A nematode in the mist: Scottnema lindsayae is the only soil metazoan in remote Antarctic deserts, at greater densities with altitude

  • Krzysztof Zawierucha Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University
  • Craig J. Marshall Department of Biochemistry and Genetics Otago, University of Otago
  • David Wharton Department of Zoology, University of Otago
  • Karel Janko Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic
Keywords: Altitudinal gradient, Antarctica, ecosystem variability, orographic clouds, Darwin Glacier, soil moisture


A decrease in biodiversity and density of terrestrial organisms with increasing altitude and latitude is a well-known ecogeographical pattern. However, studies of these trends are often taxonomically-biased toward well-known organisms and especially those with relatively large bodies, and environmental variability at the local scale may perturb these general effects. Here, we focus on understudied organisms—soil invertebrates—in Antarctic deserts, which are among the driest and coldest places on Earth. We sampled two remote Antarctic sites in the Darwin Glacier area and established an altitudinal gradient running from 210 to 836 m a.s.l. We measured soil geochemistry and organic matter content and linked these parameters with the presence of soil invertebrates. We found three general outcomes, two of which are consistent with general assumptions: (a) the hostile climatic condition of the Darwin Glacier region supports an extremely low diversity of soil metazoans represented by a single nematode species—Scottnema lindsayae; (b) soil geochemistry is the main factor influencing distribution of nematodes at the local scale. Contrary to our expectations, a positive correlation was found between nematode density and altitude. This last observation could be explained by an additional effect of soil moisture as we found this increased with altitude and may be caused by orographic clouds, which are present in this region. To the best of our knowledge such effects have been described in tropical and temperate regions. Potential effect of orographic clouds on soil properties in polar deserts may be a fruitful area of ecological research on soil fauna.


Download data is not yet available.


Adams B.J., Bardgett R.D., Ayres E., Wall D.H., Aislabie J., Bamforth S., Bargagli R., Cary C., Cavacini P., Connell L., Convey P., Fell J.W., Frati F., Hogg I.D., Newsham K.K., O’Donnell A., Russell N., Seppelt R.D. & Stevens M.I. 2006. Diversity and distribution of Victoria Land biota. Soil Biology and Biochemistry 38, 3003–3018, http://dx.doi.org/10.1016/j.soilbio.2006.04.030.

Adams B.J., Wall D.H., Gozel U., Dillman A.R., Chaston J.M. & Hogg I.D. 2007. The southernmost worm, Scottnema lindsayae (Nematoda): diversity, dispersal and ecological stability. Polar Biology 30, 809–815, http://dx.doi.org/10.1007/s00300-006-0241-3.

Adams B.J., Wall D.H., Virginia R.A., Broos E. & Knox M.A. 2014. Ecological biogeography of the terrestrial nematodes of Victoria Land, Antarctica. ZooKeys 419, 29–71, http://dx.doi.org/10.3897/zookeys.419.7180.

Adlam H.S., Balks M.R., Seybold C.A. & Campbell D.I. 2010. Temporal and spatial variation in active layer depth in the McMurdo Sound Region, Antarctica. Antarctic Science 22, 45–52, http://dx.doi.org/10.1017/S0954102009990460.

Andrew R., Rodgerson L. & Dunlop M. 2003. Variation in invertebrate–bryophyte community structure at different spatial scales along altitudinal gradients. Journal of Biogeography 30, 731–746, http://dx.doi.org/10.1046/j.1365-2699.2003.00849.x.

Andriuzzi W.F., Adams B.J., Barrett J.E., Virginia R.A. & Wall D.H. 2018. Observed trends of soil fauna in the Antarctic Dry Valleys: early signs of shifts predicted under climate change. Ecology 99, 312–321, http://dx.doi.org/10.1002/ecy.2090.

Barrett J.E., Johnson D.W. & Burke I.C. 2002. Abiotic nitrogen uptake in semiarid grassland soils of the U.S. Great Plains. Soil Science Society of America Journal 66, 979–987.

