Subglacial discharge weakens the stability of the Ross Ice Shelf around the grounding line

  • Yan Li State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China; and College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
  • Hongling Shi State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China; and College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
  • Yang Lu State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China; and College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
  • Zizhan Zhang State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China; and College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
  • Hui Xi State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China; and College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
Keywords: Antarctic subglacial lakes, water storage change, satellite altimetry, remote sensing, hydraulic potential method

Abstract

In this paper, we examine potential impact of discharge in Subglacial Lake Engelhardt, West Antarctica, on the stability of the Ross Ice Shelf around the grounding line by combining satellite altimetry and remote sensing images. According to satellite altimetry data from the Ice, Cloud and Land Elevation Satellite (ICESat; 2003–06), Subglacial Lake Engelhardt (SLE) discharged ca. 1.91 ± 0.04 km3 of water into the downstream region. The ice-surface record derived from ICESat (2006–09) and CryoSat-2 (2011–17) data shows that the lake gained ca. 2.09 ± 0.05 km3 of water during the refilling event following the drainage event, taking three times as much time to reach the previous water level before the discharge; the calculation demonstrates that water input from an upstream lake is unable to sustain water increase in SLE, indicating that the subglacial, hydrologic system and groundwater flow could have contributed to water increase in SLE via hydrologic networks. Satellite images captured surface depressions and crevasses at the drainage outlet point of hydrologic networks around the grounding line; satellite altimetry data show that the ice surface there is still depressing even though the subglacial discharge has finished, potentially reflecting the long-term impact of subglacial discharge on the stability of the immediate Ross Ice Shelf around the grounding line.

Downloads

Download data is not yet available.

References


Bell R.E., Chu W., Kingslake J., Das I., Tedesco M., Tinto K.J., Zappa C.J., Frezzotti M., Boghosian A. & Lee W.S. 2017. Antarctic ice shelf potentially stabilized by export of meltwater in surface river. Nature 544, 344–348, doi: 10.1038/nature22048.


Brenner A.C., Dimarzio J.P. & Zwally H.J. 2007. Precision and accuracy of satellite radar and laser altimeter data over the continental ice sheets. IEEE Transactions on Geoscience and Remote Sensing 45, 321–331, doi: 10.1109/tgrs.2006.887172.


Carter S.P. & Fricker H.A. 2012. The supply of subglacial meltwater to the grounding line of the Siple Coast, West Antarctica. Annals of Glaciology 53, 267–280, doi: 10.3189/2012AoG60A119.


Christoffersen P., Bougamont M.C., Sasha P., Fricker H.A. & Tulaczyk S. 2014. Significant groundwater contribution to Antarctic ice streams hydrologic budget. Geophysical Research Letters 41, 2003–2010, doi: 10.1002/2014gl059250.


ESA 2019. CryoSat-2 product handbook. European Space Agency. Accessed on the internet at https://earth.esa.int/documents/10174/125272/CryoSat-Baseline-D-Product-Handbook on 30 September 2020.


Flament T. & Rémy F. 2012. Dynamic thinning of Antarctic glaciers from along-track repeat radar altimetry. Journal of Glaciology 58, 830–840, doi: 10.3189/2012jog11j118.


Frappart F., Calmant S., Cauhopé M., Seyler F. & Cazenave A. 2006. Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon Basin. Remote Sensing of Environment 100, 252–264, doi: 10.1016/j.rse.2005.10.027.


Fretwell P., Pritchard H.D., Vaughan D.G. & Bamber J.L. 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393, doi: 10.5194/tc-7-375-2013.


Fricker H.A., Borsa A., Minster B., Carabajal C., Quinn K. & Bills B. 2005. Assessment of ICESat performance at the salar de Uyuni, Bolivia. Geophysical Research Letters 32, L21S06, doi: 10.1029/2005gl023423.


Fricker H.A. & Scambos T. 2009. Connected subglacial lake activity on lower Mercer and Whillans ice streams, West Antarctica, 2003–2008. Journal of Glaciology 55, 303–315, doi: 10.3189/002214309788608813.


Fricker H.A., Scambos T., Bindschadler R. & Padman L. 2007. An active subglacial water system in West Antarctica mapped from space. Science 315, 1544–1548, doi: 10.1126/science.1136897.


Galin N., Wingham D.J., Cullen R., Fornari M., Smith W.H. & Abdalla S. 2013.Calibration of the CryoSat-2 interferometer and measurement of across-track ocean slope. IEEE Transactions on Geoscience and Remote Sensing 51, 57–72, doi: 10.1109/TGRS.2012.2200298.


