How long will an Arctic mountain glacier survive? A case study of Austre Lovénbreen, Svalbard

  • Zemin Wang Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan, China
  • Guobiao Lin Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan, China
  • Songtao Ai Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan, China
Keywords: Climate scenarios, Elmer/Ice, basal sliding, peak runoff, glacier disappearance

Abstract

To study Arctic valley glacier responses to global climate change, the Elmer/Ice ice-flow model was used to investigate long-term changes in Austre Lovénbreen, a typical polythermal glacier in Svalbard. Evolution and features, including volume, area, ice thickness, runoff and time and mode of glacier disappearance, were projected. Firstly, steady-state simulations were performed to determine the best parameters for the ice-flow model, which were then used to simulate glacial dynamics. Based on the 21st-century Arctic warming trend in the fifth assessment report published by the Intergovernmental Panel on Climate Change, the evolution of the glacier was simulated under three hypothetical climatic scenarios: pessimistic, high-probability and optimistic. The results predicted that the glacier will retreat until disappearance under all three scenarios, and its disappearance time will likely be approximately 111 years (by 2120). Under all scenarios, glacier volume and area reductions will be slow at first, then fast and finally slow again at the end. In particular, glacial runoff will increase markedly until 2070 in the high-probability scenario, and the peak runoff will be double the current value.

Downloads

Download data is not yet available.

References


Ai S., E D., Yan M. & Ren J. 2006. Arctic glacier movement monitoring with GPS method on 2005. Chinese Journal of Polar Science 17, 61–68.


Ai S., Wang Z., E D., Holmen K., Tan Z., Zhou C. & Sun W. 2014. Topography, ice thickness and ice volume of the glacier Pedersenbreen in Svalbard, using GPR and GPS. Polar Research 33, article no. 18533, doi: 10.3402/polar.v33.18533.


Ai S., Wang Z., E D., Pang X., Zhou C., Yan M., Sun J. & Liu H. 2012. Topographic survey on the surface of glacier Austre Lovénbreen and Pedersenbreen in Svalbard based on GPS method. Chinese Journal of Polar Research 24, 53–59.


Ai S., Wang Z., E D. & Yan M. 2012. Surface movement research of Arctic glaciers using GPS method. Geomatics & Information Science of Wuhan University 37, 1337–1340.


Ai S., Wang Z., Tan Z., E D. & Yan M. 2013. Mass change study on Arctic glacier Pedersenbreen, during 1936-1990-2009. Chinese Science Bulletin 58, 3148–3154.


Barnard A., Wellner J.S. & Anderson J.B. 2014. Late Holocene climate change recorded in proxy records from a Bransfield Basin sediment core, Antarctic Peninsula. Polar Research 33, article no. 17236, doi: 10.3402/polar.v33.17236.


Bernard E., Friedt J.M., Tolle F., Griselin M., Laffly D. & Marlin C. 2011. Using ground based high resolution photography for seasonal snow and ice dynamics (Austre Lovénbreen, Svalbard, 79°N). Paper presented at the 15th Alpine Glaciology Meeting, 25 February, Munich, Germany.


Bernard É., Friedt J.M., Tolle F., Griselin M., Martin G., Laffly D. & Marlin C. 2013. Monitoring seasonal snow dynamics using ground based high resolution photography (AustreLovénbreen, Svalbard, 79°N). ISPRS Journal of Photogrammetry and Remote Sensing 75, 92–100, doi: 10.1016/j.isprsjprs.2012.11.001.


Collins M., Knutti R., Arblaster J., Dufresne J.L., Fichefet T., Friedlingstein P., Gao X., Gutowski W.J., Johns T., Krinner G., Shongwe M., Tebaldi C., Weaver A.J. & Wehner M. 2013. Long-term climate change: projections, commitments and irreversibility. In T.F. Stocker et al. (eds.): Climate change 2013. The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Pp. 1055–1056. Cambridge: Cambridge University Press.


Fleming K.M., Dowdeswell J.A. & Oerlemans J. 1997. Modelling the mass balance of northwest Spitsbergen glaciers and responses to climate change. Annals of Glaciology 24, 203–210, doi: 10.3189/S0260305500012180.


Førland E.J., Benestad R., Hanssen-Bauer I., Haugen J.E. & Skaugen T.E. 2011. Temperature and precipitation development at Svalbard 1900–2100. Advances in Meteorology 17, 13–30, doi: 10.1155/2011/893790.


Gagliardini O., Zwinger T., Gillet-Chaulet F., Durand G., Favier L., Fleurian B.D., Greve R., Malinen M., Martín C., Råback P. & Ruokolainen J. 2013. Capabilities and performance of Elmer/Ice, a new generation ice-sheet model. Geoscientific Model Development 6, 1299–1318, doi: 10.5194/gmd-6-1299-2013.


