Variable predator–prey relations in zooplankton overwintering in Subarctic fjords

  • Stig Skreslet Faculty for Biosciences and Aquaculture, Nord University, Bodø, Norway https://orcid.org/0000-0001-7519-8128
  • Marina Espinasse Faculty for Biosciences and Aquaculture, Nord University, Bodø, Norway https://orcid.org/0000-0002-6695-7820
  • Ketil Olsen Faculty for Biosciences and Aquaculture, Nord University, Bodø, Norway
  • Boris D. Espinasse Faculty for Biosciences and Aquaculture, Nord University, Bodø, Norway
Keywords: Crustacea, Polychaeta, Chaetognatha, Coelenterata, advection, predation

Abstract

Zooplankton predator–prey relations in northern Norwegian fjords are highly variable in time and space, and the mechanisms driving this variability are still poorly understood. Replicate Juday net sampling in October and February from 1983 to 2005, which included five repeated tows from bottom to surface, was conducted in Saltfjord and Mistfjord, northern Norway. The time-series provided evidence of in situ variability in species abundance, as well as seasonal and interannual changes in standing stock abundance. The shallow sill of one fjord caused accumulation of coastal water in the fjord’s basin, while the other fjord’s deeper sill selected denser water of Atlantic origin from the same open shelf habitat. The selective advection caused differences in the immigration of species recruiting to the fjords’ specific overwintering communities of zooplankton. Statistical analyses of the cumulated replicate data indicated significant in situ variability in the spatial density of species. Cases with an abundance of carnivores relating positively to other species probably resulted from the carnivores’ attraction to patches with concentrations of prey. Interspecific negative density relations likely indicated either predator avoidance or substantial trophic activity during the sampling. During years of high abundance, some wintering stocks of carnivores evidently reduced the local stocks of overwintering prey. We conclude that predator–prey interactions and stock variability in Subarctic fjords result from complex bio-geophysical interactions that occur on the scales of local habitats and basin-scale population systems.

Downloads

Download data is not yet available.

References


Aure J., Asplin R. & Sætre R. 2007. Coast/fjord water exchange. In R. Sætre (ed.): The Norwegian Coastal Current; oceanography and climate. Pp. 115–124. Trondheim: Tapir Academic Press.


Bagøien E., Kaartvedt S., Aksnes D.L. & Eiane K. 2001. Vertical distribution and mortality of overwintering Calanus. Limnology and Oceanography 46, 1494–1510, doi: 10.4319/lo.2001.46.6.1494.


Baliño B.M. & Aksnes D.L. 1993. Winter distribution and migration of the sound scattering layer, zooplankton and micronekton in Masfjorden, western Norway. Marine Ecology Progress Series 102, 35–50, doi: 10.3354/meps102035.


Banjamini Y. & Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society B Methodology 57, 289–300, doi: 10.1111/j.2517-6161.1995.tb02031.x.


Bucklin A., Kaartvedt S., Guarnieri M. & Goswami U. 2000. Population genetics of drifting (Calanus spp.) and resident (Acartia clausi) plankton in Norwegian fjords. Journal of Plankton Research 22, 1237–1251, doi: 10.1093/plankt/22.7.1237.


Choquet M., Hatlebakk M., Dhanasiri A., Kosobokova K., Smolina I., Søreide J.E., Svendsen C., Melle W., Kwaśniewski S., Eiane K., Daase M., Tverberg V., Skreslet S., Bucklin A. & Hoarau G. 2017. Genetics redraws pelagic biogeography of Calanus. Biology Letters 13, article no. 20170588, doi: 10.1098/rsbl.2017.0588.


Choquet M., Søreide J.E., Burckard G., Skreslet S. & Hoarau G. . No evidence for hybridization between Calanus finmarchicus and Calanus glacialis in a Subarctic area of sympatry. Limnology and Oceanography, early view 2020, https://doi.org/10.1002/lno.11583.


Dale T., Bagøien E., Melle W. & Kaartvedt S. 1999. Can predator avoidance explain varying overwintering depth of Calanus in different oceanic water masses? Marine Ecology Progress Series 179, 113–121, doi: 10.3354/meps179113.


Dale T. & Kaartvedt S. 2000. Diel patterns of stage-specific vertical migration in Calanus finmarchicus in habitats with midnight sun. ICES Journal of Marine Science 57, 1800–1818, doi: 10.1006/jmsc.2000.0961.


Dalpadado P. 2002. Inter-specific variations in distribution, abundance and possible life-cycle patterns of Themisto spp. (Amphipoda) in the Barents Sea. Polar Biology 15, 656–666, doi: 10.1007/s00300-002-0390-y.


