An agenda for the future of Arctic snow research: the view from Svalbard

  • Christian Zdanowicz Department of Earth Sciences, Uppsala University, Uppsala, Sweden;
  • Jean-Charles Gallet Norwegian Polar Institute, Tromsø, Norway https://orcid.org/0000-0002-6153-1361
  • Rosamaria Salvatori Institute of Polar Sciences, National Research Council of Italy, Rome, Italy
  • Eirik Malnes Division for Energy & Technology, NORCE Norwegian Research Centre AS, Bergen, Norway https://orcid.org/0000-0001-9824-9696
  • Ketil Isaksen Division for Model and Climate Analysis, Norwegian Meteorological Institute, Oslo, Norway https://orcid.org/0000-0003-2356-5330
  • Christiane Hübner SIOS Knowledge Centre, Svalbard Integrated Arctic Earth Observing System, Longyearbyen, Norway
  • Eleanor Jones SIOS Knowledge Centre, Svalbard Integrated Arctic Earth Observing System, Longyearbyen, Norway
  • Heikki Lihavainen SIOS Knowledge Centre, Svalbard Integrated Arctic Earth Observing System, Longyearbyen, Norway
Keywords: Glacier mass balance, ecosystem, snowpack chemistry, remote sensing, modelling, focal sites

Abstract

The Arctic region is warming at over twice the mean rate of the Northern Hemisphere and nearly four times faster than the globe since 1979. The local rate of warming is even higher in the European archipelago of Svalbard. This warming is transforming the terrestrial snow cover, which modulates surface energy exchanges with the atmosphere, accounts for most of the runoff in Arctic catchments and is also a transient reservoir of atmospherically deposited compounds, including pollutants. Improved observations, understanding and modelling of changes in Arctic snow cover are needed to anticipate the effects these changes will have on the Arctic climate, atmosphere, terrestrial ecosystems and socioeconomic factors. Svalbard has been an international hub of polar research for many decades and benefits from a well-developed science infrastructure. Here, we present an agenda for the future of snow research in Svalbard, jointly developed by a multidisciplinary community of experts. We review recent trends in snow research, identify key knowledge gaps, prioritize future research efforts and recommend supportive actions to advance our knowledge of present and future snow conditions pertaining to glacier mass balance, permafrost, surface hydrology, terrestrial ecology, the cycling and fate of atmospheric contaminants, and remote sensing of snow cover. This perspective piece addresses issues relevant to the circumpolar North and could be used as a template for other national or international Arctic research plans.

Downloads

Download data is not yet available.

References


Aalstad K., Westermann S. & Bertino L. 2020. Evaluating satellite retrieved fractional snow-covered area at a High-Arctic site using terrestrial photography. Remote Sensing of Environment 239, article no. 111618, doi: 10.1016/j.rse.2019.111618.


Aalstad K., Westermann S., Schuler T.V., Boike J. & Bertino L. 2018. Ensemble-based assimilation of fractional snow-covered area satellite retrievals to estimate the snow distribution at Arctic sites. The Cryosphere 12, 247–270, doi: 10.5194/tc-12-247-2018.


Aas K.S., Dunse T., Collier E., Schuler T.V., Berntsen T.K., Kohler J. & Luks B. 2016. The climatic mass balance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere–glacier mass balance model. The Cryosphere 10, 1089–1104, doi: 10.5194/tc-10-1089-2016.


AMAP 2006. AMAP assessment 2006: acidifying pollutants, Arctic haze, and acidification in the Arctic. Oslo: Arctic Monitoring and Assessment Programme.


AMAP 2016. AMAP Assessment 2015: temporal trends in persistent organic pollutants in the Arctic. Oslo: Arctic Monitoring and Assessment Programme.


AMAP 2017. AMAP Assessment 2016: chemicals of emerging Arctic concern. Oslo: Arctic Monitoring and Assessment Programme.


André M.-F. 1990. Frequency of debris flows and slush avalanches in Spitsbergen: a tentative evaluation from lichenometry. Polish Polar Research 11, 3−4, 345−363.


Barbante C., Spolaor A., Cairns W.R. & Boutron C. 2017. Man’s footprint on the Arctic environment as revealed by analysis of ice and snow. Earth-Science Reviews 168, 218−231, doi: 10.1016/j.earscirev.2017.02.010.


Barbaro E., Koziol K., Björkman M.P., Vega C.P., Zdanowicz C., Martma T., Gallet J.-C., Kępski D., Larose C., Luks B., Tolle F., Schuler T.V., Uszczyk A. & Spolaor A. 2021. Measurement report: spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across Svalbard during the 2015–2016 snow accumulation season, Atmospheric Chemistry and Physics 21, 3163–3180, doi: 10.5194/acp-21-3163-2021.


Barnett T.P., Adam J.C. & Lettenmaier D.P. 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309, doi: 10.1038/nature04141.


Bartelt P. & Lehning M. 2002. A physical SNOWPACK model for the Swiss avalanche warning, part I: numerical model. Cold Regions Science and Technology 35, 123–145, doi: 10.1016/S0165-232X(02)00074-5.


Bergmann M., Collard F., Fabres J., Gabrielsen G.W., Provencher J.F., Rochman C.M., van Sebille E. & Tekman M.B. 2022. Plastic pollution in the Arctic. Nature Reviews Earth & Environment 3, 323–337, doi: 10.1038/s43017-022-00279-8.


Boetius A., Anesio A.M., Deming J.W., Mikucki J.A. & Rapp J.Z. 2015. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nature Reviews Microbiology 13, 677–690, doi: 10.1038/nrmicro3522.