Barrett J.E., Virginia R.A., Wall D.H. & Adams B.J. 2008. Decline in a dominant invertebrate species contributes to altered carbon cycling in a low-diversity soil ecosystem. Global Change Biology 14, 1734–1744, http://dx.doi.org/10.1111/j.1365-2486.2008.01611.x.

Bromwich D.H. & Guo Z. 2004. Modelled Antarctic precipitation. Part I: spatial and temporal variability. Journal of Climate 17, 427–447, http://dx.doi.org/10.1175/1520-0442(2004)017<0427:MAPPIS>2.0.CO;2.

Bryant J.A., Lamanna C., Morlon H., Kerkhoff A.J., Enquist B.J. & Green J.L. 2008. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proceedings of the National Academy of Sciences of the United States of America 12, 11505–11511, http://dx.doi.org/10.1073/pnas.0801920105.

Cáceres L., Gómez-Silva B., Garró X., Rodrìguez V., Monardes V. & McKay CH.P. 2007. Relative humidity patterns and fog water precipitation in the Atacama Desert and biological implications. Journal of Geophysical Research—Biogeosciences 112, g04s14, http://dx.doi.org/10.1029/2006JG000344.

Carosi R., Giacomini F., Talarico F. & Stump E. 2007. Geology of the Byrd Glacier Discontinuity (Ross Orogen): new survey data from the Britannia Range, Antarctica. Open-File Report 2007-1047-SRP-030. Reston, VA: US Geological Survey. http://dx.doi.org/10.3133/ofr20071047SRP030.

Cary C.S., Mcdonald I.R., Barrett J.E. & Cowan D.A. 2010. On the rocks: the microbiology of Antarctic Dry Valley soils. Nature Reviews 8, 129–138, http://dx.doi.org/10.1038/nrmicro2281.

Cereceda P.P., Osses H., Larrain M., Faras M., Lagos, R.P. & Schemenauer R.S. 2002. Advective, orographic and radiation fog in the Tarapaca region, Chile. Atmospheric Research 64, 261–271, http://dx.doi.org/10.1016/S0169-8095(02)00097-2.

Chown S.L., Brooks C.M., Terauds A., Le Bohec C., van Klaveren-Impagliazzo C., Whittington J.D., Butchart S.H.M., Coetzee B.W.T., Collen B., Convey P., Gaston K.J., Gilbert N., Gill M., Hoft R., Johnston S., Kennicutt M.C., Kriesell H.J., Le Maho Y., Lynch H.J., Palomares M., Puig-Marco R., Stoett P. & McGeoch M.A. 2017. Antarctica and the strategic plan for biodiversity. PLoS Biology 15, e2001656, http://dx.doi.org/10.1371/journal.pbio.2001656.

Chown S.L. & Klok J.C. 2013. Altitudinal body size clines: latitudinal effects associated with changing seasonality. Ecography 26, 445–455, http://dx.doi.org/10.1034/j.1600-0587.2003.03479.x.

Cochrane M. 2011. The fate of alpine species in the face of climate change: a biogeographic perspective. Macalester Reviews in Biogeography 2, article no. 1.

Colesie C., Gommeaux M., Green T.G.A. & Büdel B. 2013. Biological soil crusts in continental Antarctica: Garwood Valley, southern Victoria Land, and Diamond Hill, Darwin Mountains region. Antarctic Science 26, 115–123, http://dx.doi.org/10.1017/S0954102013000291.

Colesie C., Green T.G.A., Türk R., Hogg I.D., Sancho L.G. & Bödel B. 2014. Terrestrial biodiversity along the Ross Sea coastline, Antarctica: lack of a latitudinal gradient and potential limits of bioclimatic modeling. Polar Biology 37, 1197–1208, http://dx.doi.org/10.1007/s00300-014-1513-y.

Convey P. 2011. Antarctic terrestrial biodiversity in a changing world. Polar Biology 34, 1629–1641, http://dx.doi.org/10.1007/s00300-011-1068-0.