Dunbar M.J. 1968. Ecological development in polar regions; a study in evolution. Englewood Cliff, NJ: Prentice-Hall.


Eiane K., Aksnes D.L., Ohman M.D., Wood S. & Martinsen M.B. 2002. Stage-specific mortality of Calanus spp. under different predation regimes. Limnology and Oceanography 47, 636–645, doi: 10.4319/lo.2002.47.3.0636.


Eliassen I.K., Heggelund Y. & Haakstad M. 2001. A numerical study of the circulation in Saltfjorden, Saltstraumen and Skjerstadfjorden. Continental Shelf Research 21, 1669–1689, doi: 10.1016/S0278-4343(01)00019-X.


Espinasse B., Basedow S., Tverberg V., Hattermann T. & Eiane K. 2016. A major Calanus finmarchicus overwintering population inside a deep fjord in northern Norway: implications for cod larvae recruitment success. Journal of Plankton Research 38, 604–609, doi: 10.1093/plankt/fbw024.


Espinasse B., Tverberg V., Kristensen J.K., Skreslet S. & Eiane K. 2018. Winter mortality in Calanus populations in two northern Norwegian fjords from 1984 to 2016. Polar Biology 41, 1405–1415, doi: 10.1007/s00300-018-2294-5.


Fauchald K. & Jumars P.A. 1979. The diet of worms: a study of polychaete feeding guilds. Oceanography and Marine Biology, Annual Review 17, 193–284.


Fjeldstad J.E. 1964. Internal waves of tidal origin. Part I. Theory and analysis of observations Geofysiske Publikasjoner: Geophysica Norvegica 25(5). Oslo: Universitetsforlaget.


Folt C.L. & Burns C.V. 1999. Biological drivers of zooplankton patchiness. Trends in Ecology & Evolution 14, 300–305, doi: 10.1016/S0169-5347(99)01616-X.


Haakstad M. 1977. The lateral movement of the coastal water and its relation to vertical diffusion. Tellus 29, 144–150, doi: 10.3402/tellusa.v29i2.11339.


Haakstad M. 1979. Re-exchange of water between the Norwegian Coastal Current and the fjords in autumn. Nordland College Section of Natural Science Report no. 4/79. Bodø, Norway: Nordland College.


Heath M.R., Astthorsson O.S., Dunn J., Ellertsen B., Gislason A., Gaard E., Gurney W.S.C., Hind A.T., Irigoien X., Melle W., Niehoff B., Olsen K., Skreslet S. & Tande K. 2000. Comparative analysis of Calanus finmarchicus demography at locations around the northeast Atlantic. ICES Journal of Marine Science 57, 1562–1580, doi: 10.1006/jmsc.2000.0950.


Helland-Hansen B. & Nansen F. 1909. The Norwegian Sea. Its physical oceanography based upon the Norwegian researches 1900–1904. Report on Norwegian Fishery and Marine Investigations 2(2). Kristiania (Oslo): Det Mallingske Bogtrykkeri.


Hirche H.J. 2004. Zooplankton habitats of the Greenland Sea: an experimental laboratory for studies of pelagic ecology. In S. Skreslet (ed.): Jan Mayen Island in scientific focus. Pp. 123–133. Dordrecht: Kluwer Academic Publishers.


Hirche H.J., Hagen W., Mumm N. & Richter C. 1994. The northeast water polynya, Greenland Sea. 3. Meso- and macrozooplankton distribution and production of dominant herbivorous copepods during spring. Polar Biology 14, 491–503.


Johnson C.L., Leising A.W., Runge J.A., Head E.J.H., Pepin P., Plourde S. & Durbin G. 2008. Characteristics of Calanus finmarchicus dormancy patterns in the Northwest Atlantic. ICES Journal of Marine Science 65, 339–350, doi: 10.1093/icesjms/fsm171.


Kendall M.G. 1970. Rank correlation methods. London: Griffin.


Kraft A., Berge J., Varpe Ø. & Falk-Petersen S. 2013. Feeding in Arctic darkness: mid-winter diet of the pelagic amphipods Themisto abyssorum and T. libellula. Marine Biology 160, 241–248, doi: 10.1007/s00227-012-2065-8.


Ledbetter M. 1979. Langmuir circulations and plankton patchiness. Ecological Monographs 7, 289–310, doi: 10.1016/0304-3800(79)90039-5.


Mathuru A.S., Kibat C., Cheong W.F., Shui G., Wenk M.R., Friedrich R.W. & Jesuthasan S. 2012. Chondroitin fragments are odorants that trigger fear behavior in fish. Current Biology 22, 538–544, doi: 10.1016/j.cub.2012.01.061.


