Comparison of snow accumulation events on two High-Arctic glaciers to model-derived and observed precipitation

  • Ankit Pramanik Norwegian Polar Institute, Tromsø, Norway; Department of Geosciences, University of Oslo, Oslo, Norway; National Centre for Polar and Ocean Research, Goa, India
  • Jack Kohler Norwegian Polar Institute, Tromsø, Norway
  • Thomas V. Schuler Department of Geosciences, University of Oslo, Oslo, Norway; Arctic Geophysics, University Centre in Svalbard, Longyearbyen, Svalbard, Norway
  • Ward van Pelt Department of Earth Sciences, Uppsala University, Uppsala, Sweden
  • Lana Cohen Norwegian Polar Institute, Tromsø, Norway
Keywords: Sonic ranger, accumulation, precipitation, mass balance, calm snowfall, high wind accumulation

Abstract

We evaluate how precipitation forcing data used in glacier mass balance models characterize snow accumulation events on synoptic timescales for two glaciers in north-western Svalbard (Kongsvegen and Holtedahlfonna). Using sonic ranger (snow depth) and wind speed data from automatic weather stations located on the glaciers, we distinguish accumulation events occurring under either calm or windy conditions. We show clear differences in the timing and magnitude of snow accumulation events between the two neighbouring glaciers, illustrating the spatial heterogeneity of snow accumulation in this region. The accumulation measurements show that at equivalent elevations, Kongsvegen receives more snowfall than neighbouring Holtedahlfonna, and that Kongsvegen is more affected by wind-driven snow redistribution than Holtedahlfonna. This is consistent with the synoptically-driven precipitation patterns in the region. Accumulation events are then compared to precipitation data from the nearest meteorological station in Ny-Ålesund (ca. 30 km distant) and to a downscaled snowfall data product based on the ERA-Interim reanalysis (nearest gridpoint ca. 300 m distant). Evaluation of the synchrony of observed events at the glacier sites and the precipitation products shows that the ERA-Interim precipitation data reproduce more snowfall events than the Ny-Ålesund station data, suggesting that the precipitation fields from distributed reanalysis data provide a more reasonable representation of accumulation on the study glaciers, even over short timescales.

Downloads

Download data is not yet available.

References


Aas K.S., Dunse T., Collier E., Schuler T.V., Berntsen T.K., Kohler J. & Luks B. 2016. The climatic mass balance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere-glacier mass balance model. Cryosphere 10, 1089–1104, http://dx.doi.org/10.5194/tc-10-1089-2016.


Adhikari S. & Huybrechts P. 2009. Numerical modelling of historical front variations and the 21st-century evolution of glacier AX010, Nepal Himalaya. Annals of Glaciology 50, 27–34, http://dx.doi.org/10.3189/172756409789624346.


Barstad I. & Smith R.B. 2005. Evaluation of an orographic precipitation model. Journal of Hydrometeorology 6, 85–99, http://dx.doi.org/10.1175/jhm-404.1.


Braaten D.A. 2000. Direct measurements of episodic snow accumulation on the Antarctic polar plateau. Journal of Geophysical Research—Atmospheres 105, 10119–10128, http://dx.doi.org/10.1029/2000jd900099.


Bromwich D.H. 1988. Snowfall in high southern latitudes. Reviews of Geophysics 26, 149–168, http://dx.doi.org/10.1029/RG026i001p00149.


Bromwich D.H. & Fogt R.L. 2004. Strong trends in the skill of the ERA-40 and NCEP-NCAR reanalyses in the high and midlatitudes of the Southern Hemisphere, 1958–2001. Journal of Climate 17, 4603–4619, http://dx.doi.org/10.1175/3241.1.


Bromwich D.H., Guo Z.C., Bai L.S. & Chen Q.S. 2004. Modeled Antarctic precipitation. Part I: spatial and temporal variability. Journal of Climate 17, 427–447, http://dx.doi.org/10.1175/1520-0442(2004)017<0427:mappis>2.0.co;2.


