Diversity and community structure of bacterioplankton in surface waters off the northern tip of the Antarctic Peninsula

  • Shunan Cao The Key Laboratory for Polar Science, Polar Research Institute of China
  • Jianfeng He The Key Laboratory for Polar Science, Polar Research Institute of China
  • Fang Zhang The Key Laboratory for Polar Science, Polar Research Institute of China
  • Ling Lin The Key Laboratory for Polar Science, Polar Research Institute of China
  • Yuan Gao The Key Laboratory for Polar Science, Polar Research Institute of China; College of Ocean and Earth Sciences, Xiamen University
  • Qiming Zhou School of Life Science and Technology, Harbin Institute of Technology; ChosenMed Technology (Beijing) Co. Ltd.
Keywords: Bacteria, dominant genera, environmental factors, interpopulation interactions, pyrosequencing


Global climate change is significantly affecting marine life off the northern tip of the Antarctic Peninsula, but little is known about microbial ecology in this area. The main goal of this study was to investigate the bacterioplankton community structure in surface waters using pyrosequencing and to determine factors influencing this community. Pelagibacterales and Rhodobacterales (Alphaproteobacteria), Oceanospirillales and Alteromonadales (Gammaproteobacteria), and Flavobacteriales (Bacteroidetes) were the core taxa in our samples, and the five most relatively abundant genera were PelagibacterPolaribacterOctadecabacter, group HTCC2207 and Sulfitobacter. Although nutrients and chlorophyll a (chl a) contributed more to bacterioplankton community structure than water masses or depth, only 30.39% of the variance could be explained by the investigated environmental factors, as revealed by RDA and pRDA. No significant difference with respect to nutrients and chl a was observed among water masses or depth, as indicated by ANOVA. Furthermore, significant correlations among the dominant bacterial genera were more common than correlations between dominant genera and environmental factors, as revealed by Spearman analysis. We conclude that nutrients and chl a become homogeneous and that interpopulation interactions may have a central role in influencing the bacterial community structure in surface waters off the northern tip of the Antarctic Peninsula during the summer.


Download data is not yet available.


Agogué H., Lamy D., Neal P.R., Sogin M.L. & Herndl G.J. 2011. Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. Molecular Ecology 20, 258–274, http://dx.doi.org/10.1111/j.1365-294X.2010.04932.x.

Amin S.A., Hmelo L.R., van Tol H.M., Durham B.P., Carlson L.T., Heal K.R., Morales R.L., Berthinume C.T., Parker M.S., Djunaedi B., Ingalls A.E., Parsek M.R., Moran M.A. & Armbrust E.V. 2015. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98–101, http://dx.doi.org/10.1038/nature14488.

Anisimov O.A., Vaughan D.G., Callaghan T.V., Furgal C.M., Marchant H., Prowse T.D. & Walsh J.E. 2007. Polar regions (Arctic and Antarctic). In M.L. Parry et al. (eds.): Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Pp. 653–685. Cambridge: Cambridge University Press.

Azam F. 1998. Microbial control of oceanic carbon flux: the plot thickens. Science 280, 694–696, http://dx.doi.org/10.1126/science.280.5364.694.

Azam F. & Malfatti F. 2007. Microbial structuring of marine ecosystems. Nature Review Microbiology 5, 782–791, http://dx.doi.org/10.1038/nrmicro1747.

Bowman J.S., Amaral-Zettler L.A., Rich J.J., Luria C.M. & Ducklow H.W. 2017. Bacterial community segmentation facilitates the prediction of ecosystem function along the coast of the western Antarctic Peninsula. The ISME Journal 11, 1460–1471, http://dx.doi.org/10.1038/ismej.2016.204.

Bunse C. & Pinhassi J. 2017. Marine bacterioplankton seasonal succession dynamics. Trends in Microbiology 25, 494–505, http://dx.doi.org/10.1016/j.tim.2016.12.013.

Church M.J., Delong E.F., Ducklow H.W., Karner M.B., Preston C.M. & Karl D.M. 2003. Abundance and distribution of planktonic archaea and bacteria in the waters west of the Antarctic Peninsula. Limnology and Oceanography 48, 1893–1902, http://dx.doi.org/10.4319/lo.2003.48.5.1893.

