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Introduction 

Bioerosion is “the process by which animals, plants and 
microbes sculpt or penetrate surfaces of hard substrates” 
(Bromley 1994: 1). The process is an important mecha-
nism of calcium carbonate recycling in marine environ-
ments and has been referred to as ‘the other ocean 
acidification problem’ because chemical biocorrosion is 
assumed to increase significantly with ongoing ocean 
acidification, leading to an imbalance (see the review by 
Schönberg et al. [2017]). As ocean acidification most sig-
nificantly effects polar water masses (see Fabry et al. 
[2009] for details), it is crucial to better understand bio-
erosion patterns in these regions.

Bioeroding agents are categorized as grazers, attached 
epiliths, or macro- and microborers (Wisshak 2012). Typical 
microboring organisms include cyanobacteria, chloro-
phytes and fungi (Golubic et al. 1975; Wisshak 2012), while 

macrobioeroders are, for instance, sponges, bivalves and 
polychaetes (Glynn & Manzello 2015). Bioerosion is per-
formed either chemically (biogenic dissolution) or mechan-
ically (e.g., rasping or biting of substrate), or by a combined 
technique. Microborers, however, exclusively bioerode by 
chemical means (Schönberg et al. 2017).

During bioerosion, characteristic traces are produced, 
which often allow conclusions about the trace maker. 
Traces by bioeroding microendoliths often conform to the 
outline of their producers and are commonly less than a 
millimetre in size (Wisshak 2012). These traces are 
addressed as ichnotaxa, with more than 300 valid ichno-
species (Wisshak, Knaust et al. 2019). Ichnotaxa may 
serve as useful indicators of palaeotemperature, as some 
trace makers are limited to a specific temperature range 
(see the review by Wisshak 2012). In addition, ichnotaxa 
may offer insights into palaeobathymetry (Wisshak et al. 
2011): index ichnocoenoses were initially defined by 
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Glaub (1994) and are based on the co-occurrence of spe-
cific key ichnotaxa and general characteristics in the trace 
assemblage, relying on the phototrophic character of 
many euendoliths and their dependence on the availabil-
ity of light (see the review by Wisshak [2012]).

Most studies of bioerosion have been conducted in the 
biogeographical provinces of the warm to warm-temper-
ate oceans (e.g., Kiene & Hutchings 1992; Chazottes et al. 
1995; Kiene et al. 1995; Le Campion-Alsumard et al. 
1995; Vogel et al. 2000; Tribollet & Golubic 2005; Alvarado 
et al. 2017; Fig. 1). These studies have focussed on a vari-
ety of topics, such as different bioerosion agents in and on 
various substrates, their traces, and bioerosion pace and 
rate, as well as expected changes with climate change.

The very few studies from the cold-temperate prov-
ince of the Northern Hemisphere are mainly from the 
North-east Atlantic (e.g., Akpan & Farrow 1985; Schmidt 
& Freiwald 1993; Glaub et al. 2002; Beuck & Freiwald 
2005; Wisshak 2006) and North-east Pacific (e.g., Young 
& Nelson 1988). Studies from the cold-temperate prov-
ince of the Southern Hemisphere include Patagonia (e.g., 
Malumián et al. 2006; Richiano et al. 2017; Aguirre et al. 
2019), of which the most recent substrate dates from the 
Quaternary period, Chile (Försterra et al. 2005) and New 
Zealand (Nelson et al. 1988).

The very few studies are from the polar carbonate 
realm (Aitken & Risk 1988; Casadío et al. 2001; Cerrano 

et al. 2001; Casadío et al. 2007; Hanken et al. 2012). So 
far, the most comprehensive studies, including lists of 
microbioerosion traces and their bathymetric trend, 
have been our previous studies from Arctic Svalbard 
(Meyer et al. 2020) and the Antarctic Ross Sea (Meyer 
et al. 2021).

