noise, which can reduce a newborn call to a 
few tens of metres. The implications of these results for 
the ability of mothers and newborns to reunite when sep-
arated depend on the relative proximity maintained 
between mother and infant, a distance that changes as 
the calf acquires diving and social skills. Many cetacean 
calves remain in close proximity (within visual contact) 
to their mothers during the first few weeks of life, for 
example, bottlenose dolphins (Mann & Smuts 1998, 
1999), humpback whales (Szabo & Duffus 2008) and 
southern right whales (Taber & Thomas 1982). Captive 
beluga calves initiate separations from their mothers 
almost immediately after birth, but these separations are 
limited to short distances of 1–5 m (Hill 2009). Wild 
beluga calves in the White Sea stay mostly in contact with 
their mother during the first days of life, and mothers 
impede all observed newborn attempts to swim farther 
than 2 m (Krasnova et al. 2009). Separations of only 2–3 
m begin on day 4 of life and can last over 10 seconds by 
day 10 (Krasnova et al. 2006). These swimming excur-
sions away from the mother increase in frequency at 
7–10 days of age, and, by two weeks of age, beluga calves 
can leave their mothers briefly and form transient associ-
ations with other calves and yearlings in the aggregation 
(Krasnova et al. 2006, 2009). How beluga mother–calf 
pairs use contact calls during separations and reunions, 
and which member of the pair might be responsible for 
initiating reunions is, however, unknown. In bottlenose 
dolphins, one study reported that infants produced the 

majority of the whistles during mother–calf separation 
contexts, but the study only analysed data for infants 
older than four months (Smolker et al. 1993). A fol-
low-up study with a single mother–calf pair under human 
care showed that the maternal signature whistle is in fact 
important and is consistently used for mother–calf 
reunions; albeit data on neonates were not available in 
this study either (King et al. 2016).

 Even if beluga newborns in their first few days of life 
do not separate from their mothers beyond distances that 
would compromise acoustic and visual contacts, uninten-
tional separations to further distances may occur. These 
may be more likely during disturbance events. For exam-
ple, mothers in pelagic dolphin species show flight 
behaviour during tuna purse-seine sets that may induce 
involuntary separations from their dependent calves that 
could increase the risk of mortality, especially for young 
animals under a year in age (Noren & Edwards 2007). 
This is because calves following fleeing mothers simply 
fall too far behind due to the loss of the hydrodynamic 
connection with their mothers, or ‘drafting’ (Weihs 
2004). Maternal flight responses that do not deviate from 
the fleeing behaviour of other adults, even at the expense 
of the calf, have also been documented in terrestrial herd 
mammals. Barren-ground caribou (Rangifer tarandus 
groenlandicus) mothers run with the herd during per-
ceived or real threats, causing temporary or permanent 
separations from their young (Lent 1966). Beluga females 
with calves in the White Sea are the first to flee in 
response to danger (Krasnova et al. 2009). It is not 
implausible that in the SLE, involuntary separations may 
similarly occur in the face of some disturbances, and that 
noise may interfere with mother–calf reunions after such 
separations. A beluga newborn would conceivably hear 
the mother but may be too young to orient to her and 
find her, and the mother may simply not hear the calf, 
given the very short communication range of newborn 
calls in noise. The nature of the disturbances that could 
elicit flight reactions may depend on the level of habitua-
tion of belugas to such disturbances. In Baie Sainte-
Marguerite, cargo ships may degrade the acoustic habitat 
but not cause a startle response, whereas recreational 
vessels approaching belugas at high speeds (against cur-
rent regulations, but repeatedly observed by some of the 
authors) may elicit evasive behaviour.

The low ASLs of newborn calls also have important 
implications regarding a newborn’s ability to compensate 
for noise. Marine mammals use a number of compensa-
tion strategies to improve signal detection in noisy envi-
ronments, including longer calls, louder calls, increasing 
call rate, shifting the frequency of the signal outside the 
noise band, switching call types and waiting to call until 
noise decreases (see Tyack & Janik 2013, for review). 
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Evidence of these compensation strategies in odontocetes, 
including killer whales (Wieland et al. 2009; Holt et al. 
2011), bottlenose dolphins (Au et al. 1982; Buckstaff 2004) 
and Indo-Pacific bottlenose dolphins (Morisaka, Shinohara, 
Nakahara et al. 2005), as well as belugas, is mounting. It is 
well known that belugas modify their vocal production in 
response to noise. For example, SLE belugas shift the mean 
frequencies of their calls upward (from 3.6 kHz to 5.2–8.8 
kHz) and increase the repetition rate of their whistles in 
the presence of small vessel and ferry noise (Lesage et al. 
1999). They also increase the amplitude of their calls in 
response to noise, a mechanism known as the Lombard 
effect (Scheifele et al. 2005). Mackenzie River Estuary 
belugas may reduce their vocal production in response to 
vessel noise (Halliday et al. 2019). Belugas are also able to 
adapt their echolocation strategy in noisy environments by 
modifying the amplitude, spectral and temporal parame-
ters of echolocation clicks (Au et al. 1985). However, 
beluga neonates may not be able to resort to these com-
pensatory strategies. Pulse trains (rudimentary contact 
calls) are the only call type that they produce, expanding 
their repertoire as they age (Vergara & Barrett-Lennard 
2008), and days-old calves may be physiologically unable 
to increase call amplitude or shift the peak energy of their 
pulse trains to higher frequencies (see Ames & Vergara 
2020). Ames & Vergara (2020) showed that the peak fre-
quencies of the calf’s calls increased significantly over his 
first year of life and suggested that as belugas gain the abil-
ity to increase air pressure with age (which relates to an 
increase in SL [Cranford et al. 2000]), they may also gain 
the capacity to increase acoustic energy at higher frequen-
cies (see Madsen et al. [2013]  for correlation between SL 
and centre frequency).

