Seasonal dynamics of the marine CO2 system in Adventfjorden, a west Spitsbergen fjord

  • Ylva Ericson Department of Arctic Geophysics, University Centre in Svalbard; Geophysical Institute, University of Bergen
  • Melissa Chierici Department of Arctic Geophysics, University Centre in Svalbard; Institute of Marine Research, Fram Centre
  • Eva Falck Department of Arctic Geophysics, University Centre in Svalbard; Geophysical Institute, University of Bergen
  • Agneta Fransson Norwegian Polar Institute, Fram Centre
  • Elizabeth Jones Institute of Marine Research, Fram Centre
  • Svein Kristiansen Department of Arctic and Marine Biology, UiT—The Arctic University of Norway
Keywords: marine carbonate system, aragonite, net community production, Arctic fjord biogeochemistry, Svalbard

Abstract

Time series of the marine CO2 system and related parameters at the IsA Station, by Adventfjorden, Svalbard, were investigated between March 2015 and November 2017. The physical and biogeochemical processes that govern changes in total alkalinity (TA), total dissolved inorganic carbon (DIC) and the saturation state of the calcium carbonate mineral aragonite (ΩAr) were assessed on a monthly timescale. The major driver for TA and DIC was changes in salinity, caused by river runoff, mixing and advection. This accounted for 77 and 45%, respectively, of the overall variability. It contributed minimally to the variability in ΩAr (5%); instead, biological activity was responsible for 60% of the monthly variations. For DIC, the biological activity was also important, contributing 44%. The monthly effect of air–sea CO2 fluxes accounted for 11 and 15% of the total changes in DIC and ΩAr, respectively. Net community production (NCP) during the productive season ranged between 65 and 85 g C m−2, depending on the year and the presence of either Arctic water or transformed Atlantic water (TAW). The annual NCP as estimated from DIC consumption was 34 g C m−2 yr−1 in 2016, which was opposite in direction but similar in magnitude to the integrated annual air–sea CO2 flux (i.e., uptake of carbon from the atmosphere) of −29 g C m−2 yr−1 for the same year. The results showed that increased intrusions of TAW into Adventfjorden in the future could possibly lower the NCP, with the potential to reduce the CO2buffer capacity and ΩAr over the summer season.

Downloads

Download data is not yet available.

References


Alpkem 1989. Nitrate+nitrite nitrogen. A303-S170. Revision 6–89. RFA (rapid flow analyser) methodology. College Station, TX: Alpkem.


Bendschneider K. & Robinson R.I. 1952. A new spectrophotometric method for determination of nitrite in seawater. Journal of Marine Research 2, 87–96.


Chen B., Cai W.-J. & Chen L. 2015. The marine carbonate system of the Arctic Ocean: assessment of internal consistency and sampling considerations, summer 2010. Marine Chemistry 176, 174–188, http://dx.doi.org/10.1016/j.marchem.2015.09.007.


Chierici M., Fransson A. & Anderson L.G. 1999. Influence of m-cresol purple indicator additions on the pH of seawater samples: correction factors evaluated from a chemical speciation model. Marine Chemistry 65, 281–290, http://dx.doi.org/10.1016/S0304-4203(99)00020-1.


Chierici M., Fransson A., Lansard B., Miller L.A., Mucci A., Shadwick E., Thomas H., Tremblay J.E. & Papakyriakou T.N. 2011. The impact of biogeochemical processes and environmental factors on the calcium carbonate saturation state in the Circumpolar Flaw Lead in the Amundsen Gulf, Arctic Ocean. Journal of Geophysical Research—Oceans 116, C00G09, http://dx.doi.org/10.1029/2011JC007184.


Clayton T.D. & Byrne R.H. 1993. Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep-Sea Research Part I 40, 2115–2129, http://dx.doi.org/10.1016/0967-0637(93)90048-8.


Codispoti L.A., Kelly V., Thessen A., Matrai P., Suttles S., Hill V., Steele M. & Light B. 2013. Synthesis of primary production in the Arctic Ocean: III. Nitrate and phosphate based estimates of net community production. Progress in Oceanography 110, 126–150. http://dx.doi.org/10.1016/j.pocean.2012.11.006.


Cottier F.R., Tverberg V., Inall M.E., Svendsen H., Nilsen F. & Griffiths C. 2005. Water mass modification in an Arctic fjord through crossshelf exchange: the seasonal hydrography of Kongsfjorden, Svalbard. Journal of Geophysical Research—Oceans 110, C12005, http://dx.doi.org/10.1029/2004JC002757.