We report on a third study site in the eastern Canadian 
Arctic, here, to further develop our understanding of polar 
microbioerosion and to evaluate the results in a global 
context. We chose Frobisher Bay, on south-eastern Baffin 
Island, because its marine geology is relatively well studied 
(see references in Todd et al. 2016; Herder et al. 2021). 
Although Frobisher Bay is below the Arctic Circle (Fig. 2), 
it experiences climatic and oceanographic conditions typi-
cal of the Canadian Arctic, and represents the polar car-
bonate realm, which is characterized by heterozoan 
carbonates (after James & Lukasik 2010). In contrast to 
our Svalbard study sites, Frobisher Bay is not a carbonate 
factory setting, mostly on account of its high terrigenous 
sediment input, although carbonate bioclasts are abun-
dant within the dominantly siliciclastic sediment (Zammit 
2017). Comparing Frobisher Bay with Svalbard and 
Antarctica can improve our insights into the variability of 
microbioerosion trace assemblages in polar environments. 
In this study, we visualize, analyse and list microbioero-
sion traces in barnacles from different water depths by 
implementing the commonly applied cast-embedding 

Fig. 1 The marine biogeographic provinces (based on Briggs & Bowen [2012]) and illustration of previous study sites regarding the recent microbioero-

sion and euendoliths (yellow dots). Featured studies are based on the bibliography by Radtke et al. (1997), Wisshak (2006) and a Thomson (now Clarivate) 

ISI Web of Knowledge (2020) search from 2006 to 2020 with the keywords ‘microbioerosion’ and ‘microendoliths’ (figure modified from Meyer 2020).
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technique, and we evaluate their occurrence in light of 
new calcium carbonate saturation data from Frobisher 
Bay. Additionally, we evaluate whether there are alterna-
tive key ichnotaxa for the polar regions.

Materials and methods 

Study site 

Barnacles were sampled in the inner Frobisher Bay, 
Baffin Island, eastern Canadian Arctic, close to the north-
ern tip of the bay and the eastern shore from 62 to 94 m 
water depth (Fig. 2, Table 1). 

Frobisher Bay is a partially enclosed embayment, ca. 
250 km long, at the widest point towards the entry of 
the Hudson Strait ca. 65 km wide, and ca. 20 km wide in 
the inner area. The outer bay is up to 800 m deep, while 
the inner bay is shallower, with one-third deeper than 
100 m (Misiuk et al. 2019). The bay experienced high 
deposition of glacially derived sediments following 
deglaciation (Deering et al. 2018). Abundant cobbles 
and boulders from moraines and other glacial deposits, 
and from ice-rafted debris, support hard-substrate- 
dependent epifauna (Misiuk et al. 2019), including the 
barnacles studied here.

Frobisher Bay is at ca. 63.60 °N and 68.40 °W and is, 
therefore, without true polar days but long day lengths 
from June to July (Fig. 3). Sea ice is stable by December, 
with the maximum sea-ice thickness in late May/early 
June (Fig. 3; Fetterer et al. 2017) and no multi-year sea 

ice (Grainger et al. 1985). Sea-ice scouring was observed 
in water depths shallower than 50 m (Deering et al. 
2018) and extensive iceberg scouring down to 80 m 
(Todd et al. 2016).

The inner bay experiences extreme tides up to 12.6 m 
(McCann & Dale 1986; Deering et al. 2018), which is the 
maximum tidal amplitude in the Canadian Arctic (Collins 
et al. 2011). The high tidal amplitudes with great amounts 
of suspended sediment may occlude the sea floor, reduc-
ing the light that reaches the bottom. Sediment move-
ment from the land to the sea depends on the season due 
to snow melting (Andrews 1987). The highest sedimenta-
tion rate (Andrews 1987; Atkinson & Wacasey 1987) and 
the primary productivity peak (Grainger 1979) occur from 
June to July, together with the phytoplankton bloom 
right after the sea ice break-up (Hsiao 1992). In this study 
site, the Sylvia Grinnell River and Apex River are of impor-
tance regarding the turbidity and sediment input (Fig. 2).

Marine environment 

The marine environment in Frobisher Bay, particularly 
the state of ocean acidification, was investigated. Samples 
for TIC and TA analysis were collected using a CTD rosette 
package (SeaBird 911+) in 2016, 2017 and 2018 on board 
the CCGS Amundsen. Instruments on the CTD probe mea-
sured temperature, conductivity, dissolved oxygen, dis-
solved nitrates, chlorophyll a (via fluorescence), CDOM, 
turbidity via beam transmission and % irradiance, mea-
sured as CPAR. The sample collection, storage and 

Fig. 2 Map of the southern Baffin Island and details of the sample origin in Frobisher Bay. Bathymetric data for Frobisher Bay were retrieved from the 

Canadian Hydrographic Service (2018) and for the inset map from Misiuk et al. (2019). The Frobisher Bay shoreline and the two rivers shown were 

extracted from CanVec Series (2017). 
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analytical methods for TIC and TA were described by 
Punshon et al. (2019). The analytical precision was 
0.03% for TIC and 0.05% for TA, respectively. The 

saturation states of seawater with respect to aragonite 
(Ω

arg
) were calculated from the TIC and TA measurements 

using the CO2SYS programme (Lewis & Wallace 1998). 