Bokhorst S., Pedersen S.H., Brucker L., Anisimov O., Bjerke J.W., Brown R.D., Ehrich D., Essery R.L.H., Heilig A., Ingvander S., Johansson C., Johansson M., Jónsdóttir I.S., Inga N., Luojus K., Macelloni G., Mariash H., McLennan D., Rosqvist G.N., Sato A., Savela H., Schneebeli M., Sokolov A., Sokratov S.A., Terzago S., Vikhamar-Schuler D., Williamson S., Qiu Y. & Callaghan T.V. 2016. Changing Arctic snow cover: a review of recent developments and assessment of future needs for observations, modelling, and impacts. Ambio 45, 516–537, doi: 10.1007/s13280-016-0770-0.


Burakowska A., Kubicki M., Mysłek-Laurikainen B., Piotrowski M., Trzaskowska H. & Sosnowiec R. 2021. Concentration of 7Be, 210Pb, 40K, 137Cs, 134Cs radionuclides in the ground layer of the atmosphere in the polar (Hornsund, Spitsbergen) and mid-latitudes (Otwock-Świder, Poland) regions. Journal of Environmental Radioactivity 240, article no. 106739, doi: 10.1016/j.jenvrad.2021.106739.


Brown H., Wang H., Flanner M., Liu X., Singh B., Zhang R., Yang Y. & Wu M. 2022. Brown carbon fuel and emission source attributions to global snow darkening effect. Journal of Advances in Modeling Earth Systems 14, e2021MS002768, doi: 10.1029/2021MS002768.


Christiansen H.H., Gilbert G., Demidov N., Guglielmin M., Isaksen K., Osuch M. & Boike J. 2019. Permafrost thermal snapshot and active-layer thickness in Svalbard 2016–2017. In E. Orr et al. (eds.): SESS report 2018. The state of environmental science in Svalbard—an annual report. Pp. 26–47, doi: 10.5281/zenodo.4777825. Longyearbyen: Svalbard Integrated Arctic Earth Observing System.


Christiansen H.H., Gilbert G., Demidov N., Guglielmin M., Isaksen K., Osuch M. & Boike J. 2020. Permafrost temperatures and active layer thickness in Svalbard during 2017/2018. In F. van den Heuvel et al. (eds.): SESS report 2019. The state of environmental science in Svalbard—an annual report. Pp. 236–249, doi: 10.5281/zenodo.4777728. Longyearbyen: Svalbard Integrated Arctic Earth Observing System.


Claussen M., Brovkin V. & Ganopolski A. 2001. Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophysical Research Letters 28, 1011−1014, doi: 10.1029/2000GL012471.


CliC 2021. Climate and Cryosphere (CliC) Strategic Plan 2022–2031. WCRP Publication 8/2021. Geneva: World Climate Research Programme.


Cooper E.J. 2014. Warmer shorter winters disrupt terrestrial Arctic ecosystems. Annual Review of Ecology, Evolution and Systematics 45, 271–95, doi: 10.1146/annurev-ecolsys-120213-091620.


Crocchianti S., Moroni B., Waldhauserová P.D., Becagli S., Severi M., Traversi R. & Cappelletti D. 2021. Potential source contribution function analysis of high latitude dust sources over the Arctic: preliminary results and prospects. Atmosphere 12, article no. 347, doi: 10.3390/atmos12030347.


Dall´Osto M., Beddows D., Tunved P., Krejci R., Ström J., Hansson H.-C., Yoon Y.J., Park K.-T., Becagli S., Udisti R., Onasch T., O´Dowd C.D., Simó R. & Harrison R.M. 2017. Arctic sea ice melt leads to atmospheric new particle formation. Scientific Reports 7, article no 3318, doi: 10.1038/s41598-017-03328-1.


Dietz A.J., Kuenzer C., Gessner U. & Dech S. 2012. Remote sensing of snow—a review of available methods. International Journal of Remote Sensing 33, 4094−4134, doi: 10.1080/01431161.2011.640964.


Di Mauro B., Cappelletti D., Moroni B., Mazzola M., Gilardoni S., Luks B., Nawrot A., Lewandowski M., Dagsson Waldhauserova P., Meinander O., Wittmann M., Kaspari S. & Khan A. 2023. Dust in Svalbard: local sources versus long-range transported dust. In Gevers et al. (eds.): SESS report 2022. The state of environmental science in Svalbard—an annual report. Pp. 62–77, doi: 10.5281/zenodo.7377518. Longyearbyen: Svalbard Integrated Arctic Earth Observing System.


Di Mauro B., Garzonio R., Baccolo G., Franzetti A., Pittino F., Leoni B., Remias D., Colombo R. & Rossini M. 2020. Glacier algae foster ice-albedo feedback in the European Alps. Scientific Reports 10, article no. 4739, doi: 10.1038/s41598-020-61762-0.


Doherty S.J., Grenfell T.C., Forsström S., Hegg D.L., Brandt R.E. & Warren S.G. 2013. Observed vertical redistribution of black carbon and other insoluble light-absorbing particles in melting snow. Journal of Geophysical Research—Atmospheres 118, 5553−5569, doi: 10.1002/jgrd.50235.


Dozier J. 1989. Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sensing Environment 28, 9−22, doi: 10.1016/0034-4257(89)90101-6.


Dutra E., Balsamo G., Viterbo P., Miranda P.M.A., Beljaars A., Schär C. & Elder K. 2010. An improved snow scheme for the ECMWF land surface model: description and offline validation. Journal of Hydrometeorology 11, 899−916, doi: 10.1175/2010JHM1249.1.