Gardner A.S., Moholdt G., Wouters B., Wolken G.J., Burgess D.O., Sharp M.J., Cogley J.G., Braun C. & Labine C. 2011. Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature 473, 357, doi: 10.1038/nature10089.


Geuzaine C. & Remacle J. 2009. Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering 79, 1309-1331, doi: 10.1002/nme.2579.


Greve R. & Blatter H. 2009. Dynamics of ice sheets and glaciers. Berlin: Springer.


Huss M. & Hock R. 2018. Global-scale hydrological response to future glacier mass loss. Nature Climate Change 8, 135–140, doi: 10.1038/s41558-017-0049-x.


Huss M., Hock R., Bauder A. & Funk M. 2010. 100-year mass changes in the Swiss Alps linked to the Atlantic Multidecadal Oscillation. Geophysical Research Letters 37, L10501, doi: 10.1029/2010GL042616.


James T.D., Murray T., Barrand N.E., Sykes H.J., Fox A.J. & King M.A. 2012. Observations of enhanced thinning in the upper reaches of Svalbard glaciers. The Cryosphere 6, 1369–1381, doi: 10.5194/tc-6-1369-2012.


Jania J., Mochnacki D. & Gadek B. 1996. The thermal structure of Hansbreen, a tidewater glacier in southern Spitsbergen, Svalbard. Polar Research 15, 53–63, doi: 10.3402/polar.v15i1.6636.


Jouvet G., Huss M., Funk M. & Blatter H. 2011. Modelling the retreat of Grosser Aletschgletscher, Switzerland, in a changing climate. Journal of Glaciology 57, 1033–1045, doi: 10.3189/002214311798843359.


Kohler J., James T.D., Murray T., Nuth C., Brandt O., Barrand N.E., Aas H.F. & Luckman A. 2007. Acceleration in thinning rate on western Svalbard glaciers. Geophysical Research Letters 34, L18502, doi: 10.1029/2007GL030681.


Kohler J., Nordli Ø., Brandt O., Isaksson E., Pohjola V., Martma T. & Aas H.F. 2002. Svalbard temperature and precipitation, late 19th century to the present. Final report on ACIA-funded project. Oslo: Norwegian Polar Institute.


Lang C., Fettweis X. & Erpicum M. 2016. Stable climate and surface mass balance in Svalbard over 1979–2013 despite the Arctic warming. The Cryosphere 9, 83–101, doi: 10.5194/tc-9-83-2015.


Małecki J. 2013. Elevation and volume changes of seven Dickson Land glaciers, Svalbard, 1960–1990–2009. Polar Research 32, article no. 18400, doi: 10.3402/polar.v32i0.18400.


Małecki J. 2016. Accelerating retreat and high-elevation thinning of glaciers in central Spitsbergen. The Cryosphere 10, 1317–1329, doi: 10.5194/tc-10-1317-2016.


Marlin C., Tolle F., Griselin M., Bernard E., Saintenoy A., Quenet M. & Friedt J.M. 2017. Change in geometry of a High Arctic glacier from 1948 to 2013 (Austre Lovénbreen, Svalbard). Geografiska Annaler Series A 99, 115–138, doi: 10.1080/04353676.2017.1285203.


Matul A., Spielhagen R., Kazarina G., Kruglikova S., Dmitrenko O. & Mohan R. 2018. Warm-water events in the eastern Fram Strait during the last 2000 years as revealed by different microfossil group. Polar Research 37, article no. 1540243, doi: 10.1080/17518369.2018.1540243.


Möller M. & Kohler J. 2018. Differing climatic mass balance evolution across Svalbard glacier regions over 1900-2010. Frontiers in Earth Science 6, UNSP 128, doi: 10.3389/feart.2018.00128.


Moreau M., Mercier D., Laffly D. & Roussel E. 2008. Impacts of recent paraglacial dynamics on plant colonization: a case study on Midtre Lovénbreen foreland, Spitsbergen (79°N). Geomorphology 95, 48–60, doi: 10.1016/j.geomorph.2006.07.031.


Nuth C., Kohler J., König M., Deschwanden A.V., Hagen J.O.M., Kääb A., Moholdt G. & Pettersson R. 2013. Decadal changes from a multi-temporal glacier inventory of Svalbard. The Cryosphere 7, 1603–1621, doi: 10.5194/tc-7-1603-2013.


Oerlemans J. & Fortuin J.P. 1992. Sensitivity of glaciers and small ice caps to greenhouse warming. Science 258, 115–117, doi: 10.1126/science.258.5079.115.


Pelto M.S. 2018. How unusual was 2015 in the 1984–2015 period of the North Cascade Glacier annual mass balance? Water 10(5), article no. 543, doi: 10.3390/w10050543.