Cook A.J., Holland P.R., Meredith M.P., Murray T., Luckman A. & Vaughan D.G. 2016. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353, 283–286, http://dx.doi.org/10.1126/science.aae0017.

Cook A.J. & Vaughan D.G. 2010. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere 4, 77–98, http://dx.doi.org/10.5194/tc-4-77-2010.

Criscitiello A.S., Das S.B., Evans M.J., Frey K.E., Conway H., Joughin I., Medley B. & Steig E.J. 2013. Ice sheet record of recent sea-ice behavior and polynya variability in the Amundsen Sea, West Antarctica. Journal of Geophysical Research—Oceans 118, 118–130, http://dx.doi.org/10.1029/2012JC008077.

Dang H.Y. & Lovell C.R. 2016. Microbial surface colonization and biofilm development in marine environments. Microbiology Molecular Biology Review 80, 91–138, http://dx.doi.org/10.1128/MMBR.00037-15.

Delille D. 2004. Abundance and function of bacteria in the Southern Ocean. Cell Molecular Biology 50, 543–551.

Delong E.F., Wu K.Y., Prezelin B.B. & Jovine R.V. 1994. High abundance of archaea in Antarctic marine picoplankton. Nature 371, 695–697, http://dx.doi.org/10.1038/371695a0.

del Valle D.A., Kieber D.J., Toole D.A., Brinkley J. & Kiene R.P. 2009. Biological consumption of dimethylsulfide (DMS) and its importance in DMS dynamics in the Ross Sea, Antarctica. Limnology and Oceanography 54, 785–798.

Dickinson I., Goodall-Copestake W., Thorne M.A.S., Schlitt T., Ávila-Jiménez M.L. & Pearce D.A. 2016. Extremophiles in an Antarctic marine ecosystem. Microorganisms 4(1), UNSP 8, http://dx.doi.org/10.3390/microorganisms4010008.

Dierssen H.M., Smith R.C. & Vernet M. 2002. Glacial meltwater dynamics in coastal waters west of the Antarctic Peninsula. Proceedings of the National Academy of Sciences of the United States of America 99, 1790–1795, http://dx.doi.org/10.1073/pnas.032206999.

Doney S.C., Ruckelshaus M., Duffy J.E., Barry J.P., Chan F., English C.A., Galindo H.M., Grebmeier J.M., Hollowed A.B., Knowlton N., Polovina J., Rabalais N.N. Sydeman W.J. & Talley L.D. 2012. Climate change impacts on marine ecosystems. Annual Review on Marine Science 4, 11–37, http://dx.doi.org/10.1146/annurev-marine-041911-111611.

Ducklow H. 1999. The bacterial component of the oceanic euphotic zone. FEMS Microbiol Ecology 30, 1–10, http://dx.doi.org/10.1111/j.1574-6941.1999.tb00630.x.

Ducklow H.W. 2000. Bacterial production and biomass in the oceans. In D.L. Kirchman (ed.): Microbial ecology of the oceans. Pp. 85–120. New York: John Wiley & Sons.

Ducklow H.W., Fraser W.R., Meredith M.P., Stammerjohn S.E., Doney S.C., Martinson D.G., Sailley S.F., Schofield O.M., Steinberg D.K., Venables H.J. & Amsler C.D. 2013. West Antarctic Peninsula: an ice-dependent coastal marine ecosystem in transition. Oceanography 26, 190–203, http://dx.doi.org/10.5670/oceanog.2013.62.

Galí M., Levasseur M., Devred E., Simó R. & Babin M. 2018. Sea-surface dimethylsulfide (DMS) concentration from satellite data at global and regional scales. Biogeosciences 15, 3497–3519, http://dx.doi.org/10.5194/bg-15-3497-2018.

Garcia-Martinez J. & Rodriguez-Valera F. 2000. Microdiversity of uncultured marine prokaryotes: the SAR11 cluster and the marine Archaea of Group I. Molecular Ecology 9, 935–948, http://dx.doi.org/10.1046/j.1365-294x.2000.00953.x.

Ghiglione J.F. & Murray A.E. 2012. Pronounced summer to winter differences and higher wintertime richness in coastal Antarctic marine bacterioplankton. Environmental Microbiology 14, 617–629, http://dx.doi.org/10.1046/10.1111/j.1462-2920.2011.02601.x.