Eckerstorfer M. & Christiansen H.H. 2011. Meteorology, topography and snowpack conditions causing two extreme mid-winter slush and wet slab avalanche periods in High Arctic maritime Svalbard. Permafrost and Periglacial Processes 23, 15−25, doi: 10.1002/ppp.734.


Eckerstorfer M. & Christiansen H.H. 2012. Meteorology, topography and snowpack conditions causing two extreme mid-winter slush and wet slab avalanche periods in High Arctic maritime Svalbard. Permafrost and Periglacial Processes 23, 15–25, doi: 10.1002/ppp.734.


Eckerstorfer M., Malnes E. & Müller K. 2017. A complete snow avalanche activity record from a Norwegian forecasting region using Sentinel-1 satellite-radar data. Cold Regions Science and Technology 144, 39–51, doi: 10.1016/j.coldregions.2017.08.004.


Eckhardt S., Hermansen O., Grythe H., Fiebig M., Stebel K., Cassiani M., Baecklund A. & Stohl A. 2013. The influence of cruise ship emissions on air pollution in Svalbard—a harbinger of a more polluted Arctic? Atmospheric Chemistry and Physics 13, 8401–8409, doi: 10.5194/acp-13-8401-2013.


Eidhammer T., Booth A., Decker S., Li L., Barlage M., Gochis D., Rasmussen R., Melvold K., Nesje A. & Sobolowski S. 2021. Mass balance and hydrological modeling of the Hardangerjøkulen ice cap in south-central Norway. Hydrology and Earth System Sciences 25, 4275–4297, doi: 10.5194/hess-25-4275-2021.


Engeset R.V., Landrø M., Indreiten M., Müller K., Mikkelsen O.A. & Hoseth K.I.A. 2020. Avalanche warning in Svalbard. NVE Rapport nr. 35/2020. Oslo: Norwegian Water Resources and Energy Directorate.


EU Polarnet. 2019. The coupled polar climate system: global context, predictability and regional impacts. EU Polarnet White Paper 1. Bremerhaven: EU-PolarNet.


Gallet J.-C., Björkman M.P., Borstad C.P., Hodson A.J., Jakobi H.-W., Larose C., Luks B., Spolaor A., Schuler T.V., Urazgildeeva A. & Zdanowicz C. 2019. Snow research in Svalbard: current status and knowledge gaps. In E. Orr et al. (eds.): SESS report 2018. The state of environmental science in Svalbard—an annual report. Pp. 83–107, doi: 10.5281/zenodo.4778366. Longyearbyen: Svalbard Integrated Arctic Earth Observing System.


Gallet J.-C., Björkman M.P., Larose C., Luks B., Martma T. & Zdanowicz C. 2018. Protocols and recommendations for the measurement of snow physical properties, and sampling of snow for black carbon, water isotopes, major ions and microorganisms. Brief Report 46. Tromsø: Norwegian Polar Institute.


Gascoin S., Grizonnet M., Bouchet M., Salgues G. & Hagolle O. 2019. Theia Snow collection: high-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data. Earth System Science Data 11, 493–514, doi: 10.5194/essd-11-493-2019.


González-Pleiter M., Velázquez D., Edo C., Carretero O., Gago J., Barón-Sola Á., Hernández L.E., Yousef I., Quesada A., Leganés F., Rosal R. & Fernández-Piñas F. 2020. Fibers spreading worldwide: microplastics and other anthropogenic litter in an Arctic freshwater lake. Science of the Total Environment 722, article no 137904, doi: 10.1016/j.scitotenv.2020.137904.


Groot Zwaaftink C.D., Grythe H., Skov H. & Stohl A. 2016. Substantial contribution of northern high-latitude sources to mineral dust in the Arctic. Journal of Geophysical Research—Atmospheres 121, 13678–13697, doi: 10.1002/2016JD025482.


Guneriussen T., Hogda K.A., Johnsen H. & Lauknes I. 2001. InSAR for estimation of changes in snow water equivalent of dry snow. IEEE Transactions on Geoscience and Remote Sensing 39, 2101−2108, doi: 10.1109/36.957273.


Gwynn J.P., Dowdall M., David C., Selnæs Ø.G. & Lind B. 2004. The radiological environment of Svalbard. Polar Research 23, 167–180, doi: 10.3402/polar.v23i2.6277.


Haberkorn A. (ed.) 2019. European snow booklet. Brussels: European Cooperation in Science & Technology.


Hamilton B.M., Liisa Jantunen L., Bergmann M., Vorkamp K., Aherne J., Magnusson K., Herzke D., Granberg M., Hallanger I.G., Gomiero A. & Peeken I. 2022. Monitoring microplastics in the atmosphere and cryosphere in the circumpolar North: a case for multi-compartment monitoring. Arctic Science 8, 1116–1126, doi: 10.1139/AS-2021-0054.


Hancock H., Hendrikx J., Eckerstorfer M. & Wickström S. 2021. Synoptic control on snow avalanche activity in central Spitsbergen. The Cryosphere 15, 3813–3837, doi: 10.5194/tc-15-3813-2021.


Hansen B.B., Grotan V., Aanes R., Sæther B.E., Stien A., Fuglei E., Ims R.A., Yoccoz N.G. & Pedersen Å.Ø. 2013. Climate events synchronize the dynamics of a resident vertebrate community in the High Arctic. Science 339, article no 6117, 313–315, doi: 10.1126/science.1226766.


Hansen B.B., Isaksen K., Benestad R.E., Kohler J., Pedersen Å.Ø., Loe L.E., Coulson S.J., Larsen J.O. & Varpe Ø. 2014. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic. Environmental Research Letters 9, article no. 114021, doi: 10.1088/1748-9326/9/11/114021.