Olsen K. 2002. Sesongutskiftinger av Calanus finmarchicus (Gunnerus) i Saltfjorden. (Seasonal exchange of Calanus finmarchicus [Gunnerus] in Saltfjorden.) M.Sc. thesis, University of Tromsø.


Onsrud M.S.R & Kaartvedt S. 1998. Diel vertical migration of the krill Meganyctiphanes norvegica in relation to physical environment, food and predators. Marine Ecology Progress Series 171, 209–219, doi: 10.3354/meps171209.


Osgood K.E. & Frost B.W. 1994. Ontogenetic diel vertical migrations of the marine plankton copepods Calanus pacificus and Metridia lucens. Marine Ecology Progress Series 104, 13–25.


Pagès F., González H.E. & Gonzáles S.R. 1996. Diet of the gelatinous zooplankton of Hardangerfjord (Norway) and potential predatory impact by Aglantha digitale (Trachumedusae). Marine Ecology Progress Series 139, 69–77.


Read G. & Fauchald K. (eds.) 2018. World Polychaeta database. Tomopteris helgolandica Greeff, 1879. World Register of Marine Species. Accessed on the internet at http://www.marinespecies.org/aphia.php?p=taxdetails&id=131554 on 13 April 2018.


Skreslet S. 1989. Spatial match and mismatch between larvae of cod (Gadus morhua L.) and their principal prey, nauplii of Calanus finmarchicus. ICES Marine Science Symposia 191, 258–263.


Skreslet S. 1994. Årsvariasjoner i fiskefaunaen på reketrålfelt i Salten. (Annual variability of fish fauna on deep-sea prawn habitats in Salten.) Nordland College HSN-Rapport 1994:5. Bodø, Norway: Nordland College.


Skreslet S. & Loeng H. 1977. Deep water renewal and associated processes in Skjomen, a fjord in north Norway. Estuarine and Coastal Marine Science 5, 383–398.


Skreslet S., Olsen K., Chelak M. & Eiane K. 2015. NE Atlantic zooplankton wintering in fjord habitats responds to hemispheric climate. Journal of Plankton Research 37, 773–789, doi: 10.1093/plankt/fbv032.


Skreslet S., Olsen K., Mohus Å. & Tande K.S. 2000. Stage-specific habitats of Calanus finmarchicus and Calanus helgolandicus in a stratified northern Norwegian fjord. ICES Journal of Marine Science 57, 1656–1663, doi: 10.1006/jmsc.2000.0968.


Skreslet S. & Schei B. 1976. Hydrography of Skjomen, a fjord in North Norway. In S. Skresletet al. (eds.): Fresh water on the sea. Pp. 101–107. Oslo: Association of Norwegian Oceanographers.


Sømme J.D. 1934. Animal plankton in the Norwegian coast waters and the open sea. I. Production of Calanus finmarchicus (Gunner) and Calanus hyperboreus (Krøyer) in the Lofoten area. Report on Norwegian Fishery and Marine Investigations 4(9). Oslo: Directorate of Fisheries.


Sullivan B.K., Garcia J.R. & Klein-MacPhee G. 1994. Prey selection by the scyphomedusan predator Aurelia aurita. Marine Biology 121, 335–341, doi: 10.1007/BF00346742.


Tarrant A.M., Baumgartner M.F., Verslycke T. & Johnson C.L. 2008. Differential gene expression in diapausing and active Calanus finmarchicus (Copepoda). Marine Ecology Progress Series 355, 193–207, doi: 10.3354/meps07207.


Tchernia P. 1980. Descriptive regional oceanography. Oxford: Pergamon.


Tønnesson K., Nielsen T.G. & Tiselius P. 2006. Feeding and production of the carnivorous copepod Pareuchaeta norvegica in the Skagerrak. Marine Ecology Progress Series 314, 213–225, doi: 10.3354/meps314213.


Valdés J., Olivares J., Ponce D. & Schmachtenberg O. 2015. Analysis of olfactory sensitivity in rainbow trout (Oncorhynchus mykiss) reveals their ability to detect lactic acid, pyruvic acid and four B vitamins. Fish Physiology and Biochemistry 41, 879–885, doi: 10.1007/s10695-015-0054-9.


Wiebe P.H. 1971. A computer model study of zooplankton patchiness and its effects on sampling error. Limnology and Oceanography 16, 29–38, doi: 10.4319/lo.1971.16.1.0029.
Published
2020-10-29
How to Cite
Skreslet S., Espinasse M., Olsen K., & Espinasse B. D. (2020). Variable predator–prey relations in zooplankton overwintering in Subarctic fjords. Polar Research, 39. https://doi.org/10.33265/polar.v39.3300
Section
Research Articles