Castellani B.B., Shupe M.D., Hudak D.R. & Sheppard B.E. 2015. The annual cycle of snowfall at Summit, Greenland. Journal of Geophysical Research—Atmospheres 120, 6654–6668, http://dx.doi.org/10.1002/2015jd023072.


Cohen L. & Dean S. 2013. Snow on the Ross Ice Shelf: comparison of reanalyses and observations from automatic weather stations. The Cryosphere 7, 1399–1410, http://dx.doi.org/10.5194/tc-7-1399-2013.


Crochet P., Johannesson T., Jonsson T., Sigurdsson O., Bjoensson H., Palsson F. & Barstad I. 2007. Estimating the spatial distribution of precipitation in Iceland using a linear model of orographic precipitation. Journal of Hydrometeorology 8, 1285–1306, http://dx.doi.org/10.1175/2007jhm795.1.


Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., Van De Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Holm E.V., Isaksen L., Kallberg P., Koehler M., Matricardi M., Mcnally A.P., Monge-Sanz B.M., Morcrette J.J., Park B.K., Peubey C., De Rosnay P., Tavolato C., Thepaut J.N. & Vitart F. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society 137, 553–597, http://dx.doi.org/10.1002/qj.828.


Deems J.S., Painter T.H. & Finnegan D.C. 2013. Lidar measurement of snow depth: a review. Journal of Glaciology 59, 467–479, http://dx.doi.org/10.3189/2013JoG12J154.


Dery S.J. & Yau M.K. 2001. Simulation of blowing snow in the Canadian Arctic using a double-moment model. Boundary-Layer Meteorology 99, 297–316, http://dx.doi.org/10.1023/a:1018965008049.


Duchon C., Fiebrich C. & Grimsley D. 2014. Using high-speed photography to study undercatch in tipping-bucket rain gauges. Journal of Atmospheric and Oceanic Technology 31, 1330–1336, http://dx.doi.org/10.1175/jtech-d-13-00169.1.


Essery R., Li L. & Pomeroy J. 1999. A distributed model of blowing snow over complex terrain. Hydrological Processes 13, 2423–2438, http://dx.doi.org/10.1002/(sici)1099-1085(199910)13:14/15<2423::aid-hyp853>3.0.co;2-u.


Fettweis X., Hanna E., Gallee H., Huybrechts P. & Erpicum M. 2008. Estimation of the Greenland ice sheet surface mass balance for the 20th and 21st centuries. Cryosphere 2, 117–129, http://dx.doi.org/10.5194/tc-2-117-2008.


Førland E.J., Benestad R., Hanssen-Bauer I., Haugen J.E. & Skaugen T.E. 2011. Temperature and precipitation development at Svalbard 1900–2100. Advances in Meteorology 2011, article no. 893790, http://dx.doi.org/10.1155/2011/893790.


Førland E.J. & Hanssen-Bauer I. 2000. Increased precipitation in the Norwegian Arctic: true or false? Climatic Change 46, 485–509, http://dx.doi.org/10.1023/a:1005613304674.


Førland E.J. & Hanssen-Bauer I. 2003. Past and future climate variations in the Norwegian Arctic: overview and novel analyses. Polar Research 22, 113–124, http://dx.doi.org/10.1111/j.1751-8369.2003.tb00102.x.


Fountain A.G., Nylen T.H., Monaghan A., Basagic H.J. & Bromwich D. 2010. Snow in the McMurdo Dry Valleys, Antarctica. International Journal of Climatology 30, 633–642, http://dx.doi.org/10.1002/joc.1933.


Hanssen-Bauer I. & Førland E.J. 1998. Long-term trends in precipitation and temperature in the Norwegian Arctic: can they be explained by changes in atmospheric circulation patterns? Climate Research 10, 143–153, http://dx.doi.org/10.3354/cr010143.


Kaesmacher O. & Schneider C. 2011. An objective circulation pattern classification for the region of Svalbard. Geografiska Annaler Series A 93A, 259–271, http://dx.doi.org/10.1111/j.1468-0459.2011.00431.x.