Hanssen-Bauer I., Førland E.J., Hisdal H., Mayer S., Sandø A.B. & Sorteberg A. (eds.) 2019. Climate in Svalbard 2100—a knowledge base for climate adaptation. NCCS Report 1/2019. Oslo: Norwegian Centre of Climate Services.


Harpold A.A., Guo Q., Molotch N., Brooks P.D., Bales R., Fernandez-Diaz J.C., Musselman K.N., Swetnam T.L., Kircher P., Meadows M.W., Flanagan J. & Lucas R. 2014. LiDAR-derived snowpack data sets from mixed conifer forests across the western United States. Water Resources Research 50, 2749−2755, doi: 10.1002/2013WR013935.


Hermanson M.H. & Le Cras S. 2018. Arctic communities as sites of local field work in environmental chemistry. In E.S. Roberts-Kirschhoff & M.A. Benvenuto (eds.): Environmental chemistry: undergraduate and graduate classroom, laboratory, and local community learning experiences. ACS Symposium Series 1276. Pp. 105–123. Washington, DC: American Chemical Society.


Hotaling S., Lutz S., Dial R.J., Anesio A.M., Benning L.G., Fountain A.G., Kelley J.L., McCutcheon J., McKenzie Skiles S., Takeuchi N. & Hamilton T.L. 2021. Biological albedo reduction on ice sheets, glaciers, and snowfields. Earth-Science Reviews 220, article no. 103728, doi: 10.1016/j.earscirev.2021.103728.


Huovinen P., Ramíreza J. & Gómeza I. 2018. Remote sensing of albedo-reducing snow algae and impurities in the maritime Antarctica. SPRS Journal of Photogrammetry and Remote Sensing 146, 507−517, doi: 10.1016/j.isprsjprs.2018.10.015.


IASC (International Arctic Science Committee) 2017. IASC Cryosphere Working Group work plan, 2017–2022. Accessed on the internet at https://iasc.info/our-work/working-groups/cryosphere on 16 February 2022.


Isaksen K., Benestad R.E., Harris C. & Sollid J.L. 2007. Recent extreme near‐surface permafrost temperatures on Svalbard in relation to future climate scenarios. Geophysical Research Letters 34, article no. L17502, doi: 10.1029/2F2007GL031002.


Isaksen K., Nordli Ø., Ivanov B., Køltzow M.A.Ø., Aaboe S., Gjelten H.M., Mezghani A., Eastwood S., Førland E., Benestad R.E., Hanssen-Bauer I., Brækkan R., Sviashchennikov P., Demin V., Revina A. & Karandasheva T. 2022. Exceptional warming over the Barents area. Scientific Reports 12, article no. 9371, doi: 10.1038/s41598-022-13568-5.


Jacobi H.-W., Obleitner F., Da Costa S., Ginot P., Eleftheriadis K., Aas W. & Zanatta M. 2019. Deposition of ionic species and black carbon to the Arctic snowpack: combining snow pit observations with modeling. Atmospheric Chemistry and Physics 19, 10361–10377, doi: 10.5194/acp-19-10361-2019.


Jaedicke C. & Gauer P. 2005. The influence of drifting snow on the location of glaciers on western Spitsbergen, Svalbard. Annals of Glaciology 42, 237–242, doi: 10.3189/172756405781812628.


Jenk T.M., Szidat S., Schwikowski M., Gäggeler H., Wacker L., Synal H.-A. & Saurer M. 2007. Microgram level radiocarbon (14C) determination on carbonaceous particles in ice. Nuclear Instruments and Methods in Physics Research B 259, 518–525, doi: 10.1016/j.nimb.2007.01.196.


Karlsen S.R., Stendardi L., Nilsen L., Malnes E., Eklundh L., Julitta T., Burkart A. & Tømmervik H. 2020. Sentinel satellite-based mapping of plant productivity in relation to snow duration and time of green-up. In F. van den Heuvel et al. (eds.): SESS report 2019. The state of environmental science in Svalbard—an annual report. Pp. 42−57, doi: 10.5281/zenodo.4704361. Longyearbyen: Svalbard Integrated Arctic Earth Observing System.


Killie M.A., Aaboe S., Isaksen K., van Pelt W., Pedersen Å.Ø. & Luks B. 2021. Svalbard snow and sea-ice cover: comparing satellite data, on-site measurements, and modelling results. In M. Moreno-Ibáñez et al. (eds.): SESS report 2020. The state of environmental science in Svalbard—an annual report. Pp. 220−235, doi: 10.5281/zenodo.4293804. Longyearbyen: Svalbard Integrated Arctic Earth Observing System.


Koch F., Henkel P., Appel F., Schmid L., Bach H. & Lamm M., Prasch M., Schweizer J. & Mauser W. 2019. Retrieval of snow water equivalent, liquid water content, and snow height of dry and wet snow by combining GPS signal attenuation and time delay. Water Resources Research 55, 4465–4487, doi: 10.1029/2018WR024431.


Kokhanovsky A., Di Mauro B., Garzonio R. & Colombo R. 2021. Retrieval of dust properties from spectral snow reflectance measurements. Frontiers in Environmental Science 9, article no. 644551, doi: 10.3389/fens.2021.644551.


Kylling A., Groot Zwaaftink C.D. & Stohl A. 2018. Mineral dust instantaneous radiative forcing in the Arctic. Geophysical Research Letters 45, 4290–4298, doi: 10.1029/2018GL077346.