Dickson A.G. 1990. Standard potential of the reaction: AgCl(s) + 1/2H2 (g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4- in synthetic sea water from 273.15 to 318.15 K. Journal of Chemical Thermodynamics 22, 113–127, http://dx.doi.org/10.1016/0021-9614(90)90074-Z.


Dickson A.G. & Goyet C. (eds.) 1994. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water, version 2. ORNL/CDIAC-74. Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy.


Dickson A.G. & Millero F.J. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Research Part A 34, 1733–1743, http://dx.doi.org/10.1016/0198-0149(87)90021-5.


Dickson A.G., Sabine C.L. & Christian J.R. (eds.) 2007. Guide to best practices for ocean CO2 measurements. PICES Special Publication 3. IOCCP Report 8. Sidney, Canada: North Pacific Marine Science Organization.


Doney S.C., Balch W.M., Fabry V.J. & Feely R.A. 2009. Ocean acidification: a critical emerging problem for the ocean sciences. Oceanography 22, 16–25, http://dx.doi.org/10.5670/oceanog.2009.93.


Ericson Y., Falck E., Chierici M., Fransson A., Kristiansen S., Platt S.M., Hermansen O. & Myhre C.L. 2018. Temporal variability in surface water pCO2 in Adventfjorden (west Spitsbergen) with emphasis on physical and biogeochemical drivers. Journal of Geophysical Research—Oceans 123, 4888–4905, http://dx.doi.org/10.1029/2018JC014073.


Ewertowski M. 2014. Recent transformations in the High-Arctic glacier landsystem, Ragnabreen, Svalbard. Geografiska Annaler Series A 96, 265–285, http://dx.doi.org/10.1111/geoa.12049.


Fransson A., Chierici M., Hop H., Findlay H.S., Kristiansen S. & Wold A. 2016. Late winter-to-summer change in ocean acidification state in Kongsfjorden, with implications for calcifying organisms. Polar Biology 39, 1841–1857, http://dx.doi.org/10.1007/s00300-016-1955-5.


Fransson A., Chierici M., Nomura D., Granskog M.A., Kristiansen S., Martma T. & Nehrke G. 2015. Effect of glacial drainage water on the CO2 system and ocean acidification state in an Arctic tidewater-glacier fjord during two contrasting years. Journal of Geophysical Research—Oceans 120, 2413–2429, http://dx.doi.org/10.1002/2014JC010320.


Frigstad H., Andersen T., Bellerby R.G.J. Silyakova A. & Hessen D.O. 2014. Variation in the seston C:N ratio of the Arctic Ocean and pan-Arctic shelves. Journal of Marine Systems 129, 214–223, http://dx.doi.org/10.1016/j.jmarsys.2013.06.004.


Grabiec M. Ignatiuk D., Jania J.A., Moskalik M., Glowacki P., Blaszczyk M., Budzik T. & Walczowski W. 2017. Coast formation in an Arctic area due to glacier surge and retreat: the Hornbreen–Hambergbreen case from Spistbergen. Earth Surface Processes and Landforms 43, 387–400, http://dx.doi.org/10.1002/esp.4251.


Grasshof K. 1965. On the automatic determination of phosphate, silicate and fluoride in seawater. ICES Hydrographic Committee Report 129. Copenhagen: International Council for the Exploration of the Sea.


Grasshof K., Kremling K. & Ehrhardt M. 2009. Methods of seawater analysis. 3rd edn. New York: John Wiley.


Hodal H., Falck-Petersen S., Hop H., Kristiansen S. & Reigstad M. 2012. Spring bloom dynamics in Kongsfjorden, Svalbard: nutrients, phytoplankton, protozoans and primary production. Polar Biology 35, 191–203, http://dx.doi.org/10.1007/s00300-011-1053-7.


Isaksen K., Nordli Ø., Førland E. J., Lupikasza E., Eastwood S. & Niedźwiedź T. 2016. Recent warming on Spitsbergen—influence of the atmospheric circulation and sea ice cover. Journal of Geophysical Research—Atmospheres 121, 11913–11931, http://dx.doi.org/10.1002/2016JD025606.


Kähler P. & Koeve W. 2001. Marine dissolved organic matter: can its C:N ratio explain carbon overconsumption? Deep-Sea Research Part I 48, 49–62, http://dx.doi.org/10.1016/S0967-0637(00)00034-0.


Lee K., Kim T.-W., Byrne R.H., Millero F.J., Feely R.A. & Liu Y.-M. 2010. The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochimica et Cosmochimica Acta 74, 1801–1811, http://dx.doi.org/10.1016/j.gca.2009.12.027.