Convey P., Chown S.L., Clarke A., Barnes D.K.A., Bokhorst S., Cummings V., Ducklow H.W., Frati F., Green T.G.A., Gordon S., Griffiths H.J., Howard-Williams C., Huiskes A.H.L., Laybourn-Parry J., Lyons W.B., McMinn A., Morley S.A., Peck L.S., Quesada A., Robinson S.A., Schiaparelli S. & Wall D.H. 2014. The spatial structure of Antarctic biodiversity. Ecological Monographs 84, 203–244, http://dx.doi.org/10.1890/12-2216.1.

Convey P. & McInnes S.J. 2005. Exceptional tardigrade-dominated ecosystems in Ellsworth Land, Antarctica. Ecology 86, 519–527, http://dx.doi.org/10.1890/04-0684.

Courtright E.M., Wall D.H. & Virginia R.A. 2001. Determining habitat suitability for soil invertebrates in an extreme environment: the McMurdo Dry Valleys, Antarctica. Antarctic Science 13, 9–17.

Czechowski P., White D., Clarke L., McKay A., Cooper A. & Stevens M.I.R. 2016. Age-related environmental gradients influence invertebrate distribution in the Prince Charles Mountains, East Antarctica. Royal Society Open Science 3, article no. 160296, http://dx.doi.org/10.1098/rsos.160296.

Dastych H. 1985. West Spitsbergen Tardigrada. Acta Zoologica Cracviensia 28, 169–214.

Dastych H. 1988. The Tardigrada of Poland. Monografie Fauny-Polski 16. Warsaw: Państwowe Wydawnictwo Naukowe.

Devetter M., Háněl L., Řeháková K. & Doležal J. 2017. Diversity and feeding strategies of soil microfauna along elevation gradients in Himalayan cold deserts. PLoS One 12(11), e0187646, http://dx.doi.org/10.1371/journal.pone.0187646.

Doran P.T., Lyons W.B. & McKnight D.M. 2010. Life in Antarctic deserts and other cold dry environments. Astrobiological analogs. Cambridge: Cambridge University Press. doi: http://dx.doi.org/10.1017/CBO9780511712258.

Doran P.T., McKay C.P., Clow G.D., Dana G.L., Fountain A.G., Nylen T. & Lyons W.B. 2002. Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. Journal of Geophysical Research—Atmospheres 107, article no. 4772, http://dx.doi.org/10.1029/2001JD002045.

Elliot D. & Fleming T. 2004. Occurrence and dispersal of magmas in the Jurassic Ferrar Large Igneous Province, Antarctica. GondwanaResearch 7, 223–237, http://dx.doi.org/10.1016/S1342-937X(05)70322-1.

Fountain A.F., Lyons W.B., Burkins M.B., Dana G.L., Doran P.T., Lewis K.J, McKnight D.M., Moorhead D.L., Parsons A.N., Priscu J.C., Wall D.H., Wharton R.A. Jr. & Virginia R.A. 1999. Physical controls on the Taylor Valley ecosystem, Antarctica. BioScience 49, 961–971, http://dx.doi.org/10.2307/1313730.

Freckman D.W. & Virginia R.A. 1997. Low diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology 78, 363–369.

Freckman D.W. & Virginia R.A. 1998. Soil biodiversity and community structure in the McMurdo Dry Valleys, Antarctica. In J.C. Priscu (ed.): Ecosystem dynamics in a polar desert: the McMurdo Dry Valleys, Antarctica. Pp. 323–335. Washington, DC: American Geophysical Union. http://dx.doi.org/10.1029/AR072p0323

Gooseff M.N., Barrett J.E., Doran P.T., Fountain A.G., Lyons W.B., Parsons A.N., Porazińska D.L., Virginia R.A. & Wall D.H. 2003. Snow-patch influence on soil biogeochemical processes and invertebrate distribution in the McMurdo Dry Valleys, Antarctica. Arctic Antarctic and Alpine Research 35, 91–99, http://dx.doi.org/10.1657/1523-0430(2003)035[0091:SPIOSB]2.0.CO;2.