Laska M., Luks B., Kępsk D., Bogdan G., Głowacki P., Puczko D., Migała K., Nawrot A. & Pętlicki M. 2022. Hansbreen Snowpit Dataset—over 30-year of detailed snow research on an Arctic glacier. Scientific Data 9, article no. 656, doi: 10.1038/s41597-022-01767-8.


Layton-Matthews K., Hansen B.B., Grøtan V., Fuglei E. & Loonen M.J.J.E. 2019. Contrasting consequences of climate change for migratory geese: predation, density dependence and carryover effects offset benefits of High-Arctic warming. Global Change Biology 26, 642–657, doi: 10.1111/gcb.14773.


Lehning M. & Fierz C. 2008. Assessment of snow transport in avalanche terrain. Cold Regions Science and Technology 51, 240–252, doi: 10.1016/j.coldregions.2007.05.012.


Leppänen L., Kontu A., Sjöblom H. & Pulliainen J. 2016. Sodankylä manual snow survey program. Geoscientific Instrumentation, Methods and Data Systems 5, 163–179, doi: 10.5194/gi-5-163-2016.


Lievens H., Demuzere M., Marshall H.P., Reichle R.H., Brucker L., Brangers I., de Rosnay P., Dumont M., Girotto M., Immerzeel W.W., Jonas T., Kim E.J., Koch I., Marty C., Saloranta T., Schöber J. & De Lannoy G.J.M. 2019. Snow depth variability in the Northern Hemisphere mountains observed from space. Nature Communications 10, article no. 4629, doi: 10.1038/s41467-019-12566-y.


Lim P.P., Pearce D.A., Convey P., Lee L.S., Chan K.G. & Tan G.Y.A. 2020. Effects of freeze–thaw cycles on High Arctic soil bacterial communities. Polar Science 23, article no. 100487, doi: 10.1016/j.polar.2019.100487.


Łupikasza E.B., Ignatiuk D., Grabiec M., Cielecka-Nowak K., Laska M., Jania J., Luks B., Uszczyk A. & Budzik T. 2019. The role of winter rain in the glacial system on Svalbard. Water 11, article no. 334, doi: 10.3390/w11020334.


Malnes E., Vickers H., Karlsen S.R., Saloranta T., Killie M.A., van Pelt W., Pohjola V., Zhang J., Stendardi L. & Notarnicola C. 2021. Satellite and modelling based snow season time series for Svalbard: inter-comparisons and assessment of accuracy. In M. Moreno-Ibáñez et al. (eds.): SESS report 2020. The state of environmental science in Svalbard—an annual report. Pp. 202–217, doi: 10.5281/zenodo.4294072. Longyearbyen: Svalbard Integrated Arctic Earth Observing System.


McCreight J.L., Small E.E. & Larson K.M. 2014. Snow depth, density, and SWE estimates derived from GPS reflection data: validation in the western U.S. Water Resources Research 50, 6892−6909, doi: 10.1002/2014WR015561.


Meinander O., Dagsson-Waldhauserova P., Amosov P., Aseyeva E., Atkins C., Baklanov A., Baldo C., Barr S.L., Barzycka B., Benning L.G., Cvetkovic B., Enchilik P., Frolov D., Gassó S., Kandler K., Kasimov N., Kavan J., King J., Koroleva T., Krupskaya V., Kulmala M., Kusiak M., Lappalainen H.K., Laska M., Lasne J., Lewandowski M., Luks B., McQuaid J.B., Moroni B., Murray B., Möhler O., Nawrot A., Nickovic S., O’Neill N.T., Pejanovic G., Popovicheva O., Ranjbar K., Romanias M., Samonova O., Sanchez-Marroquin A., Schepanski K., Semenkov I., Sharapova A., Shevnina E., Shi Z., Sofiev M., Thevenet F., Thorsteinsson T., Timofeev M., Umo N.S., Uppstu A., Urupina D., Varga G., Werner T., Arnalds O. & Vukovic Vimic A. 2022. Newly identified climatically and environmentally significant high-latitude dust sources. Atmospheric Chemistry and Physics 22, 11889–11930, doi: 10.5194/acp-22-11889-2022.


Meinander O., Kontu A., Kouznetsov R. & Sofiev M. 2020. Snow samples combined with long-range transport modeling to reveal the origin and temporal variability of black carbon in seasonal snow in Sodankylä (67◦N). Frontiers in Earth Sciences 8, article no. 153, doi: 10.3389/feart.2020.00153.


Meredith M., Sommerkorn M., Cassotta S., Derksen C., Ekaykin A., Hollowed A., Kofinas G., Mackintosh A., Melbourne-Thomas J., Muelbert M.M.C., Ottersen G., Pritchard H. & Schuur E.A.G. 2019. Polar regions. In H.-O. Pörtner et al. (eds.): IPCC special report on the ocean and cryosphere in a changing climate. Pp. 203–320. Geneva: Intergovernmental Panel on Climate Change, World Meterological Organization.


Mohammadzadeh Khani M.H., Kinnard C. & Lévesque E. 2022. Historical trends and projections of snow cover over the High Arctic: a review. Water 14, article no. 587, doi: 10.3390/w14040587.


Nagler T. & Rott H. 2000. Retrieval of wet snow by means of multitemporal SAR data. IEEE Transactions on Geoscience and Remote Sensing 38, 754–765, doi: 10.1109/36.842004.


Neuber R., Ström J., Hübner C., Hermansen O., Arya B.C., Beichen Z., Kallenborn R., Karasinki G., Ivanov B., Moen J., Modelstad D.A., Vitale V., Yamanuchi T. & Yoon Y.J. 2011. Atmospheric research in Ny-Ålesund—a flagship programme. Brief Report Series 22. Tromsø: Norwegian Polar Institute.