Knuth S.L., Tripoli G.J., Thom J.E. & Weidner G.A. 2010. The influence of blowing snow and precipitation on snow depth change across the Ross Ice Shelf and Ross Sea regions of Antarctica. Journal of Applied Meteorology and Climatology 49, 1306–1321, http://dx.doi.org/10.1175/2010jamc2245.1.


Lang C., Fettweis X. & Erpicum M. 2015. Stable climate and surface mass balance in Svalbard over 1979–2013 despite the Arctic warming. Cryosphere 9, 83–101, http://dx.doi.org/10.5194/tc-9-83-2015.


Lehning M., Naaim F., Naaim M., Brabec B., Doorschot J., Durand Y., Guyomarc’h G., Michaux J.L. & Zimmerli M. 2002. Snow drift: acoustic sensors for avalanche warning and research. Natural Hazards and Earth System Sciences 2, 121–128, http://dx.doi.org/10.5194/nhess-2-121-2002.


Lenaerts J.T.M., Smeets C., Nishimura K., Eijkelboom M., Boot W., Van Den Broeke M.R. & Van De Berg W.J. 2014. Drifting snow measurements on the Greenland Ice Sheet and their application for model evaluation. Cryosphere 8, 801–814, http://dx.doi.org/10.5194/tc-8-801-2014.


Li L. & Pomeroy J.W. 1997. Probability of occurrence of blowing snow. Journal of Geophysical Research—Atmospheres 102, 21955–21964, http://dx.doi.org/10.1029/97jd01522.


Liston G.E., Sud Y.C. & Wood E.F. 1994. Evaluating GCM and land-surface hydrology parameterizations by computing river discharges using a runoff routing model-application to the Mississippi Basin. Journal of Applied Meteorology 33, 394–405, http://dx.doi.org/10.1175/1520-0450(1994)033<0394:eglshp>2.0.co;2.


Mekonnen G.B., Matula S., Dolezal F. & Fisak J. 2015. Adjustment to rainfall measurement undercatch with a tipping-bucket rain gauge using ground-level manual gauges. Meteorology and Atmospheric Physics 127, 241–256, http://dx.doi.org/10.1007/s00703-014-0355-z.


Oerlemans J. 2001. Glaciers and climate change. Rotterdam: A. A. Balkema.


Østby T.I., Schuler T.V., Hagen J.O., Hock R., Kohler J. & Reijmer C.H. 2017. Diagnosing the decline in climatic mass balance of glaciers in Svalbard over 1957–2014. The Cryosphere 11, 191–215, http://dx.doi.org/10.5194/tc-11-191-2017.


Osuch M. & Wawrzyniak T. 2017. Inter- and intra-annual changes in air temperature and precipitation in western Spitsbergen. International Journal of Climatology 37, 3082–3097, http://dx.doi.org/10.1002/joc.4901.


Pomeroy J.W., Gray D.M., Shook K.R., Toth B., Essery R.L.H., Pietroniro A. & Hedstrom N. 1998. An evaluation of snow accumulation and ablation processes for land surface modelling. Hydrological Processes 12, 2339–2367, http://dx.doi.org/10.1002/(SICI)1099-1085(199812)12:15<2339::AID-HYP800>3.0.CO;2-L.


Pramanik A., Van Pelt W., Kohler J. & Schuler T.V. 2018. Simulating climatic mass balance, seasonal snow development and associated freshwater runoff in the Kongsfjord basin, Svalbard (1980–2016). Journal of Glaciology 64, 943–956, http://dx.doi.org/10.1017/jog.2018.80.


Rogers A.N., Bromwich D.H., Sinclair E.N. & Cullather R.I. 2001. The atmospheric hydrologic cycle over the Arctic Basin from reanalyses. Part II: interannual variability. Journal of Climate 14, 2414–2429, http://dx.doi.org/10.1175/1520-0442(2001)014<2414:tahcot>2.0.co;2.


Ryan W.A., Doesken N.J. & Fassnacht S.R. 2008. Evaluation of ultrasonic snow depth sensors for U.S. snow measurements. Journal of Atmospheric and Oceanic Technology 25, 667–684, http://dx.doi.org/10.1175/2007jtecha947.1.


