Comparison of passive microwave remote-sensing snow-depth products on Arctic sea ice

  • Chenlei Zhang Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan, China
  • Qing Ji Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan, China
  • Xiaoping Pang Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan, China; School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
  • Jie Su Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao, China
  • Chang Liu School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
Keywords: Cryosphere, snow cover, ice mass-balance buoys, ice bridge, accuracy analysis, sea-ice thickness


Changes in snow cover on the surface of Arctic sea ice affect the energy balance between the atmosphere and the ocean and play a vital role in the global climate system. Accurate snow depth is a precondition for representing thermodynamic processes in sea-ice systems and is helpful for estimating sea-ice thickness. To better apply Arctic snow-depth products released by different organizations, we compared four kinds of snow-depth products based on three kinds of passive microwave (PM) sensors and evaluated them against the snow depth measured by ice mass-balance buoys (IMB snow depth) and Operation Ice Bridge airborne snow radar (OIB snow depth). The results show that the snow depths from the product released by the University of Bremen (UB) are larger than those by the National Snow and Ice Data Center (NSIDC) and National Aeronautics and Space Administration (NASA), with an average difference of 10 cm. Comparing the PM remote-sensing snow depths released by UB, NSIDC and NASA against IMB and OIB snow depths, it is found that NSIDC AMSR-E snow-depth product has the highest accuracy. Although these PM remote-sensing snow-depth products released by different organizations differ in accuracy, they all reflect the spatio-temporal variation characteristics of snow depth on Arctic sea ice. These comparisons and analysis of snow-depth products from different sensors released by different organizations provide a basis for further investigation of Arctic sea-ice thickness estimation and benefit the studies of Arctic sea ice and climate change.


Download data is not yet available.


Blanchard-Wrigglesworth E., Webster M.A., Farrell S.L. & Bitz C.M. 2018. Reconstruction of snow on Arctic sea ice. Journal of Geophysical Research—Oceans 123, 3588–3602, doi: 10.1002/2017JC013364.

Blazey B.A., Holland M.M. & Hunke E.C. 2013. Arctic Ocean sea ice snow depth evaluation and bias sensitivity in CCSM. The Cryosphere 7, 1887–1900, doi: 10.5194/tc-7-1887-2013.

Brucker L. & Markus T. 2013. Arctic-scale assessment of satellite passive microwave-derived snow depth on sea ice using Operation IceBridge airborne data. Journal of Geophysical Research—Oceans 118, 2892–2905, doi: 10.1002/jgrc.20228.

Comiso J.C. 2012. Large decadal decline of the Arctic multi-year ice cover. Journal of Climate 25, 1176–1193, doi: 10.1175/JCLI-D-11-00113.1.

Comiso J.C., Cavalieri D.J. & Markus T. 2003. Sea ice concentration, ice temperature, and snow depth using AMSR-E data. IEEE Transactions on Geoscience and Remote Sensing 41, 243–252, doi: 10.1109/TGRS.2002.808317.

Farrell S.L., Kurtz N., Connor L.N., Elder B.C. & Sonntag J.G. 2011. A first assessment of ice bridge snow and ice thickness data over Arctic sea ice. IEEE Transactions on Geoscience and Remote Sensing 50, 2098–2111, doi: 10.1109/TGRS.2011.2170843.

Kurtz N.T. & Farrell S. L. 2011. Large-scale surveys of snow depth on Arctic sea ice from Operation IceBridge. Geophysical Research Letters 38, L20505, doi: 10.1029/2011GL049216.

Kwok R. & Cunningham G.F. 2008.ICESat over Arctic sea ice: estimation of snow depth and ice thickness. Journal of Geophysical Research—Oceans 113, C08010, doi: 10.1029/2008JC004753.

Lei R., Tian-Kunze X., Li B., Heil P., Wang J., Zeng J. & Tian Z. 2017. Characterization of summer Arctic sea ice morphology in the 135°–175°w sector using multi-scale methods. Cold Regions Science and Technology 133, 108–120, doi: 10.1016/j.coldregions.2016.10.009.

Lee S.M., Sohn B.J. & Kummerow C. 2018. Long-term Arctic snow/ice interface temperature from special sensor for microwave imager measurements. Remote Sensing 10(11), article no. 1795, doi: 10.3390/rs10111795.

Lee S.M., Sohn B.J. & Shi H. 2018. Impact of ice surface and volume scatterings on the microwave sea ice apparent emissivity. Journal of Geophysical Research—Atmospheres 123, 9220–9237, doi: 10.1029/2018JD028688.

Mäkynen M. & Similä M. 2015. Thin ice detection in the Barents and Kara seas with AMSR-E and SSMIS radiometer data. IEEE Transactions on Geoscience and Remote Sensing 53, 5036–5053, doi: 10.1109/TGRS.2015.2416393.