Göller S. 2014. Antarctic subglacial hydrology—interactions of subglacial lakes, basal water flow and ice dynamics. PhD thesis, University of Bremen.


Göller S., Steinhage D., Thoma M. & Grosfeld K. 2016. Assessing the subglacial lake coverage of Antarctica. Annals of Glaciology 57, 109–117, doi: 10.1017/aog.2016.23.


Haran T., Bohlander J., Scambos T., Painter T. & Fahnestock M. 2014. MODIS Mosaic of Antarctica 2008–2009 (MOA2009) image map. Boulder, CO: National Snow and Ice Data Center. Doi: 10.7265/N5KP8037.


Hawley R., Shepherd A., Cullen R., Helm V. & Wingham D. 2009. Ice‐sheet elevations from across‐track processing of airborne interferometric radar altimetry. Geophysical Research Letters 36, 297–304, doi: 10.1029/2009GL040416.


Helm V., Humbert A. & Miller H. 2014. Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. The Cryosphere 8, 1539–1559, doi: 10.5194/tc-8-1539-2014.


Kingslake J., Ely J.C., Das I. & Bell R.E. 2017. Widespread movement of meltwater onto and across Antarctic ice shelves. Nature 544, 349–352, doi: 10.1038/nature22049.


Kwok R., Zwally H.J. & Yi D. 2004. ICESat observations of Arctic sea ice: a first look. Geophysical Research Letters 31, 171–184, doi: 10.1029/2004gl020309.


Legrésy B., Rémy F. & Blarel F. 2006. Paper presented at the Symposium on 15 Years of Progress in Radar Altimetry. 13–18 March, Venice.


Li Y., Lu Y. & Zhang Z. 2019. Characterizing three-dimensional features of Antarctic subglacial lakes from the inversion of hydraulic potential—Lake Vostok as a case study. Advances in Polar Science 30, 70–75, doi: 10.13679/j.advps.2019.1.00070.


Livingstone S.J., Clark C.D., Woodward J. & Kingslake J. 2013. Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets. Cryosphere 7, 1721–1740, doi: 10.5194/tc-7-1721-2013.


McIntyre N.F. 1983. The topography and flow of the Antarctic Ice Sheet. PhD thesis, Scott Polar Research Institute, University of Cambridge.


McMillan M., Corr H., Shepherd A., Ridout A., Laxon S. & Cullen R. 2013. Three-dimensional mapping by CryoSat-2 of subglacial lake volume changes. Geophysical Research Letters 40, 4321–4327, doi: 10.1002/grl.50689.


McMillan M., Shepherd A., Sundal A., Briggs K., Muir A., Ridout A., Hogg A. & Wingham D. 2014. Increased ice losses from Antarctica detected by CryoSat‐2. Geophysical Research Letters 41, 3899–3905, doi: 10.1002/2014GL060111.


Moholdt G., Nuth C., Hagen J.O. & Kohler J. 2010. Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sensing of Environment 114, 2756–2767, doi: 10.1016/j.rse.2010.06.008.


Mouginot B., Scheuchl J. & Rignot E. 2017. MEaSUREs Antarctic boundaries for IPY 2007–2009 from satellite radar. Version 2. Boulder, CO: National Snow and Ice Data Center. doi: 10.5067/AXE4121732AD.


NSIDC (National Snow and Ice Data Center) 2014. GLAS altimetry product usage guidance. Accessed on the internet at https://nsidc.org/sites/nsidc.org/files/files/NSIDC_AltUserGuide_Rel29.pdf on 30 September 2020.


Oswald G.K.A. & Robin G.D.Q. 1973. Lakes beneath the Antarctic Ice Sheet. Nature 245, 251–254, doi: 10.1038/245251a0.


Pattyn F. 2008. Investigating the stability of subglacial lakes with a full Stokes ice-sheet model. Journal of Glaciology 54, 353–361, doi: 10.3189/002214308784886171.


Ridley J.K., Wyn C. & Laxon S.W. 1993.Identification of subglacial lakes using ERS-1 radar altimeter. Journal of Glaciology 39, 625–634, doi: 10.3189/S002214300001652X.


Rignot E. & Scheuchl B. 2011. Ice flow of the Antarctic Ice Sheet. Science 333, 1427–1430, doi: 10.1126/science.1208336.