Schuler T.V., Crochet P., Hock R., Jackson M., Barstad I. & Jóhannesson T. 2008. Distribution of snow accumulation on the Svartisen ice cap, Norway, assessed by a model of orographic precipitation. Hydrological Processes 22, 3998–4008, http://dx.doi.org/10.1002/hyp.7073.


Serreze M.C., Box J.E., Barry R.G. & Walsh J.E. 1993. Characteristics of Arctic synoptic activity, 1952–1989. Meteorology and Atmospheric Physics 51, 147–164, http://dx.doi.org/10.1007/bf01030491.


Simmonds I., Keay K. & Bye J.A.T. 2012. Identification and climatology of Southern Hemisphere mobile fronts in a modern reanalysis. Journal of Climate 25, 1945–1962, http://dx.doi.org/10.1175/jcli-d-11-00100.1.


Smith R.B. & Barstad I. 2004. A linear theory of orographic precipitation. Journal of the Atmospheric Sciences 61, 1377–1391, http://dx.doi.org/10.1175/1520-0469(2004)061<1377:altoop>2.0.co;2.


Sorteberg A. & Walsh J.E. 2008. Seasonal cyclone variability at 70°N and its impact on moisture transport into the Arctic. Tellus A 60, 570–586, http://dx.doi.org/10.1111/j.1600-0870.2008.00314.x.


Sorteberg H.K., Engeset R.V. & Udnaes H.C. 2001. A national network for snow monitoring in Norway: snow pillow verification using observations and models. Physics and Chemistry of the Earth Part C 26, 723–729, http://dx.doi.org/10.1016/s1464-1917(01)95016-0.


Sugiura K., Ohata T. & Yang D.Q. 2006. Catch characteristics of precipitation gauges in high-latitude regions with high winds. Journal of Hydrometeorology 7, 984–994, http://dx.doi.org/10.1175/jhm542.1.


Tsukernik M., Kindig D.N. & Serreze M.C. 2007. Characteristics of winter cyclone activity in the northern North Atlantic: insights from observations and regional modeling. Journal of Geophysical Research—Atmospheres 112, D03101, http://dx.doi.org/10.1029/2006jd007184.


Van Pelt W. & Kohler J. 2015. Modelling the long-term mass balance and firn evolution of glaciers around Kongsfjorden, Svalbard. Journal of Glaciology 61, 731–744, http://dx.doi.org/10.3189/2015JoG14J223.


Van Pelt W.J.J., Kohler J., Liston G.E., Hagen J.O., Luks B., Reijmer C.H. & Pohjola V.A. 2016. Multidecadal climate and seasonal snow conditions in Svalbard. Journal of Geophysical Research—Earth Surface 121, 2100–2117, http://dx.doi.org/10.1002/2016jf003999.


Walsh J.E., Zhou X., Portis D. & Serreze M.C. 1994. Atmospheric contribution to hydrologic variations in the Arctic. Atmosphere–Ocean 32, 733–755, http://dx.doi.org/10.1080/07055900.1994.9649520.


Wolff M.A., Isaksen K., Petersen-Overleir A., Odemark K., Reitan T. & Braekkan R. 2015. Derivation of a new continuous adjustment function for correcting wind-induced loss of solid precipitation: results of a Norwegian field study. Hydrology and Earth System Sciences 19, 951–967, http://dx.doi.org/10.5194/hess-19-951-2015.


Zemp M., Thibert E., Huss M., Stumm D., Denby C.R., Nuth C., Nussbaumer S.U., Moholdt G., Mercer A., Mayer C., Joerg P.C., Jansson P., Hynek B., Fischer A., Escher-Vetter H., Elvehoy H. & Andreassen L.M. 2013. Reanalysing glacier mass balance measurement series. Cryosphere 7, 1227–1245, http://dx.doi.org/10.5194/tc-7-1227-2013.
Published
2019-08-30
How to Cite
Pramanik, A., Kohler, J., Schuler, T., van Pelt, W., & Cohen, L. (2019). Comparison of snow accumulation events on two High-Arctic glaciers to model-derived and observed precipitation. Polar Research, 38. https://doi.org/10.33265/polar.v38.3364
Section
Research Articles