Lewis E. & Wallace D.W.R. 1998. Program developed for CO2 system calculations. ORNL/CDIAC-105. Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy.


Lydersen C., Assmy P., Falk-Petersen S., Kohler J., Kovacs K.M., Reigstad M., Steen H., Strøm H., Sundfjord A., Varpe Ø., Walczowski W., Weslawski J.M. & Zajaczkowski M. 2014. The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. Journal of Marine Systems 129, 452–471, http://dx.doi.org/10.1016/j.jmarsys.2013.09.006.


Marlin C., Tolle F., Griselin M., Bernard E., Saintenoy A., Quenet M. & Friedt J.-M. 2017. Change in geometry of a High Arctic glacier from 1948 to 2013 (Austre Lovénbreen, Svalbard). Geografiska Annaler Series A 99, 115–138, http://dx.doi.org/10.1080/04353676.2017.1285203.


Marquardt M., Vader A., Stübner E.I., Reigstad M. & Gabrielsen T.M. 2016. Strong seasonality of marine microbial eukaryotes in a High-Arctic fjord (Isfjorden, in west Spitsbergen, Norway). Applied and Environmental Microbiology 82, 1868–1880, http://dx.doi.org/10.1128/AEM.03208-15.


Mehrbach C., Culberson C.H., Hawley J.E. & Pytkowicz R.M. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography 18, 897–907, http://dx.doi.org/10.4319/lo.1973.18.6.0897.


Meire L., Søgaard D.H., Mortensen J., Meysman F.J.R., Soetaert K., Arendt K.E., Juul-Pedersen T., Blicher M.E. & Rhysgaard S. 2015. Glacial meltwater and primary production are drivers of strong CO2 uptake in fjord and coastal waters adjacent to the Greenland Ice Sheet. Biogeosciences 12, 2347–2363, http://dx.doi.org/10.5194/bg-12-2347-2015.


Millero F.J. 1979. The thermodynamics of the carbonate system in seawater. Geochimica et Cosmochimica Acta 43, 1651–1661, http://dx.doi.org/10.1016/0016-7037(79)90184-4.


Millero F.J. 2007. The marine inorganic carbon cycle. Chemical Reviews 107, 308–341, http://dx.doi.org/10.1021/cr0503557.


Mucci A. 1983. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. American Journal of Science 283, 780–799, http://dx.doi.org/10.2475/ajs.283.7.780.


Muckenhuber S., Nilsen F., Korosov A. & Sandven S. 2016. Sea ice cover in Isfjorden and Hornsund, Svalbard (2000–2014) from remote sensing data. The Cryosphere 10, 149–158, http://dx.doi.org/10.5194/tc-10-149-2016.


Nilsen F., Cottier F., Skogseth R. & Mattsson S. 2008. Fjord–shelf exchanges controlled by ice and brine production: the interannual variation of Atlantic Water in Isfjorden, Svalbard. Continental Shelf Research 28, 1838–1853, https://doi.org/10.1016/j.csr.2008.04.015.


Nilsen F., Skogseth R., Vaardal-Lunde J. & Inall M. 2016. A simple shelf circulation model: Intrusion of Atlantic Water on the West Spitsbergen Shelf. Journal of Physical Oceanography 46, 1209–1230. http://dx.doi.org/10.1175/JPO-D-15-0058.1.


Nordli Ø., Przybylak R., Ogilvie A.E.J. & Isaksen K. 2014. Long-term temperature trends and variability on Spitsbergen: the extended Svalbard Airport temperature series, 1898–2012. Polar Research 33, article no. 21349, http://dx.doi.org/10.3402/polar.v33.21349.


Olsen A., Omar A.M., Bellerby R.G.J., Johannessen T., Ninnemann U., Brown K.R., Olsson K.A., Olafsson J., Nondal G., Kivimäe C., Kringstad S., Neill C. & Olafsdottir S. 2006. Magnitude and origin of the anthropogenic CO2 increase and 13C Suess effect in the Nordic seas since 1981. Global Biogeochemical Cycles 20, GB3027, http://dx.doi.org/10.1029/2005GB002669.


Omar A., Johannessen T., Bellerby R.G.J., Olsen A., Anderson L.G. & Kivimäe C. 2005. Sea ice and brine formation in Storfjorden: implications for the Arctic winter time air–sea CO2 flux. In H. Drange et al. (eds.): The Nordic seas: an integrated perspective. Pp. 177–187. Washington, DC: American Geophysical Union.