Green T.G.A. & Proctor M.C.F. 2016. Physiology of photosynthetic organisms within biological soil crusts: their adaptation, flexibility, and plasticity. In B. Weber et al. (eds.): Biological soil crusts: an organizing principle in drylands. Pp. 347–381. Dordrecht: Springer. http://dx.doi.org/10.1007/978-3-319-30214-0_18.

Gremmen N.J.M., Van DeVijver B., Frenot Y. & Lebouvier M. 2007. Distribution of moss-inhabiting diatoms along an altitudinal gradient at sub-Antarctic Îles Kerguelen. Antarctic Science 19, 17–24, http://dx.doi.org/10.1017/S0954102007000041.

Guil N., Hortal J., Sánchez-Moreno S. & Machordom A. 2009. Effects of macro and micro-environmental factors on the species richness of terrestrial tardigrade assemblages in an Iberian mountain environment. Landscape Ecology 24, 375–390, http://dx.doi.org/10.1007/s10980-008-9312-x.

Hodkinson I.D. 2005. Terrestrial insects along elevation gradients: species and community responses to altitude. Biological Reviews 80, 489–513, http://dx.doi.org/10.1017/S1464793105006767.

Hooper D.J., Hallman J. & Subbotin S.A. 2005. Methods for extraction, processing and detection of plant and soil nematodes. In M. Luc et al. (eds.): Plant parasitic nematodes in subtropical and tropical agriculture. Pp. 53–86. Wallingford, UK: CABI Publishing. http://dx.doi.org/10.1079/9780851997278.0053.

Horowitz N.H., Cameron R.E. & Hubbard J.S. 1972. Microbiology of Dry Valleys of Antarctica. Science 176, 242–245, http://dx.doi.org/10.1126/science.176.4032.242.

Iglesias Briones M.J., Trevor P. & Piearce G. 1997. Effects of climate change on soil fauna; responses of enchytraeids, Diptera larvae and tardigrades in a transplant experiment. Applied Soil Ecology 6, 117–134, http://dx.doi.org/10.1016/S0929-1393(97)00004-8.

Kathman R.D. & Cross S.F. 1991. Ecological distribution of moss-dwelling tardigrades on Vancouver Island, British Columbia, Canada. Canadian Journal of Zoology 69, 122–129, http://dx.doi.org/10.1139/z91-018.

Kotas P., Šantrůčková H., Elster J. & Kaštovská E. 2017. Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard). Biogeosciences 15, 1879–1894, http://dx.doi.org/10.5194/bg-15-1879-2018.

Magalhăes C., Stevens M.I., Cary S.C., Ball B.A., Storey B.C., Wall D.H., Türk R. & Ruprecht U. 2012. At limits of life: multidisciplinary insights reveal environmental constraints in biotic diversity in continental Antarctica. PLoS One 7, e44578, http://dx.doi.org/10.1371/journal.pone.0044578.

Moorhead D.L., Barrett J.E., Virginia R.A., Wall D.H. & Porazińska D. 2003. Organic matter and soil biota of upland wetlands in Taylor Valley, Antarctica. Polar Biology 26, 567–576, http://dx.doi.org/10.1007/s00300-003-0524-x.

Nelson D.R. 1975. Ecological distribution of tardigrades on Roan Mountain, Tennessee–north Carolina. Memorie Dell’Istituto Italiano di Idrobiologia 32, 225–276.

Nielsen U.N. & Wall D.H. 2013. The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic? Ecology Letters 16, 409–419, http://dx.doi.org/10.1111/ele.12058.

Nkem J.N., Virginia R.A., Barrett J.E., Wall D.H. & Li G. 2006. Salt tolerance and survival thresholds for two species of Antarctic soil nematodes. Polar Biology 29, 643–651, http://dx.doi.org/10.1007/s00300-005-0101-6.

Poage M.A., Barrett J.E., Virginia R.A. & Wall D.H. 2008. The influence of soil geochemistry on nematode distribution, McMurdo Dry Valleys, Antarctica. Arctic, Antarctic, and Alpine Research 40, 119–128, http://dx.doi.org/10.1657/1523-0430(06-051)[POAGE]2.0.CO;2.