Noël B.P.Y., Jakobs C.L., van Pelt W.J.J., Lhermitte S., Wouters B., Kohler J., Hagen J.O., Luks B., Reijmer C.H., van de Berg W.J. & van den Broeke M.R. 2020. Low elevation of Svalbard glaciers drives high mass loss variability. Nature Communications 11, article no. 4597, doi: 10.1038/s41467-020-18356-1.


Nuth C., Kohler J., König M., von Deschwanden A., Hagen J.O., Kääb A., Moholdt G. & Pettersson R. 2013. Decadal changes from a multi-temporal glacier inventory of Svalbard. The Cryosphere 7, 1603–1621, doi: 10.5194/tc-7-1603-2013.


Ny-Ålesund Research Station. 2023. Research, monitoring and flagships. Accessed on the internet at https://nyalesundresearch.no/research-and-monitoring/ on 20 October 2023.


Osmont D., Wendl I.A., Schmidely L., Sigl M., Vega C.P., Isaksson E. & Schwikowski M. 2018. An 800-year high resolution black carbon ice core record from Lomonosovfonna Svalbard. Atmospheric Chemistry and Physics 18, 12777–12795, doi: 10.5194/acp-18-12777-2018.


Østby T.I., Schuler T.V., Hagen J.O., Hock R., Kohler J. & Reijmer C.H. 2017. Diagnosing the decline in climatic mass balance of glaciers in Svalbard over 1957–2014. The Cryosphere 11, 191–215, doi: 10.5194/tc-11-191-2017.


Peeters B., Pedersen Å.Ø., Loe L.E., Isaksen K., Veiberg V., Stien A., Kohler J., Gallet J.C., Aanes R. & Hansen B.B. 2019. Spatiotemporal patterns of rain-on-snow and basal ice in High Arctic Svalbard: detection of a climate-cryosphere regime shift. Environmental Research Letters 14, article no. 015002, doi: 10.1088/1748-9326/aaefb3.


Pirazzini R., Leppänen L., Picard G., Lopez-Moreno J.I., Marty C., Macelloni G., Kontu A., Von Lerber A., Tanis C.M., Schneebeli M., De Rosnay P. & Arslan A.N. 2018. European in-situ snow measurements: practices and purposes. Sensors 18, article no. 2016, doi: 10.3390/s18072016.


Pulliainen J., Luojus K., Derksen C., Mudryk L., Lemmetyinen J., Salminen M., Ikonen J., Takala M., Cohen J., Smolander T. & Norberg J. 2020. Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature 581, 294−298, doi: 10.1038/s41586-020-2258-0.


Rantanen M., Karpechko A.Y., Lipponen A., Nordling K., Hyvärinen O., Ruosteenoja K., Vihma V. & Laaksonen A. 2022. The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment 3, article no. 168, doi: 10.1038/s43247-022-00498-3.


Rixen C., Høye T.T., Macek P., Aerts R., Alatalo J., Andeson J., Arnold P., Barrio I.C., Bjerke J., Björkman M.P., Blok D., Blume-Werry G., Boike J., Bokhorst S., Carbognani M., Christiansen C., Convey P., Cooper E.J., Cornelissen H.C., Coulson S., Dorrepaal E., Elberling B., Elmendorf S., Elphinstone C., Gladys T., Forte W., Frei E.R., Geange S., Gehrmann F., Gibson C., Grogan P., Halbritter Rechsteiner A., Harte J., Henry G.H.R., Inouye D., Irwin R., Jespersen G., Jónsdóttir I.S., Jung J.Y., Klinges D., Kudo G., Lämsä J., Lee H., Lembrechts J., Lett S., Scott Lynn J., Mann H.M., Mastepanov M., Morse J., Myers-Smith I., Olofsson J., Paavola R., Petraglia A., Phoenix G., Semenchuk P., Siewert M., Slatyer R., Spasojevic M., Suding K., Sullivan P., Thompson K., Väisänen M., Vandvik V., Venn S., Walz J., Way R., Welker J., Wipf S. & Zong S. 2022. Winters are changing: snow effects on Arctic and alpine tundra ecosystems. Arctic Science 8, 572–608, doi: 10.1139/AS-2020-0058.


Rotschky G., Schuler T.V., Haarpaintner J., Kohler J. & Isaksson E. 2011. Spatio-temporal variability of snowmelt across Svalbard during the period 2000–08 derived from QuikSCAT/SeaWinds scatterometry. Polar Research 30, article no. 5963, doi: 10.3402/polar.v30i0.5963.


Royer A., Roy A., Jutras S. & Langlois A. 2021. Performance assessment of radiation-based field sensors for monitoring the water equivalent of snow cover (SWE). The Cryosphere 15, 5079–5098, doi: 10.5194/tc-15-5079-2021.


Salzano R., Aalstad K., Boldrini E., Gallet J.C., Kępski D., Luks B., Nilsen L., Salvatori R. & Westermann S. 2021. Terrestrial photography applications on snow cover in Svalbard. In M. Moreno-Ibáñez et al. (eds.): SESS report 2020. The state of environmental science in Svalbard—an annual report. Pp. 236−251, doi: 10.5281/zenodo.4294084. Longyearbyen: Svalbard Integrated Arctic Earth Observing System.


Salzano R., Killie M.A., Luks B. & Malnes E. 2021. A multi-scale approach to snow cover observations and models (SnowCover). M. Moreno-Ibáñez et al. (eds.): SESS report 2020. The state of environmental science in Svalbard—an annual report. Pp. 252−257, doi: 10.5281/zenodo.4294092. Longyearbyen: Svalbard Integrated Arctic Earth Observing System.