Table 1 Details of barnacle sample collection. Latitude, longitude and water depth were recorded at the start of deployment.

Water  

depth (m)
Sample ID Date Survey vessela Latitude Longitude Gear

No. of 

samples

62 FB2-2_G3 16 July 2016 Amundsen 63.67522 −68.43048 Box corer 3

63 FB2-2_G1 16 July 2016 Amundsen 63.67523 −68.43035 Box corer 4

74 5c_G4 10 November 2016 Nulialjuk 63.66102 −68.42195 Van Veen grab 4

80 FB2-1_G1 16 July 2016 Amundsen 63.66358 −68.42238 Box corer 4

81 FB2-1_G3 16 July 2016 Amundsen 63.66350 −68.42167 Box corer 4

86 5g_G3 10 November 2016 Nulialjuk 63.66272 −68.41404 Van Veen grab 4

90 5f_G6 10 November 2016 Nulialjuk 63.66395 −68.41961 Van Veen grab 4

90 5f_G8 10 November 2016 Nulialjuk 63.66424 −68.41944 Van Veen grab 4

91 5g_G4 10 November 2016 Nulialjuk 63.66222 −68.41398 Van Veen grab 4

93 5g_G2 10 November 2016 Nulialjuk 63.66209 −68.41443 Van Veen grab 4

94 5g_G1 10 November 2016 Nulialjuk 63.66209 −68.41443 Van Veen grab 4

aCCGS Amundsen and MV Nulialjuk.

Fig. 3 Schematic overview of the seasonality of (a) sea-surface temperature, (b) sea-ice coverage and (c) day length at the three study sites (figure modi-

fied from Meyer 2020). Day length data for 2016 were obtained from the internet (www.timeanddate.com), sea-ice coverage for the Ross Sea, Antarctic 

and Mosselbukta, Svalbard, was retrieved as daily means from 2004 to 2016 from Fetterer et al. (2017) and for Frobisher Bay as weekly means from 2007 

to 2016 from Canadian Ice Service (2009). Sea-surface temperature is the daily mean from 2004 to 2016 from Physical Science Laboratory (2020).
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Integrated uncertainties of Ω
arg

 based on propagated 
uncertainties from replicate TIC and TA measurements 
are at most 0.013.

The salinity, temperature and Ω
arg

 sections along 
Frobisher Bay are shown in Fig. 4. The BIC, which is the 
integrated Arctic outflow through the Canadian Arctic 
Archipelago, flows into Frobisher Bay along the north-
ern side of the bay. The BIC is modified within the bay 
by various processes, including fluvial inputs, ice forma-
tion/melt and tidal mixing, and flows out to the south. 
The water in Frobisher Bay is cold (T < 0 °C; Fig. 4e) and 
fresh (S < 33.36; Fig. 4d), indicative of the Arctic out-
flow, except at the very surface layer in several locations 
where the water was warmer. The Ω

arg
 value ranged 

from 1.97 at the surface layer, where the active biologi-
cal uptake of carbon increased the Ω

arg
 value to 1.00 at 

depth (400 m) in the outer bay (Fig. 4a). Limited by the 
shallow sill, the water exchange between the inner and 
the outer bay resulted in the lower oxygen saturation, 
that is, increased respiration, in the sub-surface layer in 
the inner bay (Fig. 4a). The increased carbon content by 
respiration, together with the lower salinity, contributes 
to the decreased Ω

arg
 in the inner bay compared with 

those at the relevant isobaths in the outer bay. The beam 

transmission was low at the surface layer on top of the 
halocline (<12 m), caused by a combination of primary 
production and riverine sediments (Fig. 4f). The aver-
age 1% surface irradiance depth measured in Frobisher 
Bay in the summer months of 2016–18 was 19.6 m, 
slightly shallower in the inner bay (17.2 m) and slightly 
deeper in the outer bay (20.9 m). Therefore, the 
euphotic zone (1% surface illumination marks the 
lower boundary) obtained from PAR data from Frobisher 
Bay reaches ca. 15–20 m, while the base of the dys-
photic zone (0.01% surface illumination) cannot be 
determined from the data set (Edinger et al. 2016; 
Edinger et al. 2017; Edinger et al. 2018). It can be 
assumed that all stations were at least in the dysphotic 
zone (Table 1).

