The life cycle of small- to medium-sized icebergs in the Amundsen Sea Embayment

  • Aleksandra K. Mazur Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden; Institute of Oceanography, University of Gdańsk, Gdynia, Poland
  • Anna K. Wåhlin Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
  • Ola Kalén Swedish Meteorological and Hydrological Institute, Göteborg, Sweden
Keywords: icebergs, the Amundsen Sea, satellite radar data, object-based image analysis, iceberg size distribution, iceberg annual variations

Abstract

An object-based method for automatic iceberg detection has been applied to Advanced Synthetic Aperture Radar images in the Amundsen Sea Embayment (ASE), Antarctica. The images were acquired between 1 January 2006 and 8 April 2012 under varying meteorological, oceanographic and sea-ice conditions. During this time period, the icebergs were counted (average 1370 ± 50) and their surface area was estimated (average 1537.5 km2). The average surface area was about 2.5 times larger than the annual calved area (620 km2), indicating that the average iceberg age in the ASE is about 2.5 years, which was confirmed by observed residence times based on drift tracks. Most of the ASE icebergs were less than 1500 m long, and almost 90% of them were smaller than 2 km2. The proportion of small- and medium-sized icebergs (84.4%) was significantly higher than in the open ocean, where large icebergs (>10 km2) account for nearly the whole iceberg surface area. The opposite was true for the freshly calved icebergs in the ASE. The data indicate that the creation of icebergs in the ASE is dominated by steady small- to medium-scale calving from ice shelves fringing the embayment. In addition, rare calving events of giant icebergs occur on a decadal timescale. There is also some import of icebergs from the Bellingshausen Sea further east along the coast, in particular after large calving events there.

Downloads

Download data is not yet available.

References


Aoki S. 2003. Seasonal and spatial variations of iceberg drift off Dronning Maud Land, Antarctica, detected by satellite scatterometers. Journal of Oceanography 59, 629–635, http://dx.doi.org/10.1023/B:JOCE.0000009592.45617.dd.


Arndt J.E., Schenke H.W., Jakobsson M., Nitsche F.O., Buys G., Goleby B., Rebesco M., Bohoyo F., Hong J., Black J., Greku R., Udintsev G., Barrios F., Reynoso-Peralta W., Taisei M. & Wigley R. 2013. The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0—a new bathymetric compilation covering circum-Antarctic waters. Geophysical Research Letters 40, 3111–3117, http://dx.doi.org/10.1002/grl.50413.


Bamber J.L., Riva R.E.M., Vermeersen B.L.A. & LeBrocq A.M. 2009. Reassessmentof the potential sea-level rise from a collapse of the West Antarctic Ice Sheet. Science 324, 901–903, http://dx.doi.org/10.1126/science.1169335.


Barnes D.K.A. 2017. Iceberg killing fields limit huge potential for benthic blue carbon in Antarctic shallows. Global Change Biology 23, 2649–2659, http://dx.doi.org/10.1111/gcb.13523.


Biddle L.C., Kaiser J., Heywood K.J., Thompson A.F. & Jenkins A. 2015. Ocean glider observations of iceberg-enhanced biological production in the northwestern Weddell Sea. Geophysical Research Letters 42, 459–465, http://dx.doi.org/10.1002/2014GL062850.


Bigg G., Wadley M., Stevens D. & Johnson J. 1997. Modelling the dynamics and thermodynamics of icebergs. Cold Regions Science and Technology 26, 113–135, http://dx.doi.org/10.1016/S0165-232X(97)00012-8.


Bintanja R., van Oldenborgh G.J. & Katsman C.A. 2015. The effect of increased freshwater from Antarctic ice shelves on future trends in Antarctic sea ice. Annals of Glaciology 56, 120–126, http://dx.doi.org/10.3189/2015AoG69A001.


Björk G., Söderkvist J., Winsor P., Nikolopoulos A. & Steele M. 2002. Return of the cold halocline layer to the Amundsen Basin of the Arctic Ocean: implications for the sea ice mass balance. Geophysical Research Letters 29, article no. 1513, http://dx.doi.org/10.1029/2001GL014157.


Bracegirdle T.J. 2013. Climatology and recent increase of westerly winds over the Amundsen Sea derived from six reanalyses. International Journal of Climatology 33, 843–851, http://dx.doi.org/10.1002/joc.3473.


Bracegirdle T.J. & Marshall G.J. 2012. The reliability of Antarctic tropospheric pressure and temperature in the latest global reanalyses. Journal of Climate 25, 7138–7146, http://dx.doi.org/10.1175/JCLI-D-11-00685.1.