Salzano R., Lanconelli C., Esposito G., Giusto M., Montagnoli M. & Salvatori R. 2021. On the seasonality of the snow optical behaviour at Ny Ålesund (Svalbard Islands, Norway). Geosciences 11, article no. 112, doi: 10.3390/geosciences11030112.


Scherer D., Gude M., Gempeler M. & Parlow E. 1998. Atmospheric and hydrological boundary conditions for slushflow initiation due to snowmelt. Annals of Glaciology 26, 377–380, doi: 10.3189/1998AoG26-1-377-380.


Schmidt L.S., Schuler T.V., Thomas E.E. & Westermann S. 2023. Meltwater runoff and glacier mass balance in the High Arctic: 1991–2022 simulations for Svalbard. The Cryosphere 17, 2941–2963, doi: 10.5194/tc-17-2941-2023


Schuler T.V., Glazovsky A., Hagen J.O. Hodson A., Jania J., Kääb A., Kohler J., Luks B., Malecki J., Moholdt G., Pohjola V. & van Pelt W. 2020. New data, new techniques and new challenges for updating the state of Svalbard glaciers. In F. van den Heuvel et al. (eds.): SESS report 2019. The state of environmental science in Svalbard—an annual report. Pp. 108−134, doi: 10.5281/zenodo.4704575. Longyearbyen: Svalbard Integrated Arctic Earth Observing System.


Serreze M.C. & Barry R.G. 2011. Processes and impacts of Arctic amplification: a research synthesis. Global and Planetary Change 77, 85−96, doi: 10.1016/j.gloplacha.2011.03.004.


Sharma Ghimire P.S., Tripathee L., Zhang Q., Guo J., Ram K., Huang J., Sharma C.M. & Kang S. 2019. Microbial mercury methylation in the cryosphere: progress and prospects. Science of the Total Environment 697, article no. 134150, doi: 10.1016/j.scitotenv.2019.134150.


SIOS 2021. An agenda for the future of snow research in Svalbard—a multidomain approach. SIOS workshop report. Longyearbyen: Svalbard Integrated Arctic Earth Observing System. Pp. 55, doi: 10.5281/zenodo.6415927.


Song M., He X., Jia D., Xiao R., Asgarimehr M., Wickert J., Wang X. & Zhang Z. 2022. Sea surface states detection in polar regions using measurements of ground-based GNSS interferometric reflectometry. IEEE Transactions Geoscience Remote Sensing 60, article no. 4508414, doi: 10.1109/TGRS.2022.3155051.


Taurisano A., Schuler T.V., Hagen J.O., Eiken T., Loe E., Melvold K. & Kohler J. 2007. The distribution of snow accumulation across the Austfonna ice cap, Svalbard: direct measurements and modelling. Polar Research 26, 7–13, doi: 10.1111/j.1751-8369.2007.00004.x.


Techel F. & Pielmeier C. 2011. Point observations of liquid water content in wet snow—investigating methodical, spatial and temporal aspects. The Cryosphere 5, 405–418, doi: 10.5194/tc-5-405-2011.


Tørseth K., Andrews E., Asmi E., Eleftheriadis K., Fiebig M., Herber A., Lin H., Kylling A., Lupi A., Massling A., Mazzola M., Nøjgaard J.K., Popovicheva O., Schichtel B., Schmale J., Sharma S., Skov H., Stebel K., Vasel B., Vitale V., Whaley C., Yttri K.E. & Zanatta M. 2019. Review of observation capacities and data availability for black carbon in the Arctic region. EU Action on Black Carbon in the Arctic. Technical Report 1. Tromsø: Arctic Monitoring & Assessment Programme.


Tuccella P., Pitari G., Colaiuda V., Raparelli E. & Curci G. 2021. Present-day radiative effect from radiation-absorbing aerosols in snow. Atmospheric Chemistry and Physics 21, 6875–6893, doi: 10.5194/acp-21-6875-2021.


Uddin M.N., Desai F. & Asmatulu E. 2020. Engineered nanomaterials in the environment: bioaccumulation, biomagnification and biotransformation. Environmental Chemistry Letters 18, 1073–1083, doi: 10.1007/s10311-019-00947-0.


van Pelt W., Pohjola V., Pettersson R., Marchenko S., Kohler J., Luks B., Hagen J.O., Schuler T.V., Dunse T., Noël B. & Reijmer C. 2019. A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018). The Cryosphere 13, 2259–2280, doi: 10.5194/tc-13-2259-2019.


van Pelt W.J.J., Pohjola V.A. & Reijmer C.H. 2016. The changing impact of snow conditions and refreezing on the mass balance of an idealized Svalbard glacier. Frontiers in Earth Sciences 4, article no. 102, doi: 10.3389/feart.2016.00102.


van Pelt W.J.J., Schuler T.V., Pohjola V.A. & Pettersson R. 2021. Accelerating future mass loss of Svalbard glaciers from a multi-model ensemble. Journal of Glaciology 67, 263, 485−499, doi: 10.1017/jog.2021.2.


Vickers H., Malnes E., van Pelt W.J.J., Pohjola V.A., Killie M.A., Saloranta T. & Karlsen S.R.A. 2021. Compilation of snow cover datasets for Svalbard: a multi-sensor, multi-model study. Remote Sensing 13, article no. 2002, doi: 10.3390/rs13102002.