Sample material 

In order to ensure good comparability with our previous 
studies (Meyer et al. 2020, 2021) and as they have proven 
to be highly suitable (e.g., Glaub et al. 2002; Feussner 
et al. 2004), we concentrated on barnacles as a substrate 
for bioerosion, namely the species Balanus balanus 
(Linnaeus, 1758), which were alive during recovery.

Fig. 4 (a) Frobisher Bay and the locations of stations. (b) The Ωarg,oxygen saturation (O2 sat) profiles at stations FB2 (inner bay) and FB7 (outer bay, 

<100 m). (c) Beam transmission and a PAR profile from FB2 (data kindly provided by Amundsen Science Data Collection). Frobisher Bay sections for (d) 

salinity, (e) temperature and (f) Ωarg, plotted using Ocean Data View (Schlitzer 2021). (g) A snapshot of bottom frame grabs from site 5g, extracted from a 

video (see Misiuk et al. [2019] for more details about the video acquisition). The laser pointers are 5 cm apart. 
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Live barnacles were collected opportunistically as part 
of marine habitat mapping studies in Frobisher Bay 
during two expeditions in 2016 (see Deering et al. [2018] 
and Herder et al. [2021] for more details; Table 1). During 
the CCGS Amundsen expedition in July 2016, 0.25 m² 
aperture box cores were collected at several locations in 
inner Frobisher Bay. Van Veen grab samples were col-
lected from additional locations of inner Frobisher Bay 
from the Nunavut Fisheries Research Vessel MV Nuliajuk 
in September 2016, using a Van Veen grab sampler, with 
a scoop area of 15 cm × 20 cm.

For both the box cores and the grab samples, living 
carbonate-shelled organisms, including barnacles, and 
carbonate bioclasts were separated by sieving the sedi-
ments through a 1-mm mesh using running seawater. 
Small samples were fixed in 4% formaldehyde for 48 hrs, 
and then preserved in 70% ethanol, while large samples, 
including most of the live barnacles attached to cobbles 
and boulders, were frozen.

Cast-embedding technique 

In order to visualize the microbioerosion traces inside 
the calcareous barnacle armour, we treated them with 
the commonly applied cast-embedding technique 
(Wisshak 2006; Wisshak 2012). For the analysis, we 
used two to three barnacles per water depth and one or 
two plates of each individual; thus, up to four samples 
per station (details in Table 1). Firstly, we removed 
organic material by immersing the barnacles in sodium 
hypochlorite (customary cleaning agent) for 24–48 hrs. 
The barnacles were then rinsed with deionized water, 
before drying at 30 °C for 12 hrs. By utilizing the vac-
uum chamber of the CitoVac (Struers), the cleaned tun-
nels inside the barnacle shells were filled with R&G 
‘water clear’ epoxy resin. The hardened resin pieces 
were cut on all sides with a stone saw (water-cooled, 
diamond-bladed), and then placed in ca. 5% hydrochlo-
ric acid, until the exposed carbonate was dissolved. In 
total, we glued 43 samples on stubs about the size of a 
fingernail. Prior to scanning electron analysis (Tescan 
VEGA3 xmu, with the secondary electron detector at 
20 kV), the stubs were sputter-coated with gold 
(Cressington sputter coater 108).

Whenever applicable, bioerosion traces were identi-
fied at ichnospecies level and otherwise given informal 
names. As an accurate quantification is not practicable 
for several reasons (traces differ in size; they may super-
impose each other; some are networks, while other 
ones are individual borings), we carried out a 
semi-quantitative analysis and categorized each trace 
into one of four abundance classes: very rare, only one 

or very few specimens; rare, few specimens; common, 
many specimens but not dominant; very common or 
dominant.