Collares L.L., Mata M.M., Kerr R., Arigony Neto J. & Barbat M.M. 2018. Iceberg drift and ocean circulation in the northwestern Weddell Sea, Antarctica. Deep-Sea Research Part II 149, 10–24, http://dx.doi.org/10.1016/j.dsr2.2018.02.014.


Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.-N. & Vitart F. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society 137, 553–597, http://dx.doi.org/10.1002/qj.828.


Depoorter M.A., Bamber J.L., Griggs J.A., Lenaerts J.T.M., Ligtenberg S.R.M., van den Broeke M.R. & Moholdt G. 2013. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502, 89–92, http://dx.doi.org/10.1038/nature12567.


ESA 2007. EnvisatASAR product handbook. Issue 2.2. Paris: European Space Agency.


ESA 2015. Next ESA SAR toolbox. European Space Agency.Accessed on the internet at https://earth.esa.int/web/nest/home/ on 10 May 2017.


FitzMaurice A., Straneo F., Cenedese C. & Andres M. 2016. Effect of a sheared flow on iceberg motion and melting. Geophysical Research Letters 43, 12520–12527, http://dx.doi.org/10.1002/2016GL071602.


Fretwell P., Pritchard H.D., Vaughan D.G., Bamber J.L., Barrand N.E., Bell R., Bianchi C., Bingham R.G., Blankenship D.D., Casassa G., Catania G., Callens D., Conway H., Cook A.J., Corr H.F.J., Damaske D., Damm V., Ferraccioli F., Forsberg R., Fujita S., Gim Y., Gogineni P., Griggs J.A., Hindmarsh R.C.A., Holmlund P., Holt J.W., Jacobel R.W., Jenkins A., Jokat W., Jordan T., King E.C., Kohler J., Krabill W., Riger-Kusk M., Langley K.A., Leitchenkov G., Leuschen C., Luyendyk B.P., Matsuoka K., Mouginot J., Nitsche F.O., Nogi Y., Nost O.A., Popov S.V., Rignot E., Rippin D.M., Rivera A., Roberts J., Ross N., Siegert M.J., Smith A.M., Steinhage D., Studinger M., Sun B., Tinto B.K., Welch B.C., Wilson D., Young D.A., Xiangbin C. & Zirizzotti A. 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere 7, 375–393, http://dx.doi.org/10.5194/tc-7-375-2013.


Frost V.S., Stiles J.A., Shanmugan K. & Holtzman J. 1982. A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-4(2), 157–166, http://dx.doi.org/10.1109/TPAMI.1982.4767223.


Gladstone R. & Bigg G. 2002. Satellite tracking of icebergs in the Weddell Sea. Antarctic Science 14, 278–287, http://dx.doi.org/10.1017/S0954102002000032.


Gladstone R.M., Bigg G.R. & Nicholls K.W. 2001. Iceberg trajectory modeling and meltwater injection in the Southern Ocean. Journal of Geophysical Research—Oceans 106, 19903–19915, http://dx.doi.org/10.1029/2000JC000347.


Hamley T.C. & Budd W.F. 1986. Antarctic iceberg distribution and dissolution. Journal of Glaciology 32, 242–251, http://dx.doi.org/10.3189/002214307783258521.


Jacobs S., Helmer H., Doake C., Jenkins A. & Frolich R. 1992. Melting of ice shelves and the mass balance of Antarctica. Journal of Glaciology 38, 375–387, http://dx.doi.org/10.3189/S0022143000002252.


Jansen D., Schodlok M. & Rack W. 2007. Basal melting of A-38B: a physical modelconstrained by satellite observations. Remote Sensing of the Cryosphere 111, 195–203, http://dx.doi.org/10.1016/j.rse.2007.03.022.


Jongma J.I., Driesschaert E., Fichefet T., Goosse H. & Renssen H. 2009. The effect of dynamic–thermodynamic icebergs on the Southern Ocean climate in a three-dimensional model. Ocean Modelling 26, 104–113, http://dx.doi.org/10.1016/j.ocemod.2008.09.007.


Kim T., Ha H., Wåhlin A., Lee S., Kim C., Lee J. & Cho Y. 2017. Is Ekman pumping responsible for the seasonal variation of warm circumpolar deep water in the Amundsen Sea? Continental Shelf Research 132, 38–48, https://doi.org/10.1016/j.csr.2016.09.005.