Gilbert J.A., Steele J.A., Caporaso J.G., Steinbruck L., Reeder J., Temperton B., Huse S., McHardy A.C., Knight R., Joint I., Somerfield P., Fuhrman J.A. & Field D. 2012. Defining seasonal marine microbial community dynamics. The ISME Journal 6, 298–308, http://dx.doi.org/10.1038/ismej.2011.107.

Giovannoni S.J., Tripp H.J., Givan S., Podar M., Vergin K.L., Baptista D., Bibbs L., Eads J., Richardson T.H., Noordewier M., Rappe M.S., Short J.M., Carrington J.C. & Mathur E.J. 2005. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309, 1242–1245, http://dx.doi.org/10.1126/science.1114057.

Gonzalez J.M., Kiene R.P. & Moran M.A. 1999. Transformation of sulfur compounds by an abundant lineage of marine bacteria in the alpha-subclass of the class Proteobacteria. Applied and Environmental Microbiology 65, 3810–3819.

Gordon A.L. 1967. Structure of Antarctic waters between 20°W and 170°W. Antarctic Map Folio Series, Number 6. New York: American Geographical Society.

Gordon A.L. & Huber B.A. 1995. Warm Weddell Deep Water west of Maud Rise. Journal of Geophysical Research—Oceans 100, 13747–13753, http://dx.doi.org/10.1029/95JC01361.

Gosink J.J., Herwig R.P. & Staley J.T. 1997. Octadecabacter arcticus gen. nov., sp. nov., and O. antarcticus, sp. nov., nonpigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. Systematic Applied Microbiology 20, 356–365, http://dx.doi.org/10.1016/S0723-2020(97)80003-3.

Grasshoff K., Kremling K. & Ehrhardt M. 2007. Methods of seawater analysis. Weinheim, Germany: Wiley-VCH Verlag GmbH.

Grzymski J.J., Riesenfeld C.S., Williams T.J., Dussaq A.M., Ducklow H. Erickson M, Cavicchioli R. & Murray A.E. 2012. A metagenomic assessment of winter and summer bacterioplankton from Antarctica Peninsula coastal surface waters. The ISME Journal 6, 1901–1915, http://dx.doi.org/10.1038/ismej.2012.31.

He J.F., Zhang F., Lin L., Ma Y.X. & Chen J.F. 2012. Bacterioplankton and picophytoplankton abundance, biomass, and distribution in the western Canada Basin during summer 2008. Deep-Sea Research Part II 81–84, 36–45, http://dx.doi.org/10.1016/j.dsr2.2012.08.018.

Herrmann M., Najjara R.G., Neeley A.R., Vila-Costa M., Dacey J.W.H., DiTullio G.R., Kieber D.J., Kiene R.P., Matrai P.A., Simó R. & Vernet M. 2012. Diagnostic modeling of dimethylsulfide production in coastal water west of the Antarctic Peninsula. Continental Shelf Research 32, 96–109.

Hitchcock J.N., Mitrovic S.M., Kobayashi T. & Westhorpe D. 2010. Responses of estuarine bacterioplankton, phytoplankton and zooplankton to dissolved organic carbon (DOC) and inorganic nutrient additions. Estuaries and Coasts 33, 78–91, http://dx.doi.org/10.1007/s12237-009-9229-x.

Howard E.C., Henriksen J.R., Buchan A., Reisch C.R., Bürgmann H., Welsh R., Ye W., González J.M., Mace K., Joye S.B., Kiene R.P., Whitman W.B. & Moran M.A. 2006. Bacterial taxa that limit sulfur flux from the ocean. Science 314, 649–652, http://dx.doi.org/10.1126/science.1130657.

James A.K., Passow U., Brzezinski M.A., Parsons R.J., Trapani J.N. & Carlson C.A. 2017. Elevated pCO2 enhances bacterioplankton removal of organic carbon. PLoS One 12, e0173145, http://dx.doi.org/10.1371/journal.pone.0173145.

Jamieson R.E., Rogers A.D., Billett D.S., Dan A.S. & Pearce D.A. 2012. Patterns of marine bacterioplankton biodiversity in the surface waters of the Scotia Arc, Southern Ocean. FEMS Microbiology Ecology 80, 452–468, http://dx.doi.org/10.1111/j.1574-6941.2012.01313.x.