Results 

The overall diversity and abundance of microborings in 
the studied acorn barnacles from the Canadian Arctic are 
low, with six different microbioerosion traces being rare 
to very rare, and only Nododendrina europaea found to be 
common at 91 and 62 m water depth. Four of the ichno-
taxa were probably bioeroded by fungi, one by foramin-
ifera and one by bacteria. All were produced by 
organotrophic trace makers (Table 2), so the ichnotaxo-
nomic inventory was limited to traces of light-indepen-
dent organotrophs.

Scolecia serrata was exclusively found at 62 m water 
depth, and Flagrichnus cf. profundus appeared at a water 
depth of 86 m and below, while the other traces occurred 
almost in the entire bathymetric transect (Table 2).

We occasionally observed small deviations to the orig-
inally described morphology of some ichnotaxa. 
Flagrichnus baiulus (Fig. 5a) and Nododendrina europaea 
(Fig. 5h), for instance, showed a great variety of forms 
and sizes (e.g., pancake-form in Flagrichnus baiulus; 
Fig. 5b).

The Large tongue-form has not yet been taxonomi-
cally described and is therefore briefly described in terms 
of morphology. The trace consists of an initial point of 
entry into the substrate (measured opportunistically on 
four traces: 2–5.5 μm wide, 4.3–10.6 μm long), with a 
gradual transition to a central spherical cavity (maximum 
diameter: 6.2–12.5 μm), which sometimes looks flattened 
and slightly bent, like a tongue. We observed a resem-
blance to the ichnogenus Saccomorpha; however, this form 
is strikingly larger, solitary and is therefore not intercon-
nected by small (hyphal) galleries.

Discussion 

Characteristic polar environmental parameters, such as 
cold temperatures, compressed photic zonation and sea-
sonal sea-ice formation affect the trace assemblages 
(Wisshak 2006; Meyer et al. 2020, 2021). The ichnodi-
versity (and abundance of bioerosion; Table 2) obtained 
in the Canadian Arctic is very low compared with the 26 
microborings found by Wisshak (2006) in a cold-temper-
ate setting and the 37 microborings found by Wisshak 
et al. (2011) in a warm-temperate setting. We relate this 
to three factors: (1) the seasonal light conditions in 
Frobisher Bay are extreme (Fig. 3); (2) its extreme tides 
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and turbidity, which agitate the water and cause lower 
bioerosion (Scoffin et al. 1980); and (3) the narrow 
bathymetric sampling range. With more samples from 
other water depths, we probably could have found more 
bioerosion traces and thus other ichnospecies.

In order to acquire a broader understanding of polar 
microbioerosion patterns, we have compared our case 
study with two related polar microbioerosion studies 
from Svalbard (Meyer et al. 2020), in the Arctic and the 
Ross Sea (Meyer et al. 2021; Fig. 6), in the Antarctic. We 
exclude that variations in ichnospecies composition 
between the three studies are the result of different 
approaches, as the same substrate and the same meth-
ods were applied, except for the bathymetric range. 
Minor differences in carbonate saturation states among 
regions were unlikely to have affected our evaluation in 

that all samples come from regions where carbonate sat-
uration values were above 1.00 (Azetsu‐Scott et al. 
2010; Hauck et al. 2012; Zammit 2017; Wisshak, 
Neumann et al. 2019).

Comparing previous microbioerosion studies: 
Canadian Arctic versus Eurasian Arctic

The Canadian and Eurasian Arctic were covered by ice 
sheets during the Last Glacial Maximum: Frobisher Bay 
by the Laurentian Ice Sheet (Andrews 1987; Deering 
et al. 2018) and Svalbard by the Barents Ice Sheet 
(Landvik et al. 1998). After the retreat of these ice sheets, 
(re-)colonization of at least the shallower waters both by 
calcareous benthic organisms (including the balanids we 
have studied) as well as bioeroding communities took 

Fig. 5 Observed microborings from Frobisher Bay. (a) Flagrichnus baiulus from 93 m. (b) Unusual Flagrichnus baiulus from 63 m. (c) Large tongue-form 

from 74 m and (d) from 90 m. (e) Flagrichnus cf. profundus from 91 m. (f) Saccomorpha guttulata from 74 m. (g) Nododendrina europaea from 91 m and 