Vikhamar-Schuler D., Isaksen K., Haugen J.E., Tømmervik H., Luks B., Schuler T.V. & Bjerke J.W. 2016. Changes in winter warming events in the Nordic Arctic region. Journal of Climate 29, 6223−6244, doi: 10.1175/JCLI-D-15-0763.1.


Vinukollu R.K., Wood E.F., Ferguson C.R. & Fisher J.B. 2011. Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: evaluation of three process-based approaches. Remote Sensing of Environment 115, 801–823, doi: 10.1016/j.rse.2010.11.006.


Vionnet V., Brun E., Morin S., Boone A., Faroux S., Le Moigne P., Martin E. & Willemet J.-M. 2012. The detailed snowpack scheme CROCUS and its implementation in SURFEX v7.2. Geoscientific Model Development 5, 773–791, doi: 10.5194/gmd-5-773-2012.


Wendl I.A., Eichler A., Isaksson E., Martma T. & Schwikowski M. 2015. 800-Year ice-core record of nitrogen deposition in Svalbard linked to ocean productivity and biogenic emissions. Atmospheric Chemistry and Physics 15, 7287–7300, doi: 10.5194/acp-15-7287-2015.


Wesselink D.S., Malnes E., Eckerstorfer M. & Lindenbergh R.C. 2017. Automatic detection of snow avalanche debris in central Svalbard using C-band SAR data. Polar Research 36, article no. 1333236, doi: 10.1080/17518369.2017.1333236.


Westermann S., Boike J., Langer M., Schuler T.V. & Etzelmüller B. 2011. Modeling the impact of wintertime rain events on the thermal regime of permafrost. The Cryosphere 5, 945−959, doi: 10.5194/tc-5-945-2011.


Wickström S., Jonassen M.O., Cassano J.J. & Vihma T. 2020. Present temperature, precipitation, and rain‐on‐snow climate in Svalbard. Journal of Geophysical Research—Atmospheres 125, e2019JD032155, doi: 10.1029/2019JD032155.


Wilkinson M., Dumontier M., Aalbersberg I.J., Appleton G., Axton M., Baak A., Blomberg N., Boiten J.-W., Bonino da Silva Santos L., Bourne P.E., Bouwman J., Brookes A.J., Clark T., Crosas M., Dillo I., Dumon O., Edmunds S., Evelo C.T., Finkers R., Gonzalez-Beltran A., Gray A.J.G., Growth P., Goble C., Grethe J.S., Heringa J., ’t Hoen P.A.C., Hooft R., Kuhn T., Kok R., Kok J., Lusher S.J., Martone M.E., Mons A., Packer A.L., Persson B., Rocca-Serra P., Roos M., van Schaik R., Sansone S.-A., Schultes E., Sengstag R., Slater T., Strawn G., Swertz M.A., Thompson M., van der Lei J. van Mulligen E., Velterop J., Waagmeester A., Wittenburg P., Wolstencroft K., Zhao J. & Mons B. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 3, article no. 160018, doi: 10.1038/sdata.2016.18.


Winiger P., Barrett T.E., Sheesley R.J., Huang L., Sharma S., Barrie L.A., Yttri K.E., Evangeliou N., Eckhardt S., Stohl A., Klimont Z., Heyes C., Semiletov I.P., Dudarev O.V., Charkin A., Shakhova N., Holmstrand H., Andersson A. & Gustafsson Ö. 2019. Source apportionment of circum-Arctic atmospheric black carbon from isotopes and modeling. Science Advances 5, eaau8052, doi: 10.1126/sciadv.aau8052.


Winther J.-G., Bruland O., Sand K., Gerland S., Marechal D., Ivanov B., Głowacki P. & König M. 2003. Snow research in Svalbard—an overview. Polar Research 22, 125–144, doi: 10.3402/polar.v22i2.6451.


Wu G.-M., Cong Z.-Y., Kang S.-C., Kawamura K., Fu P.-Q., Zhang Y.-L., Wan X., Gao S.-P. & Liu B. 2016. Brown carbon in the cryosphere: current knowledge and perspective. Advances in Climate Change Research 7, 82−89, doi: 10.1016/j.accre.2016.06.002.


Xu W., Prieme A., Cooper E.J., Mörsdorf M.A., Semenchuk P. Elberling B., Grogan P. & Ambus P.L. 2021. Deepened snow enhances gross nitrogen cycling among Pan-Arctic tundra soils during both winter and summer. Soil Biology and Biochemistry 160, article no. 108356, doi: 10.1016/j.soilbio.2021.108356.


Zdanowicz C., Gallet J.-C., Björkman M.P., Larose C., Schuler T., Luks B., Koziol K., Spolaor A., Barbaro E., Martma T., van Pelt W., Wideqvist U. & Ström J. 2021. Elemental and water-insoluble organic carbon in Svalbard snow: a synthesis of observations during 2007–2018. Atmospheric Chemistry and Physics 21, 3035–3057, doi: 10.5194/acp-21-3035-2021.


Zweigel R.B., Westermann S., Nitzbon J., Langer M., Boike J., Etzelmüller B. & Vikhamar Schuler T. 2021. Simulating snow redistribution and its effect on ground surface temperature at a High‐Arctic site on Svalbard. Journal of Geophysical Research—Earth Surface 126, e2020JF005673, doi: 10.1029/2020JF005673.
Published
2023-12-31
How to Cite
Zdanowicz C., Gallet J.-C., Salvatori R., Malnes E., Isaksen K., Hübner C., Jones E., & Lihavainen H. (2023). An agenda for the future of Arctic snow research: the view from Svalbard. Polar Research, 42. https://doi.org/10.33265/polar.v42.8827
Section
Perspectives