Johnston A.W., Todd J.D., Sun L., Nikolaidou-Katsaridou M.N., Curson A.R. & Rogers R. 2008. Molecular diversity of bacterial production of the climate-changing gas, dimethyl sulphide, a molecule that impinges on local and global symbioses. Journal of Experimental Botany 59, 1059–1067, http://dx.doi.org/10.1093/jxb/erm264.

Kiene R.P. & Bates T.S. 1990. Biological removal of dimethyl sulfide from sea water. Nature 345, 702–704, http://dx.doi.org/10.1038/345702a0.

Kim I., Hahm D., Park K., Lee Y., Choi J., Zhang M., Chen L., Kime H. & Lee S.H. 2017. Characteristics of the horizontal and vertical distributions of dimethyl sulfide throughout the Amundsen Sea Polynya. Science of the Total Environment 584–585, 154–163, http://dx.doi.org/10.1016/j.scitotenv.2017.01.165.

Kirchman D.L., Moran X.A.G. & Kucklow H. 2009. Microbial growth in the polar oceans—role of temperature and potential impact of climate change. Nature Reviews Microbiology 7, 451–459.

Kostka J.E., Prakash O., Overholt W.A., Green S.J., Freyer G., Canion A., Delgardio J., Norton N., Hazen T.C. & Huettel M. 2011. Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico Beach sands impacted by the deepwater horizon oil spill. Applied & Environment Microbiology 77, 7962–7974, http://dx.doi.org/10.1038/nrmicro2115.

Lepš S. & Šmilauer P. 2003. Multivariate analysis of ecological data using CANOCO. Cambridge: Cambridge University Press.

Limardo A.J. & Worden A.Z. 2015. Microbiology: exclusive networks in the sea. Nature 522, 36–37 http://dx.doi.org/10.1038/nature14530.

Loeb V., Siegel V., Holm-Hansen O., Hewitt R.P., Fraser W.R. & Trivelpiece W.Z. 1997. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387, 897–900, http://dx.doi.org/10.1038/43174.

Lovelock J.E., Maggs R.J. & Rasmussen R.A. 1972. Atmospheric dimethyl sulphide and the natural sulphur cycle. Nature 237, 452–453.

Luria C.M., Amaral-Zettler L.A., Ducklow H.W., Repeta D.J., Rhyne A.L. & Rich J.J. 2017. Seasonal shifts in bacterial community responses to phytoplankton-derived dissolved organic matter in the western Antarctic Peninsula. Frontiers in Microbiology 8, article no. 2177, http://dx.doi.org/10.3389/fmicb.2017.02117.

Luria C.M., Amaral-Zettleer L.A., Ducklow H.W. & Rich J.J. 2016. Seasonal succession of free-living bacterial communities in coastal waters of the western Antarctic Peninsula. Frontiers in Microbiology 7, article no. 1731, http://dx.doi.org/10.3389/fmicb.2016.01731.

Luria C.M., Ducklow H.W. & Amaral-Zettler L.A. 2014. Marine bacterial, archaeal and eukaryotic diversity and community structure on the continental shelf of the western Antarctic Peninsula. Aquatic Microbiology Ecology 73, 107–121, http://dx.doi.org/10.3354/ame01703.

Manganelli M., Malfatti F., Samo T.J., Mitchell B.G., Wang H. & Azam F. 2009. Major role of microbes in carbon fluxes during austral winter in the southern Drake Passage. PLoS One 4, e6941, http://dx.doi.org/10.1371/journal.pone.0006941.

Martinson D.G., Stammerjohn S.E., Iannuzzi R.A., Smith R.C. & Vernet M. 2008. Western Antarctic Peninsula physical oceanography and spatio-temporal variability. Deep-Sea Research Part II 55, 1964–1987, http://dx.doi.org/10.1016/j.dsr2.2008.04.038.

Mas-Lladó M., Piña-Villalonga J.M., Brunet-Galmés I., Nogales B. & Bosch R. 2014. Draft genome sequences of two isolates of the Roseobacter group, Sulfitobacter sp. strains 3SOLIMAR09 and 1FIGIMAR09, from harbors of Mallorca Island (Mediterranean Sea). Genome Announcement 2, e00350-14, http://dx.doi.org/10.1128/genomeA.00350-14.