(h) two larger forms also from 91 m. (i) Scolecia serrata from 62 m.
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place. Despite these similar starting conditions, the sam-
ples from the Canadian Arctic show a much lower ichno-
diversity compared with those from Svalbard (six vs. 20 
in barnacles from the genus Balanus). All the recorded 
ichnotaxa have also been observed in Svalbard (the Large 
tongue-form was not reported by Meyer et al. [2020] but 
by Wisshak et al. [2021]). This difference is possibly an 
artefact of the availability of more samples from Svalbard, 
covering a wider range of water depths, that is, the 
euphotic to aphotic zones. However, if only samples from 
the dysphotic to aphotic zones are considered, Svalbard 
waters were still richer in species with 14 ichnotaxa com-
pared with six ichnotaxa in Frobisher Bay. Reasons for 
that difference could be threefold: (1) high turbidity and 
sedimentation rate in Frobisher Bay; (2) a general deple-
tion in bioerosion communities in the colder and fully 
Arctic Frobisher Bay compared with the warmer and 
marginally Arctic Svalbard sites; and (3) Frobisher Bay, in 
contrast to our study sites in Svalbard, is not a pro-
nounced carbonate factory (sensu Schlager 2000), though 
sediments contain abundant carbonate bioclasts, domi-
nated by bivalves and barnacle plates (Zammit 2017). 
Gastropods and bryozoan bioclasts in Frobisher Bay sedi-
ments were rare. While most of the dominant bivalve 
species were infaunal, the abundant barnacle plate bio-
clasts in Frobisher Bay sediments indicate the importance 
of hard substrate fauna in contributing to the carbonate 
bioclasts pool. The samples collected in Frobisher Bay 
were too deep for abundant calcareous algae, although 
these are common in shallow waters (photic zone) 
throughout the Canadian Arctic where hard substates 
occur (Adey & Hayek 2011).

Furthermore, the terrestrial freshwater flux and rela-
tively low saturation states of water in the BIC push the 
carbonate saturation horizons in Frobisher Bay to much 
shallower depths than in the open and well-ventilated, 
northern Labrador Sea (Azetsu-Scott et al. 2014). 
Nonetheless, the summer-time aragonite saturation hori-
zon in our Frobisher Bay sites was deeper than the sites of 
our sample collection.

In addition to being siliciclastic dominated, Frobisher 
Bay sediments are organic rich, with the average organic 
content of about 5%, which is higher than the average 
carbonate content. Organic-rich sediments and generally 
high productivity may help to explain the dominance of 
organotrophic microbioeroding organisms, even in the 
plates of live-collected barnacles. Pervasive macrobioero-
sion was reported on other carbonate bioclasts in 
Frobisher Bay (Zammit 2017).

Comparing previous microbioerosion studies: 
polar north versus polar south

Our studies have recorded a total of 21 microbioerosion 
ichnotaxa in the Arctic (six ichnotaxa in Frobisher Bay, 
20 in Svalbard) and 18 in the Antarctic (Meyer et al. 
2021). At first, this marginal difference could be explained 
by the milder polar conditions in Svalbard, as demon-
strated by longer lasting sea-ice cover in Antarctica and 
Frobisher Bay (Fig. 3). However, this explanation is too 
simple, and it seems to be more reasonable to highlight 
the similarities.

Figure 6 illustrates that fungal traces dominate the 
assemblages. Traces of phototrophic organisms often 

Table 2 List of ichnotaxa recorded in barnacles from the Canadian Arctic and their assumed trace makers (based on the original interpretation of the 

ichnotaxon authority) and results of the semi-quantitative analysis.

Ichnotaxon Trace-maker Fig.

Abundancea  

Water depth (m)

62 63 74 80 81 86 90.1 90.2 91 93 94

Flagrichnus baiulus 
Wisshak & Porter, 2006

Fungi 3a–b -- -- -- -- -- -- -

Large tongue-form Fungi 3c–d -- - -- - -- --

Flagrichnus cf. profundus 
Wisshak & Porter, 2006

Fungi 3e -- -- -- --

Saccomorpha guttulata 
Wisshak et al., 2018

Fungi 3f -- -- -- -- -- -- -- --

Nododendrina europaea  
(Fischer, 1875)