Markus T. & Cavalieri D.J. 1998. Snow depth distribution over sea ice in the Southern Ocean from satellite passive microwave data. In M.O. Jeffries (eds.): Antarctic sea ice: physical processes, interactions, and variability. Vol. 74. Pp. 19–39. Washington, DC: American Geophysical Union.

Maslanik J., Stroeve J., Fowler C. & Emery W. 2011. Distribution and trends in Arctic sea ice age through spring 2011. Geophysical Research Letters 38, L13502, doi: 10.1029/2011GL047735.

Nghiem S.V., Rigor I.G., Perovich D.K., Clemente-Colón P., Weatherly J.W. & Neumann G. 2007. Rapid reduction of Arctic perennial sea ice. Geophysical Research Letters, L19504, doi: 10.1029/2007GL031138.

Ogawa F., Keenlyside N., Gao Y., Koenigk T., Yang S., Suo, L., Wang T., Gastineau G., Nakamura T., Cheung H.N., Omrani N.E., Ukita J. & Semenov V. 2018. Evaluating impacts of recent Arctic sea ice loss on the northern hemisphere winter climate change. Geophysical Research Letters 45, 3255–3263, doi: 10.1002/2017GL076502.

Ouma Y.O., Owiti T., Kipkorir E., Kibiiy J. & Tateishi R. 2012. Multitemporal comparative analysis of trmm-3b42 satellite-estimated rainfall with surface gauge data at basin scales: daily, decadal and monthly evaluations. International Journal of Remote Sensing 33, 7662–7684, doi: 10.1080/01431161.2012.701347.

Perovich D.K., Light B., Eicken H., Jones K.F., Runciman K. & Nghiem S.V. 2007. Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: attribution and role in the ice-albedo feedback. Geophysical Research Letters 34, L19505, doi: 10.1029/2007GL031480.

Perovich D.K., Richter-Menge J.A. & Polashenski C. 2019. Observing and understanding climate change: monitoring the mass balance, motion, and thickness of Arctic sea ice. Accessed on the internet at on 10 March 2018.

Riche F. & Schneebeli M. 2013. Thermal conductivity of snow measured by three independent methods and anisotropy considerations. The Cryosphere, 217–227, doi: 10.5194/tc-7-217-2013.

Richter-Menge J.A., Perovich D.K., Elder B.C., Claffey K., Rigor I. & Ortmeyer M. 2006. Ice mass-balance buoys: a tool for measuring and attributing changes in the thickness of the Arctic sea-ice cover. Annals of Glaciology, 205–210, doi: 10.3189/172756406781811727.

Rostosky P., Spreen G., Farrell S.L., Frost T., Heygster G. & Melsheimer C. 2018. Snow depth retrieval on Arctic sea ice from passive microwave radiometers—Improvements and extensions to multiyear ice using lower frequencies. Journal of Geophysical Research—Oceans 123, 7120–7138, doi: 10.1029/2018JC014028.

Sato K. & Inoue J. 2018. Comparison of Arctic sea ice thickness and snow depth estimates from CFSR with in situ observations. Climate Dynamics 50, 289–301, doi: 10.1007/s00382-017-3607-z.

Spreen G., Kaleschke L. & Heygster G. 2008. Sea ice remote sensing using AMSR-E 89-GHz channels. Journal of Geophysical Research—Oceans 113, C02S03, doi: 10.1029/2005JC003384.

Stocker T.F., Qin D., Plattner G.K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex B. & Midgley B. (eds.) 2013. Climate change 2013. The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

Stroeve J.C., Kattsov V., Barrett A., Serreze M., Pavlova T., Holland M. & Meier W.N. 2012. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophysical Research Letters 39, L16502, doi: 10.1029/2012GL052676.

Warren S.G., Rigor I.G., Untersteiner N., Radionov V.F., Bryazgin N.N., Aleksandrov Y.I. & Colony R. 1999. Snow depth on Arctic sea ice. Journal of Climate 12, 1814–1829, doi: 10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2.

Webster M.A., Gerland S., Holland M., Hunke E., Kwok R., Lecomte O., Massom R., Perovich D.K. & Sturm M. 2018. Snow in the changing sea-ice systems. Nature Climate Change 8, 946–953, doi: 10.1038/s41558-018-0286-7.

Webster M.A., Rigor I.G., Nghiem S.V., Kurtz N.T., Farrell S.L., Perovich D.K. & Sturm M. 2014. Interdecadal changes in snow depth on Arctic sea ice. Journal of Geophysical Research—Oceans 119, 5395–5406, doi: 10.1002/2014JC009985.
How to Cite
Zhang, C., Ji, Q., Pang, X., Su, J., & Liu, C. (2019). Comparison of passive microwave remote-sensing snow-depth products on Arctic sea ice. Polar Research, 38.
Research Articles