Math R.K., Jin H.M., Kim J.M., Hahn Y., Park W., Madsen E.L. & Jeon C.O. 2012. Comparative genomics reveals adaptation by Alteromonas sp. SN2 to marine tidal-flat conditions: cold tolerance and aromatic hydrocarbon metabolism. PLoS One 7, e35784, http://dx.doi.org/10.1371/journal.pone.0035784.

McDonald D., Price M.N., Goodrich J., Nawrocki E.P., DeSantis T.Z., Probst A., Andersen G.L., Knight R. & Hugenholtz P. 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. The ISME Journal 6, 610–618, http://dx.doi.org/10.1038/ismej.2011.139.

Meredith M.P., Jullion L., Brown P.J., Naveira-Garabato A.C. & Couldrey M.P. 2014. Dense waters of the Weddell and Scotia seas: recent changes in properties and circulation. Philosophical Transactions A 372, article no. 20130041, http://dx.doi.org/10.1098/rsta.2013.0041.

Meredith M.P. & King J.C. 2005. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophysical Research Letters 32, L19604, http://dx.doi.org/10.1029/2005GL024042.

Methe B.A., Nelson K.E., Deming J.W., Momen B., Melamud E., Zhang X., Moult J., Madupu R., Nelson W.C., Dodson R.J., Leone L.B., Daugherty S.C., Durkin A.S., DeBoy R.T., Kolonay J.F., Sullivan S.A., Zhou L., Davidsen T.M., Wu M., Huston A.L., Lewis M., Weaver B., Weidman J.F., Khouri H., Utterback T.R., Feldblyum T.V. & Fraser C.M. 2005. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proceedings of the National Academy of Sciences of the United States of America 102, 10913–10918, http://dx.doi.org/10.1073/pnas.0504766102.

Moline M.A., Claustre H., Frazer T.K., Schofield O. & Vernet M. 2004. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Global Change Biology 10, 1973–1980, http://dx.doi.org/10.1111/j.1365-2486.2004.00825.x.

Moline M.A., Karnovsky N.J., Brown Z., Divoky G.J., Frazer T.K., Jacoby C.A., Torres J.J. & Fraser W.R. 2009. High latitude changes in ice dynamics and their impact on polar marine ecosystems. Annals of the New York Academy of Sciences 1134, 267–319, http://dx.doi.org/10.1196/annals.1439.010.

Montes-Hugo M., Doney S.C., Ducklow H.W., Fraser W., Martinson D., Stammerjohn S.E. & Schofield O. 2009. Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science 323, 1470–1473, http://dx.doi.org/10.1126/science.1164533.

Mounier J., Camus A., Mitteau I., Vaysse P.J., Goulas P., Grimaud R. & Sivadon P. 2014. The marine bacterium Marinobacter hydrocarbonoclasticus SP17 degrades a wide range of lipids and hydrocarbons through the formation of oleolytic biofilms with distinct gene expression profiles. FEMS Microbiology Ecology 90, 816–831, http://dx.doi.org/10.1111/1574-6941.12439.

Murray A.E. & Grzymski J. 2007. Diversity and genomics of Antarctic marine micro-organisms. Philosophical Transactions of the Royal Society B 362, 2259–2271, http://dx.doi.org/10.1098/rstb.2006.1944.

Murray A.E., Peng V., Tyler C. & Wagh P. 2011. Marine bacterioplankton biomass, activity and community structure in the vicinity of Antarctic icebergs. Deep-Sea Research Part II 58, 1407–1421, http://dx.doi.org/10.1016/j.dsr2.2010.11.021.

Murray A.E., Perston C.M., Massana R., Taylor L.T., Blakis A., Wu K. & Delong E.F. 1998. Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Applied Environmental Microbiology 64, 2585–2595.

Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., Stevens M.H.H., Szoecs E. & Wagner H. 2018. Vegan: community ecology package, version. R package version 2.4.6. Accessed on the internet at http://CRAN.R-project.org/package=vegan on 20 May 2018.

Parkinson C.L. & Cavalieri D.J. 2012. Antarctic sea ice variability and trends, 1979–2010. Cryosphere 6, 871–880, http://dx.doi.org/10.5194/tc-6-871-2012.