Foraminifera 3g–h + -- -- - -- -- -- -- + - --

Scolecia serrata  
Radtke, 1991

Bacteria 3i --

aCommon (+), rare (-) and very rare (--).
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account for the largest proportion in non-polar environ-
ments (Wisshak 2012); however, owing to the extremely 
low-light conditions at ice-covered high latitudes, their 
quantity is reduced in our series of studies (see discussion 
by Meyer et al. 2020, 2021). While this could be proven for 
Svalbard, we can only assume this to hold true for the Ross 
Sea and Frobisher Bay, given the small number of samples 

from the euphotic zone. Hence, the comparison focusses on 
the aphotic bioerosion recorded at 60 m and downwards: 
we can compare 46 samples from the Antarctic, with 79 
from the Arctic (36 from Svalbard, 43 from Frobisher Bay). 
This approach shows a similar maximum number of ichno-
taxa (Fig. 6), with 15 traces in Svalbard and 16 in the Ross 
Sea. Three traces are restricted to Svalbard (Entobia mikra, 

Fig. 6 Stacked area chart showing ichnodiversity (indicated by the different colours for depths) and abundance (indicated by the width of the areas) data 

from this study, Meyer et al. (2020) and Meyer et al. (2021) in the Arctic and Antarctic. The white horizontal lines denote the actual water depth of sample; 

the areas in between are interpolated. The red vertical lines indicate that no samples were available from these water depths and not that no ichnodiver-

sity was observed (figure modified from Meyer 2020).
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Orthogonum tubulare and Pyrodendrina arctica), and seven to 
the Ross Sea (Flagrichnus-form I, Polyactina araneola, Finger-
form, Nidus-form, Proturbero-form, Clavate-form, Rogerella 
isp.). Three traces occur exclusively in either one of the 
Arctic regions (Flagrichnus cf. profundus, Nododendrina euro-
paea, Large tongue-form), regardless of their occurrence at 
lower latitudes. The highest number of new (and therefore 
potentially ‘endemic’?) ichnospecies was recorded in the 
Ross Sea. 

In summary, the number and abundance of ichnotaxa 
are almost identical in barnacle samples from both hemi-
spheres, despite the differing number of samples. Three 
traces occurred at both poles (Flagrichnus baiulus, 
Saccomorpha guttulata and Scolecia serrata), and this obser-
vation of the same ichnospecies suggests to some degree 
of past or present interconnectivity between the bioerod-
ing faunas of the two polar regions.

Ichnotaxa indicative of cold-water and of polar 
environments 

Certain ichnotaxa can serve as indicators for (palaeo-)
temperatures, and thus can help in the identification of 
(palaeo-)biogeographical zones (see Wisshak [2012] for a 
review), although it needs to be taken into account that 
there is some analogy between deep-water conditions at 
low latitudes and temperature and light conditions at 
high latitudes.

Flagrichnus baiulus, Entobia mikra, Nododendrina euro-
paea, Saccomorpha guttulata and Orthogonum-form 1 were 
previously suggested as cold-water indicators (Wisshak 
et al. 2005; Wisshak & Porter 2006; Bromley et al. 2007; 
Wisshak et al. 2018; Meyer et al. 2020) and were found 

in Svalbard waters (Meyer et al. 2020). Today, they are 
exclusive to cold-temperate and polar regions, and are all 
presumably formed by organotrophic organisms. Entobia 
mikra and N. europaea, however, did not occur at all three 
of our study sites (Fig. 6). Nododendrina europaea is com-
mon in both Arctic studies, but was not observed in the 
Antarctic and may, therefore, be limited to the Northern 
Hemisphere. Flagrichnus baiulus and S. guttulata, in con-
trast, were both present and dominant at all three regions 
and appear to be most suitable as key ichnotaxa for 
cold-water settings (Fig. 7). Two additional ichnospecies 
that were previously suggested as indicative of cold-water 
settings include Saccomorpha stereodiktyon (see Golubic 
et al. 2014) and Flagrichnus profundus (Wisshak 2006). 
These were absent at all three locations, so they have 
been so far restricted to cold-temperate provinces.

Fascichnus isp. I and II, Flagrichnus-form I, Finger-form 
and Nidus-form, have only been recorded in our studies, 
so they may have some potential as additional indicator 
ichnospecies, once they become ichnotaxonomically 
established as such. However, the value of all the indica-
tor ichnospecies depends on negative evidence from 
warm-water environments at lower latitudes: their 
absence must be confirmed in future studies.