The farthest range of adult and sub-adult calls coincided 
with the frequencies of the stereotyped putative signature 
elements of contact calls (Vergara & Mikus 2019), which 
may have evolved for effective detection by conspecifics in 
the noisy and reverberant icy environment of the Arctic. 
The fact that beluga newborns only produce rudimentary, 
simple contact calls (Vergara & Barrett-Lennard 2008; 
Ames & Vergara 2020), which lack the overlapping tonal 
or pulsed tonal element of complex contact calls, may also 
explain their small communication ranges.

An important consideration is that we estimated com-
munication range as the maximum distance at which the 
signal would still be audible by a conspecific in at least 
one of the 1/12 octave bands analysed, not in all 1/12 
bands. This is useful to understand how the various criti-
cal bands are affected differently by noise, and which fre-
quency bands would remain audible at particular 
distances. However, it may be important for a conspecific 
to receive closer to the full signal to be able to decode it 
(see Brumm & Slabbekoorn 2005). When we modelled 

the range within which half, and all, 1/12 octave bands in 
the broadband calls would still be audible, the detection 
distances were, of course, considerably smaller, as these 
scenarios must take into account some or all of those very 
high-frequency bands that do not travel far in the first 
place, given the high absorption of high-frequency 
sounds. Therefore, the extent to which our communica-
tion range estimates reflect how far a calf would be able 
to recognize its mother acoustically by receiving and 
decoding her contact call is unknown. For a particular 
signal to confer an advantage to an individual (for exam-
ple, to maintain contact with known individuals), detec-
tion alone may not be enough. A beluga would have to 
recognize and localize the call and then discriminate 
among signal types and possibly individual callers. 
Moving from detecting sounds in noise, to signal recogni-
tion and discrimination, to effective communication 
requires progressively higher SNRs (Erbe 2012; 
Reichmuth 2012). There is evidence from birds, for 
example, budgerigars (Melopsittacus undulatus) and zebra 
finches (Taeniopygia guttata; Lohr et al. 2003), that call dis-
crimination is more difficult than call detection and has 
higher masked thresholds at a given level of noise (Lohr 
et al. 2003). In critical situations, masking-induced errors 
in the interpretation of signals by the receiver might incur 
biological costs. To date, there are no cetacean studies on 
the effect of acoustic masking on the recognition and dis-
crimination of sounds. Future masking models would 
more closely approach real-world scenarios if they con-
sidered these biologically significant processes.

Our study, therefore, suffers from a number of evident 
shortcomings. The question of how many of the 1/12 
octave bands need to be audible for a call to not only just 
be detectable but also recognizable by conspecifics, 
remains. Our ASL estimations are, of course, not precise. 
Since the DTAGs are located on an off-axis position on 
the body of the whale, and behind the sound-generating 
structures (and thus not in the path of the acoustic beam 
of the whale), the ASLs estimated from the DTAGs AOLs 
are likely lower than true on-axis SLs (see Madsen et al. 
2005; Johnson et al. 2006). Furthermore, our ASL esti-
mates could not account for the directionality of contact 
calls, a factor known to affect SL among Hawaiian spin-
ner dolphins (Stenella longirostris; Lammers et al. 2003) 
and bottlenose dolphins (Branstetter et al. 2012). Our 
communication range modelling did not include noise 
profile data obtained when belugas were present in the 
bay, so conspecific masking is not factored in our esti-
mates. Considerations such as the temporal aspects of the 
vessel noise (frequency and duration of vessel transits 
through an area) and the effects of mitigation measures 
such as speed reduction were not examined in this paper. 
Finally, and perhaps of most relevance to the rationale 

http://dx.doi.org/10.33265/polar.v40.5521


Citation: Polar Research 2021, 40, 5521, http://dx.doi.org/10.33265/polar.v40.552114
(page number not for citation purpose)

Noise impacts on beluga contact calls� V. Vergara et al.

behind this study, there is still some uncertainty about 
how often beluga calves separate from their mothers 
during the first month of life and to what distances and 
how long those separations last, especially in the SLE 
population. This information would be invaluable com-
bined with data on the duration of loud masking events.

Conclusion

Although our estimates should be treated with caution, 
they are, to our knowledge, the only estimates of ASLs 
and communication range of beluga calls produced by dif-
ferent age classes and with a known critical function, that 
of establishing or maintaining contact between individu-
als, including mothers and calves. As such, they constitute 
an important step to understanding the potential effects of 
communication masking on mother–calf acoustic contact 
in this species. Given the magnitude of the difference in 
ASLs and communication ranges between adults and 
calves, we conclude that even if true SLs differ slightly 
from the ASLs we present here, they would be unlikely to 
affect main findings that vessel noise reduces communica-
tion range in belugas, and that these reductions may be 
particularly impactful for separated mother–calf pairs.

Given the sustained newborn mortality documented 
in recent years in SLE belugas (Mosnier et al. 2015; 
Gosselin et al. 2017), understanding all the factors that 
may contribute to this mortality and the long-standing 
lack of recovery of this population is important. Masking 
by anthropogenic noise is not an isolated disturbance but 
may act synergistically with other factors that can also 
affect survival and reproduction.
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