Parsons T.R. 1984. A manual of chemical & biological methods for seawater analysis. Amsterdam: Pergamon.

Paterson H., Laybourn-Parry J., Paterson H. & Laybourn-Parry J. 2012. Antarctic sea ice viral dynamics over an annual cycle. Polar Biology 35, 491–497.

Piquet A.M., Bolhuis H., Meredith M.P. & Buma A.G. 2011. Shifts in coastal Antarctic marine microbial communities during and after melt water-related surface stratification. FEMS Microbiology Ecology 76, 413–427, http://dx.doi.org/10.1111/j.1574-6941.2011.01062.x.

Pruesse E., Quast C., Knittel K., Fuchs B.M., Ludwig W., Peplies J. & Glockner F.O. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research 35, 7188–7196, http://dx.doi.org/10.1093/nar/gkm864.

Säwström C., Karlsson J., Laybourn-Parry J. & Granéli W. 2009. Zooplankton feeding on algae and bacteria under ice in Lake Druzhby, East Antarctica. Polar Biology 32, 1195–1202, http://dx.doi.org/10.1007/s00300-009-0619-0.

Schlitzer R. 2018. Ocean data view, version 4.5.0. Accessed on the internet at http://odv.awi.de/ on 1 May 2018.

Schloss P.D., Westcott S.L., Ryabin T., Hall J.R., Hartmann M., Hollister E.B., Lesniewski R.A., Oakley B.B., Parks D.H., Robinson C.J., Sahl J.W., Stres B., Thallinger G.G., Van Horn D.J. & Weber C.F. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75, 7537–7541, http://dx.doi.org/10.1128/AEM.01541-09.

Schofield O., Ducklow H.W., Martinson D.G., Meredith M.P., Moline M.A. & Fraser W.R. 2010. How do polar marine ecosystems respond to rapid climate change? Science 328, 1520–1523, http://dx.doi.org/10.1126/science.1185779.

Shi J.X., Sun Y.M., Jiao Y.T., Hao G. & Wang M. 2016. Water masses and exchanges in the region around the northern tip of Antarctic Peninsula observed in summer of 2011/2012. Advance in Polar Science 28, 67–79.

Signori C.N., Pellizari V.H., Enrich-Prast A. & Sievert S.M. 2018. Spatiotemporal dynamics of marine bacterial and archaeal communities in surface waters off the northern Antarctic Peninsula. Deep-Sea Research Part II 149, 150–160, http://dx.doi.org/10.1016/j.dsr2.2017.12.017.

Signori C.N., Thomas F., Enrich-Prast A., Pollery R.C.G. & Sievert S.M. 2014. Microbial diversity and community structure across environmental gradients in Bransfield Strait, western Antarctic Peninsula. Frontiers in Microbiology 5, article no. 647, http://dx.doi.org/10.3389/fmicb.2014.00647.

Simó R., Vila-Costa M., Alonso-Sáez L., Cardelús C., Guadayol O., Vázquez-Domínguez E., Gasol J.M. 2009. Annual DMSP contribution to S and C fluxes through phytoplankton and bacterioplankton in a NW Mediterranean coastal site. Aquatic Microbialogy Ecology 57, 43–55, http://dx.doi.org/10.3354/ame01325.

Singer E., Webb E.A., Nelson W.C., Heidelberg J.F., Ivanova N., Pati A. & Edwards K.J. 2011. Genomic potential of Marinobacter aquaeolei, a biogeochemical “opportunitroph”. Applied and Environmental Microbiology 77, 2763–2771, http://dx.doi.org/10.1128/AEM.01866-10.

Smetacek V. & Nicol S. 2005. Polar ocean ecosystems in a changing world. Nature 437, 362–368, http://dx.doi.org/10.1038/nature04161.

Stammerjohn S., Massom R., Rind D. & Martinson D. 2012. Regions of rapid sea ice change: an inter-hemispheric seasonal comparison. Geophysical Research Letters 39, L06501, http://dx.doi.org/10.1029/2012GL050874.

Stefels J., van Leeuwe M.A., Jones E.M., Meredith M.P., Venables H.J., Webb A.L., Sian F. & Henley S.F. 2018. Impact of sea-ice melt on dimethyl sulfide (sulfoniopropionate) inventories in surface waters of Marguerite Bay, west Antarctic Peninsula. Philosophical Transactions A 376, article no. 20170169, http://dx.doi.org/10.1098/rsta.2017.0169.