Scambos T.A., Haran T.M., Fahnestock M.A., Painter T.H. & Bohlander J. 2007. MODIS-based Mosaic of Antarctica (MOA) data sets: continent-wide surface morphology and snow grain size. Remote Sensing of Environment 111, 242–257, doi: 10.1016/j.rse.2006.12.020.


Schutz B.E., Zwally H.J., Shuman C.A., Hancock D. & Dimarzio J.P. 2005. Overview of the ICESat mission. Geophysical Research Letters 32, 97–116, doi: 10.1029/2005gl024009.


Shreve R.L. 1972. Movement of water in glaciers. Journal of Glaciology 11, 205–214, doi: 10.3189/s002214300002219x.


Siegert M.J. 2000. Antarctic subglacial lakes. Earth-Science Reviews 50, 29–50, doi: 10.1016/S0012-8252(99)00068-9.


Siegfried M.R. & Fricker H.A. 2018. Thirteen years of subglacial lake activity in Antarctica from multi-mission satellite altimetry. Annals of Glaciology 5, 42–55, doi: 10.1017/aog.2017.36.


Siegfried M.R., Fricker H.A., Carter S.P. & Tulaczyk S. 2016. Episodic ice velocity fluctuations triggered by a subglacial flood in West Antarctica: dynamic changes due to subglacial flood. Geophysical Research Letters 43, 2640–2648, doi: 10.1002/2016gl067758.


Siegfried M.R., Fricker H.A., Roberts M., Scambos T.A. & Tulaczyk S. 2014. A decade of West Antarctic subglacial lake interactions from combined ICESat and CryoSat‐2 altimetry. Geophysical Research Letters 41, 891–898, doi: 10.1002/2013gl058616.


Silva J.S.D., Calmant S., Seyler F., Filho O.C.R., Cochonneau G. & Mansur W.J. 2010. Water levels in the Amazon Basin derived from the ERS 2 and ENVISAT radar altimetry missions. Remote Sensing of Environment 114, 2160–2181, doi: 10.1016/j.rse.2010.04.020.


Smith B.E., Fricker H.A., Joughin I.R. & Tulaczyk S. 2009. An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008). Journal of Glaciology 55, 573–595, doi: 10.3189/002214309789470879.


Tulaczyk S., Kamb B. & Engelhardt H.F. 2010. Estimates of effective stress beneath a modern West Antarctic ice stream from till preconsolidation and void ratio. Boreas 30, 101–114, doi: 10.1111/j.1502-3885.2001.tb01216.x.


Wang F., Bamber J.L. & Cheng X. 2015. Accuracy and performance of CryoSat-2 SARIn mode data over Antarctica. IEEE Geoscience and Remote Sensing Letters 12, 1516–1520, doi: 10.1109/LGRS.2015.2411434.


Willis I.C., Pope E.L., Gwendolyn J.-M., Arnold N.S. & Long S. 2016. Drainage networks, lakes and water fluxes beneath the Antarctic Ice Sheet. Annals of Glaciology 57, 96–108, doi: 10.1017/aog.2016.15.


Willis M.J., Herried B.G., Bevis M.G. & Bell R.E. 2015. Recharge of a subglacial lake by surface meltwater in northeast Greenland. Nature 518, 223–227, doi: 10.1038/nature14116.


Wright A. & Siegert M. 2012. A fourth inventory of Antarctic subglacial lakes. Antarctic Science 24, 659–664, doi: 10.1017/S095410201200048X.


Wright A.P., Siegert M.J., Brocq A.M.L. & Gore D.B. 2008. High sensitivity of subglacial hydrological pathways in Antarctica to small ice‐sheet changes. Geophysical Research Letters 35, 179–190, doi: 10.1029/2008gl034937


Zwally H.J., Li J., Robbins J.W., Saba J.L., Yi D. & Brenner A.C. 2015. Mass gains of the Antarctic Ice Sheet exceed losses. Journal of Glaciology 61, 1019–103, doi: 10.3189/2015JoG15J071.


Zwally H.J., Schutz B., Abdalati W., Abshire J., Bentley C., Brenner A., Bufton J., Dezio J., Hancock D. & Harding D. 2002. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. Journal of Geodynamics 34, 405–445, doi: 10.1016/S0264-3707(02)00042-X.
Published
2021-01-22
How to Cite
Li, Y., Shi, H., Lu, Y., Zhang, Z., & Xi, H. (2021). Subglacial discharge weakens the stability of the Ross Ice Shelf around the grounding line. Polar Research, 40. https://doi.org/10.33265/polar.v40.3377
Section
Research Articles