Onarheim I.H., Smedsrud L.H., Ingvaldsen R.B. & Nilsen F. 2014. Loss of sea ice during winter north of Svalbard. Tellus Series A 66, article no. 23933, http://dx.doi.org/10.3402/tellusa.v66.23933.


Pavlov A.K., Tverberg V., Ivanov B.V., Nilsen F., Falk-Petersen S. & Granskog M.A. 2013. Warming of Atlantic Water in two west Spitsbergen fjords over the last century (1912–2009). Polar Research 32, article no. 11206, http://dx.doi.org/10.3402/polar.v32i0.11206.


Redfield A.C., Ketchum B.H. & Richards F.A. 1963. The influence of organisms on the composition of sea-water. In M.N. Hill (ed.): The sea: ideas and observations on the progress in the study of the sea. Vol. 2. Pp. 26–77. New York: Interscience.


Riley J.P. & Tongudai M. 1967. The major cation/chlorinity ratios in sea water. Chemical Geology 2, 263–269.


Sarmiento J.L. & Gruber N. 2006. Ocean biogeochemical dynamics. Princeton, NJ: Princeton University Press.


Shadwick E.H., Thomas H., Chierici M., Else B., Fransson A., Michel C., Miller L.A., Mucci A., Niemi A., Papakyriakou T.N. & Tremblay J.-E. 2011. Seasonal variability of the organic carbon system in the Amundsen Gulf region of the southeastern Beaufort Sea. Limnology and Oceanography 56, 303–322.


Sobota I. & Nowak M. 2014. Changes in the dynamics and thermal regime of the permafrost and active layer of the High Arctic coastal area in north-west Spitsbergen, Svalbard. Geografiska Annaler Series A 96, 227–240, http://dx.doi.org/10.1111/geoa.12045.


Sterner R.W., Andersen T., Elser J.J., Hessen D.O., Hood J.M., McCauley E., Urabe J. 2008. Scale-dependent carbon:nitrogen:phosphorus seston stoichiometry in marine and freshwaters. Limnology and Oceanography 53, 1169–1180, http://dx.doi.org/10.4319/lo.2008.53.3.1169.


Takahashi T., Olafsson J., Goddard J.G., Chipman D.W. & Sutherland S.C. 1993. Seasonal variation of CO2 and nutrients in the high latitude surface oceans: a comparative study. Global Biogeochemical Cycles 7, 843–878, http://dx.doi.org/10.1029/93GB02263.


van Heuven S., Pierrot D., Rae J.W.B., Lewis E. & Wallace D.W.R. 2011. MATLAB program developed for CO2 system calculations. ORNL/CDIAC-105b. https://doi.org/10.3334/CDIAC/otg.CO2SYS_MATLAB_v1.1. Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy.


Vaquer-Sunyer R., Duarte C.M., Regaudie-de-Gioux A., Holding J. Garcia-Corral L.S., Reigstad M. & Wassman P. 2013. Seasonal patterns in Arctic planktonic metabolism (Fram Strait–Svalbard region). Biogeosciences 10, 1451–1469, http://dx.doi.org/10.5194/bg-10-1451-2013.


Wanninkhof R. 2014. Relationship between wind speed and gas exchange over the ocean revisited. Limnology and Oceanography—Methods 12, 351–362, http://dx.doi.org/10.4319/lom.2014.12.351.


Weiss R.F. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry 2, 203–205, http://dx.doi.org/10.1016/0304-4203(74)90015-2.


WMO 2014. Guide to meteorological instruments and methods of observation. WMO-No 8. Geneva: World Meteorological Organization.


Woosley R.J., Millero F.J. & Takahashi T. 2017. Internal consistency of the inorganic carbon system in the Arctic Ocean. Limnology and Oceanography—Methods 15, 887–896, https://dx.doi.org/10.1002/lom3.10208.


Ziaja W. 2005. Response of the Nordenskiöld Land (Spitsbergen) glaciers Grumantbreen, Håbergbreen and Dryadbreen to the climate warming after the Little Ice Age. Annals of Glaciology 42, 189–194, http://dx.doi.org/10.3189/172756405781812673.
Published
2019-06-11
How to Cite
Ericson Y., Chierici M., Falck E., Fransson A., Jones E., & Kristiansen S. (2019). Seasonal dynamics of the marine CO<sub>2</sub&gt; system in Adventfjorden, a west Spitsbergen fjord. Polar Research, 38. https://doi.org/10.33265/polar.v38.3345
Section
Research Articles