Pérez T., Mattar C. & Fuster R. 2018. Decrease in snow cover over the Aysén River catchment in Patagonia, Chile. Water 10(5), article no. 619, doi: 10.3390/w10050619.


Pramanik A., Van Pelt W., Kohler J. & Schuler T.V. 2018. Simulating climatic mass balance, seasonal snow development and associated freshwater runoff in the Kongsfjord basin, Svalbard (1980–2016). Journal of Glaciology 64, 943–956, doi: 10.1017/jog.2018.80.


Réveillet M., Rabatel A., Gillet-Chaulet F. & Soruco A. 2015. Simulations of changes to Glaciar Zongo, Bolivia (16°S), over the 21st century using a 3-D full-Stokes model and CMIP5 climate projections. Annals of Glaciology 56(70), 89–97, doi: 10.3189/2015AoG70A113.


Saintenoy A., Friedt J.M., Booth A.D., Tolle F., Bernard E., Laffly D., Marlin C. & Griselin M. 2013. Deriving ice thickness, glacier volume and bedrock morphology of AustreLovénbreen (Svalbard) using GPR. Near Surface Geophysics 11, 253–261, doi: 10.3997/1873-0604.2012040.


Sun W., Yan M., Ai S., Zhu G., Wang Z., Liu L., Xu Y. & Ren J. 2016. Ice temperature characteristics of the Austre Lovénbreen glacier in Ny-Ålesund, Arctic region. Geomatics and Information Science of Wuhan University 41, 79–85, doi: 10.13203/j.whugis20150302.


Tsuji M., Uetake J. & Tanabe Y. 2016. Changes in the fungal community of Austre Brøggerbreen deglaciation area, Ny-Ålesund, Svalbard, High Arctic. Mycoscience 57, 448–451, doi: 10.1016/j.myc.2016.07.006.


Välisuo I., Zwinger T. & Kohler J. 2017. Inverse solution of surface mass balance of Midtre Lovénbreen, Svalbard. Journal of Glaciology 63, 593–602, doi: 10.1017/jog.2017.26.


Verbunt M., Gurtz J., Jasper K., Lang H., Warmerdam P. & Zappa M. 2003. The hydrological role of snow and glaciers in alpine river basins and their distributed modeling. Journal of Hydrology 282, 36–55, doi: 10.1016/S0022-1694(03)00251-8.


Werder M.A., Hewitt I.J., Schoof C.G. & Flowers G.E. 2013. Modeling channelized and distributed subglacial drainage in two dimensions. Journal of Geophysical Research—Earth Surface 118, 2140–2158, doi: 10.1002/jgrf.20146.


World Glacier Monitoring Service (WGMS) 2017. Fluctuations of glaciers database. Zurich: World Glacier Monitoring Service. Accessed on the internet at https://wgms.ch/data_databaseversions/in 2018.


Xu M., Han H. & Kang S. 2017. Modeling glacier mass balance and runoff in the Koxkar River Basin on the South Slope of the Tianshan Mountains, China, from 1959 to 2009. Water 9(2), article no. 100, doi: 10.3390/w9020100.


Xu M., Yan M., Kang J. & Ren J. 2007. Progress in studies on mass balance of glaciers, Svalbard, Arctic. Journal of Glaciology and Geocryology 29, 730–737.


Xu M., Yan M., Ren J., Ai S., Kang J. & E D. 2010. Surface mass balance and ice flow of the glaciers Austre Lovénbreen and Pedersenbreen, Svalbard, Arctic. Chinese Journal of Polar Science 21, 147–159.


Zhang G., Li Z., Wang W. & Wang W. 2014. Rapid decrease of observed mass balance in the Urumqi Glacier No. 1, Tianshan Mountains, central Asia. Quaternary International 349, 135–141, doi: 10.1016/j.quaint.2013.08.035.


Zhang Y. 2011. The glacier mass balance and its relationship with climate change of Austre Lovénbreen and Pedersenbreen, Svalbard, Arctic. MS thesis, Shandong Normal University, Jinan, China.


Zhao L., Tian L., Zwinger T., Ding R., Zong J., Ye Q. & Moore J.C. 2014. Numerical simulations of Gurenhekou Glacier on the Tibetan Plateau using a full-Stokes ice dynamical model. Journal of Glaciology 60, 71–82, doi: 10.5194/tcd-7-145-2013.


Zwinger T. & Moore J.C. 2009. Diagnostic and prognostic simulations with a full Stokes model accounting for superimposed ice of Midtre Lovénbreen, Svalbard. The Cryosphere 3, 217–229, doi: 10.5194/tc-3-217-2009.
Published
2019-12-13
How to Cite
Wang, Z., Lin, G., & Ai, S. (2019). How long will an Arctic mountain glacier survive? A case study of Austre Lovénbreen, Svalbard. Polar Research, 38. https://doi.org/10.33265/polar.v38.3519
Section
Research Articles