Lancelot C., de Montety A., Goosse H., Becquevort S., Schoemann V., Pasquer B. & Vancoppenolle M. 2009. Spatial distribution of the iron supply to phytoplankton in the Southern Ocean: a model study. Biogeosciences 6, 2861–2878, http://dx.doi.org/10.5194/bg-6-2861-2009.


Li T., Shokr M., Liu Y., Cheng X., Li T., Wang F. & Hui F. 2018. Monitoring the tabular icebergs C28A and C28B calved from the Mertz Ice Tongue using radar remote sensing data. Remote Sensing of Environment 216, 615–625, http://dx.doi.org/10.1016/j.rse.2018.07.028.


Liu Y., Moore J.C., Cheng X., Gladstone R.M., Bassis J.N., Liu H., Wen J. & Hui F. 2015. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves. Proceedings of the National Academy of Science 112, 3263–3268, http://dx.doi.org/10.1073/pnas.1415137112.


Long D.G., Ballantyn J. & Bertoia C. 2002. Is the number of Antarctic icebergs really increasing? Eos, Transactions American Geophysical Union 83, 469–474, http://dx.doi.org/10.1029/2002EO000330.


Marko J.R., Birch J.R. & Wilson M.A. 1982. A study of long-term satellite-tracked iceberg drifts in Baffin Bay and Davis Strait. Arctic 35, 234–240, http://dx.doi.org/10.14430/arctic2322.


Mazur A.K., Wåhlin A.K. & Krężel A. 2017. An object-based SAR image iceberg detection algorithm applied to the Amundsen Sea. Remote Sensing of Environment 189, 67–83, http://dx.doi.org/10.1016/j.rse.2016.11.013.


Moon T. & Joughin I. 2008. Changes in ice front position on Greenland’s outlet glaciers from 1992 to 2007. Journal of Geophysical Research—Earth Surface 113, F02022, http://dx.doi.org/10.1029/2007JF000927.


Moon T., Sutherland D.A, Carroll D., Felikson D., Kehrl L. & Straneo F. 2018. Subsurface iceberg melt key to Greenland fjord freshwater budget. Nature Geoscience 11, 49–54, http://dx.doi.org/10.1038/s41561-017-0018-z.


Rackow T., Wesche C., Timmermann R., Hellmer H.H., Juricke S. & Jung T. 2017. A simulation of small to giant Antarctic iceberg evolution: differential impact on climatology estimates. Journal of Geophysical Research—Oceans 122, 3170–3190, http://dx.doi.org/10.1002/2016JC012513.


Raiswell R., Benning L., Tranter M. & Tulaczyk S. 2008. Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt. Geochemical Transactions 9, article no. 7, http://dx.doi.org/10.1186/1467-4866-9-7.


Rignot E., Jacobs S., Mouginot J. & Scheuchl B. 2013. Ice-shelf melting around Antarctica. Science 341, 266–270, http://dx.doi.org/10.1126/science.1235798.


Romanov Y.A., Romanova N.A. & Romanov P. 2012. Shape and size of Antarctic icebergs derived from ship observation data. Antarctic Science 24, 77–87, http://dx.doi.org/10.1017/S0954102011000538.


Rosich B. & Meadows P. 2004. Absolute calibration of ASAR level 1 products generated with PF–ASAR. Rome: European Space Agency.


Schild K.M. & Hamilton G.S. 2013. Seasonal variations of outlet glacier terminus position in Greenland. Journal of Glaciology 59, 759–769, http://dx.doi.org/10.3189/2013JoG12J238.


Schodlok M.P., Hellmer H.H., Rohardt G. & Fahrbach E. 2006. Weddell Sea iceberg drift: five years of observations. Journal of Geophysical Research—Oceans 111, C06018, http://dx.doi.org/10.1029/2004JC002661.


Seale A., Christoffersen P., Mugford R.I. & O’Leary M. 2011. Ocean forcing of the Greenland ice sheet: calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers. Journal of Geophysical Research—Earth Surface 116, F03013, http://dx.doi.org/10.1029/2010JF001847.


Silva T.A.M., Bigg G.R. & Nicholls K.W. 2006. Contribution of giant icebergs to the Southern Ocean freshwater flux. Journal of Geophysical Research—Oceans 111, C03004, http://dx.doi.org/10.1029/2004JC002843.