Porazińska D.L., Fountain A.G., Nylen T.H., Tranter M., Virginia R.A. & Wall D.H. 2004. The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arctic, Antarctic, and Alpine Research 36, 84–91, http://dx.doi.org/10.1657/1523-0430(2004)036[0084:TBABOC]2.0.CO;2.

Porazińska D.L., Wall D.H. & Virginia R.A. 2002a. Invertebrates in ornithogenic soils on Ross Island, Antarctica. Polar Biology 25, 569–574, http://dx.doi.org/10.1007/s00300-002-0386-7.

Porazińska D.L., Wall D.H. & Virginia R.A. 2002b. Population age structure of nematodes in the Antarctic Dry Valleys: perspectives on time, space, and habitat suitability. Arctic, Antarctic, and Alpine Research 34, 159–168, http://dx.doi.org/10.2307/1552467.

Pounds J.A., Fogden P.L. & Campbell J.H. 1999. Biological response to climate change on a tropical mountain. Nature 398, 611–615, http://dx.doi.org/10.1038/19297.

Powers L.E., Freckman D.W., Ho M. & Virginia R.A. 1995. McMurdo LTER: soil properties associated with nematode distribution along an elevational transect in Taylor Valley, Antarctica. Antarctic Journal of the United States 30, 282–287.

Powers L.E., Freckman D.W. & Virginia R.A. 1994. Depth distribution of soil nematodes in Taylor Valley, Antarctica. Antarctic Journal of the United States 29, 175–176.

Powers L.E., Freckman D.W. & Virginia R.A. 1995. Spatial distribution of nematodes in polar desert soils of Antarctica. Polar Biology 15, 325–333.

Powers L.E., Ho M.C., Freckman D.W. & Virginia R.A. 1998. Distribution, community structure, and microhabitats of soil invertebrates along an elevational gradient in Taylor Valley, Antarctica. Arctic and Alpine Research 30, 133–141, http://dx.doi.org/10.2307/1552128.

Procter E.L.C. 1990. Global overview of the functional roles of soil-living nematodes in terrestrial communities and ecosystems. The Journal of Nematodology 22, 1–7.

R Development Core Team 2008. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Ruprecht U., Lumbsch H., Brunauer G., Green T.G.A. & Türk R. 2010. Diversity of Lecidea (Lecideaceae, Ascomycota) species revealed by molecular data and morphological characters. Antarctic Science 22, 727–741, http://dx.doi.org/10.1017/S0954102010000477.

Ruprecht U., Lumbsch H.T., Brunauer G., Green T.G.A. & Türk R. 2012. Insights into the diversity of Lecanoraceae (Lecanorales, Ascomycota) in continental Antarctica (Ross Sea region). Nova Hedwigia 94, 287–306.

Sadaka N. & Ponge J.F. 2003. Soil animal communities in holm oak forests: influence of horizon, altitude and year. European Journal of Soil Biology 39, 197–207, http://dx.doi.org/10.1016/j.ejsobi.2003.06.001.

Sawaske S.R. & Freyberg D.L. 2015. Fog, fog drip, and streamflow in the Santa Cruz Mountains of the California Coast Range. Ecohydrology 8, 695–713, http://dx.doi.org/10.1002/eco.1537.

Scholl M.A., Giambelluca T.W., Gingerich S.B., Nullet M.A. & Loope L.L. 2007. Cloud water in windward and leeward mountain forests: the stable isotope signature of orographic cloud water. Water Resources Research 43, W12411, http://dx.doi.org/10.1029/2007WR006011.

Scott R.C. & Lubin D. 2016. Unique manifestations of mixed-phase cloud microphysics over Ross Island and the Ross Ice Shelf, Antarctica. Geophysical Research Letter 43, 2936–2945, http://dx.doi.org/10.1002/2015GL067246.

Shaw E.A., Adams B.J., Barrett J.E., Lyons W.B., Virginia R.A. & Wall D.H. 2018. Stable isotopes reveal soil food web structure and the nematode, Eudorylaimus antarcticus, as an omnivore-predator in Taylor Valley, Antarctica. Polar Biology 41, 1013–1018, http://dx.doi.org/10.1007/s00300-017-2243-8.