Sun F.L., Wang Y.S., Wu M.L., Jiang Z.Y., Sun C.C. & Chen H. 2014. Genetic diversity of bacterial communities and gene transfer agents in northern South China Sea. PLoS One 9, e111892, http://dx.doi.org/10.1371/journal.pone.0111892.

Todd J.D., Rogers R., Li Y.G., Wexler M., Bond P.L., Sun L., Curson A.R.J., Malin G., Steinke M. & Johnston A.W.B. 2007. Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 315, 666–669, http://dx.doi.org/10.1126/science.1135370.

Toole D.A. & Siegel D.A. 2004. Light-driven cycling of dimethylsulfide (DMS) in the Sargasso Sea: closing the loop. Geophysical Research Letters 31, L09308, http://dx.doi.org/10.1029/2004GL019581.

Topping J.N., Heywood J.L., Ward P. & Zubkov M.V. 2006. Bacterioplankton composition in the Scotia Sea, Antarctica, during the austral summer of 2003. Aquatic Microbiology Ecology 45, 229–235, http://dx.doi.org/10.3354/ame045229.

Turner J., Colwell S.R., Marshall G.J., Lachlan-Cope T.A., Carleton A.M., Jones P.D. & Iagovkina S. 2005. Antarctic climate change during the last 50 years. International Journal of Climatology 25, 279–294, http://dx.doi.org/10.1002/joc.1130.

Turner S., Pryer K.M., Miao V.P. & Palmer J.D. 1999. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. Journal of Eukaryotic Microbiology 47, 327–338, http://dx.doi.org/10.1111/j.1550-7408.1999.tb04612.x.

Wilkins D., Lauro F.M., Williams T.J., Demaere M.Z., Brown M.V., Hoffman J.M., Andrews-Pfannkoch C., Mcquaid J.B., Riddle M.J., Rintoul S.R. & Cavicchioli R. 2013. Biogeographic partitioning of Southern Ocean microorganisms revealed by metagenomics. Environmental Microbiology 15, 1318–1333, http://dx.doi.org/10.1111/1462-2920.12035.

Wilkins D., Yau S., Williams T.J., Allen M.A., Brown M.V., MeMaere M.Z., Lauro F.M. & Cavicchioli R. 2013. Key microbial drivers in Antarctic aquatic environments. FEMS Microbiology Review 37, 303–335, http://dx.doi.org/10.1111/1574-6976.12007.

Williams T.J., Long E., Evans F., Demaere M.Z., Lauro F.M., Raftery M.J., Ducklow H., Grzymski J.J., Murray A.E. & Cavicchioli R. 2012. A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. The ISME Journal 6, 1883–1900, http://dx.doi.org/10.1038/ismej.2012.28.

Wouters B., Martin-Espanol A., Helm V., Flament T., van Wessem J.M., Ligtenberg S.R. & van den Broke M.R. 2015. Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science 348, 899–903, http://dx.doi.org/10.1126/science.aaa5727.

Zeng Y.X., Qiao Z.Y., Yu Y., Li H.R. & Luo W. 2016. Diversity of bacterial dimethylsulfoniopropionate degradation genes in surface seawater of Arctic Kongsfjorden. Scientific Report 6, article no. 33031, http://dx.doi.org/10.1038/srep33031.

Zhang F., He J.F., Lin L. & Jin H.Y. 2015. Dominance of picophytoplankton in the newly open surface water of the central Arctic Ocean. Polar Biology 38, 1081–1089, http://dx.doi.org/10.1007/s00300-015-1662-7.

Zubkov M.V., Fuchs B.M., Tarran G.A., Burkill P.H. & Amann R. 2002. Mesoscale distribution of dominant bacterioplankton groups in the northern North Sea in early summer. Aquatic Microbiology Ecology 29, 135–144, http://dx.doi.org/10.3354/ame029135
How to Cite
Cao, S., He, J., Zhang, F., Lin, L., Gao, Y., & Zhou, Q. (2019). Diversity and community structure of bacterioplankton in surface waters off the northern tip of the Antarctic Peninsula. Polar Research, 38. https://doi.org/10.33265/polar.v38.3491
Research Articles