Smith K.L., Robison B.H., Helly J.J., Kaufmann R.S., Ruhl H.A., Shaw T.J., Twining B.S. & Vernat M. 2007. Free-drifting icebergs: hot spots of chemical and biological enrichment in the Weddell Sea. Science 317, 478–483, http://dx.doi.org/10.1126/science.1142834


Spreen G., Kaleschke L. & Heygster G. 2008. Sea ice remote sensing using AMSR–89-GHz channels. Journal of Geophysical Research—Oceans 113, C02S03, http://dx.doi.org/10.1029/2005JC003384.


Stammerjohn S., Maksym T., Massom R.A., Lowry K.E., Arrigo K.R., Yuan X., Raphael M., Randall-Goodwin E., Sherrell R.M. & Yager P.L. 2015. Seasonal sea ice changes in the Amundsen Sea, Antarctica, over the period of 1979–2014. Elementa: Science of the Antropocene 3, article no. 000055, http://doi.org/10.12952/journal.elementa.000055.


Stern A.A., Johnson E., Holland D.M., Wagner T.J., Wadhams P., Bates R., Abrahamsen E.P., Nicholls K.W., Crawford A., Gagnon J. & Tremblay J.-E. 2015. Wind-driven upwelling around grounded tabular icebergs. Journal of Geophysical Research—Oceans 120, 5820–5835, http://dx.doi.org/10.1002/2015JC010805.


Stuart K. & Long D. 2011. Tracking large tabular icebergs using the Sea


Winds Ku-band microwave scatterometer. Deep-Sea Research Part II 58, 1285–1300, http://dx.doi.org/10.1016/j.dsr2.2010.11.004.


Tournadre J., Bouhier N., Girard-Ardhuin F. & Rémy F. 2015. Antarctic icebergs distributions 1992–2014. Journal of Geophysical Research—Oceans 121, 327–349, http://dx.doi.org/10.1002/2015JC011178.


Tournadre J., Girard-Ardhuin F. & Legrésy B. 2012. Antarctic icebergs distributions, 2002–2010. Journal of Geophysical Research—Oceans 117, C05004, http://dx.doi.org/10.1029/2011JC007441.


Tournadre J., Whitmer K. & Ardhuin F. 2008. Iceberg detection in open water by altimeter waveform analysis. Journal of Geophysical Research—Oceans 113, C08040, http://dx.doi.org/10.1029/2007JC004587.


Tschudi M., Fowler C., Maslanik J., Stewart J.S. & Meier W.N. 2016. Polar Pathfinder daily 25 km EASE–grid sea ice motion vectors. Version 3. Boulder, CO: National Snow and Ice Data Center, http://dx.doi.org/10.1029/2007JC004587.


Wagner T.J.W., Dell R W. & Eisenman I. 2017. An analytical model of iceberg drift. Journal of Physical Oceanography 47, 1605–1616, http://dx.doi.org/10.1175/JPO-D-16-0262.1.


Wesche C. & Dierking W. 2012. Iceberg signatures and detection in synthetic aperture radar (SAR) images in two test regions of the Weddell Sea, Antarctica. Journal of Glaciology 58, 325–339, http://dx.doi.org/10.3189/2012J0G11J020.


Wesche C. & Dierking W. 2015. Near-coastal circum-Antarctic iceberg size distributions determined from synthetic aperture radar images. Remote Sensing of Environment 156, 561–569, http://dx.doi.org/10.1016/j.rse.2014.10.025.


Williams R.N., Rees W.G. & Young N.W. 1999. A technique for the identification and analysis of icebergs in synthetic aperture radar images of Antarctica. International Journal of Remote Sensing 20, 3183–3199, http://dx.doi.org/10.1080/014311699211697.


Willis C.J., Macklin J.T., Partington K.C., Teleki K.A., Rees W.G. & Williams R.G. 1996. Iceberg detection using ERS–1 synthetic aperture radar. International Journal of Remote Sensing 17, 1777–1795, http://dx.doi.org/10.1080/01431169608948739.


WMO 2015. WMO sea-ice nomenclature. Vol. 1. Terminology and codes. WMO-IOC JCOMM Sea-Ice Regulatory Document no. 259. Geneva: World Meteorological Organization.


Yulmetov R., Marchenko A. & Løset S. 2016. Iceberg and sea ice drift tracking and analysis off north-east Greenland. Ocean Engineering 123, 223–237, http://dx.doi.org/10.1016/j.oceaneng.2016.07.012.
Published
2019-08-22
How to Cite
Mazur, A., Wåhlin, A., & Kalén, O. (2019). The life cycle of small- to medium-sized icebergs in the Amundsen Sea Embayment. Polar Research, 38. https://doi.org/10.33265/polar.v38.3313
Section
Research Articles