Stebaeva S. 2003. Collembolan communities of the Ubsu-Nur Basin and adjacent mountains (Russia, Tuva). Pedobiologia 47, 341–356, http://dx.doi.org/10.1078/0031-4056-00198.

Storey B.C., Fink D., Hood D., Joy K., Shulmeister J., Riger-Kusk M. & Stevens M.I. 2010. Cosmogenic nuclide exposure age constraints on the glacial history of the Lake Wellman area, Darwin Mountains, Antarctica. Antarctic Science 22, 603–618, http://dx.doi.org/10.1017/S0954102010000799.

Wang S., Ruan H. & Wang B. 2009. Effects of soil microarthropods on plant litter decomposition across an elevation gradient in the Wuyi Mountains. Soil Biology and Biochemistry 41, 891–897, http://dx.doi.org/10.1016/j.soilbio.2008.12.016.

Timm R.W. 1971. Antarctic soil and freshwater nematodes from the McMurdo Sound region. Proceedings of the Helminthological Society 38, 42–52.

Treonis A.M., Wall D.H. & Virginia R.A. 1999. Invertebrate biodiversity in Antarctic Dry Valley soils and sediments. Ecosystems 2, 482–492, http://dx.doi.org/10.1007/s100219900096.

Vaughan D.G., Comiso J.C., Allison I., Carrasco J., Kaser G., Mote P., Murray T., Paul F., Ren J., Rignot E., Solomina O., Steffen K. & Zhang T. 2013. Observations: cryosphere. In T.F. Stocker et al. (eds.): Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Pp. 317–382. Cambridge: Cambridge University Press.

Velasco-Castrillón A., Schultz M.B., Colombo F., Gibson J.A.E., Davies K.A., Austin A.D. & Stevens M.I. 2014. Distribution and diversity of soil microfauna from East Antarctica: assessing the link between biotic and abiotic factors. PLoS One 9, e87529, https://doi.org/10.1371/journal.pone.0087529.

Webster-Brown J., Gall M., Gibson J., Wood S. & Hawes I. 2010. The biogeochemistry of meltwater habitats in the Darwin Glacier region (80°S), Victoria Land, Antarctica. Antarctic Science 22, 646–661, http://dx.doi.org/10.1017/S0954102010000787.

Wharton D.A., Marshall C.J. & Egeter B. 2017. Comparisons between two Antarctic nematodes: cultured Panagrolaimus sp. DAW1 and field-sourced Panagrolaimus davidi. Nematology 19, 533–542, http://dx.doi.org/10.1163/15685411-00003066.

Wolda H. 1987. Altitude, habitat and tropical insect diversity. Biological Journal of the Linnean Society 30, 313–323.

Wood T.G. 1974. The distribution of earthworms (Megascolecidae) in relation to soils, vegetation and altitude on the slopes of Mt Kosciusko, Australia. Journal of Animal Ecology 43, 87–106.

Zawierucha K., Buda J. & Nawrot A. 2019. Extreme weather event results in the removal of invertebrates from cryoconite holes on an Arctic valley glacier (Longyearbreen, Svalbard). Ecological Research, http://dx.doi.org/10.1111/1440-1703.1276.

Zawierucha K., Smykla J., Michalczyk Ł., Gołdyn B. & Kaczmarek Ł. 2015. Distribution and diversity of Tardigrada along altitudinal gradients in the Hornsund, Spitsbergen (Arctic). Polar Research 34, article no. 24168, http://dx.doi.org/10.3402/polar.v34.24168.

Zibrodi G. & Frezzotti M. 1996. Orographic clouds in north Victoria Land from AVHRR images. Polar Record 32, 317–324.
How to Cite
Zawierucha, K., Marshall, C., Wharton, D., & Janko, K. (2019). A nematode in the mist: <em>Scottnema lindsayae</em&gt; is the only soil metazoan in remote Antarctic deserts, at greater densities with altitude. Polar Research, 38. https://doi.org/10.33265/polar.v38.3494
Research Articles

Most read articles by the same author(s)