In turn, the absence of ichnotaxa common in 
warm-water settings can indicate cold-temperate and 
polar waters, although, again, this relies only on negative 
evidence. Some of the most common ichnotaxa are 
Eurygonum nodosum (thus far latitudinally limited up to 
Kosterfjord [Wisshak 2006]), Irhopalia (e.g., I. catenata, 
thus far latitudinally limited up to Tromsø [Glaub et al. 
2002]), Saccomorpha (e.g., S. stereodiktyon, thus far latitudi-
nally limited up to Kosterfjord [Wisshak 2006]) and 

Fig. 7 Indicator ichnotaxa for cool- to cold (palaeo)environmental conditions. Specimens were sampled in (a) the Ross Sea at 1130 m water depth, (b) 

Bjørnøybanken, Svalbard, 88 m water depth, (c) Ross Sea, 1130 m water depth, (d) Bjørnøybanken, Svalbard, 47 m water depth, (e) Mosselbukta, Sval-

bard, from 75 m water depth, and (f) Frobisher Bay, from 93 m water depth.
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Orthogonum fusiferum (Kosterfjord [Wisshak 2006]). None 
of these have been observed in the polar regions so far.

Applicability of palaeobathymetrical index 
ichnocoenoses 

Light has repeatedly been identified as the main factor in 
the composition of microbioerosion trace assemblages 
(e.g., Glaub 1994; Vogel et al. 1995; Glaub et al. 2002; 
Meyer et al. 2020). On the basis of the light dependence 
of many phototrophic euendoliths and their specific low-
light tolerance limit, a set of index ichnocoenoses were 
established to address relative bathymetry (e.g., Glaub 
1994; Vogel et al. 1995; Glaub et al. 2002). While the 
originally established set of index ichnocoenoses are in 
good agreement with microbioerosion trace assemblages 
in tropical to warm-temperate environments, they are of 
limited applicability for cool- to cold-water settings, and 
hence, alternative key ichnotaxa have been proposed 
(see Wisshak [2012] for a review).

Given our lack of data from the shallow to deep 
euphotic zone, we here focus on the dysphotic and apho-
tic zone in proposing suitable key ichnotaxa for these 
zones in polar palaeoenvironments.

The dysphotic zone was originally characterized by 
Ichnoreticulina elegans and Saccomorpha clava, but S. clava 
was absent or very rare in our study sites and is hence 
considered unsuitable for the polar realms. Instead, 
Conchocelichnus seilacheri is suggested to complement the 
cosmopolitan I. elegans. Both ichnotaxa are bioeroded by 
phototrophs well adapted to low-light conditions. It must 
be stressed, however, that the index ichnocoenoses alone 
does not allow an unambiguous interpretation, and it is 
essential to assure the absence of other traces by pho-
totrophic euendoliths (except for the rare cyanobacte-
rium Plectonema terebrans and its trace Scolecia filosa) in the 
dysphotic zone.

For the aphotic zone, the original key ichnotaxa 
assemblage for the polar environments is not applicable 
either, as both S. clava and Orthogonum lineare were too 
rare or absent in our studies. Instead, we consider that the 
very common Saccomorpha guttulata is a strong index ich-
notaxon, together with the similarly common Flagrichnus 
baiulus. As both can be present at all water depths, the 
aphotic nature needs to be confirmed by the absence of 
any traces produced by phototrophic organisms.

Conclusions

In the context of polar microbioerosion studies, barnacles 
from Frobisher Bay, eastern Canadian Arctic, were inves-
tigated regarding their ichnodiversity. The assemblage 

consists of six different types of traces, most of which 
were rare to very rare. Compared with two corresponding 
studies from the Arctic (Svalbard, 20 traces) and Antarctic 
(Ross Sea, 18 traces), the ichnodiversity of Frobisher Bay 
is lowest, most likely as a result of high turbidity and the 
limited bathymetrical range of the samples. Comparison 
of the three studies indicates that the ichnodiversity in 
the aphotic zone is similar in these polar environments 
although it differs in composition.

Our research study allowed us to propose suitable 
cold-water indicator ichnotaxa and modified key ichno-
coenoses for interpreting the palaeobathymetry of car-
bonates formed in polar regions. A promising avenue for 
further research is to evaluate potential ways of bioerod-
ing fauna evolution in the polar realm, including more 
polar sample sites, samples from potential migration 
pathways, and suitable substrates from intertidal and 
shallow–subtidal water depths.
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