The marine sedimentary environments of Kongsfjorden, Svalbard: an archive of polar environmental change

  • Katrine Husum Norwegian Polar Institute, Tromsø, Norway
  • John A. Howe Scottish Association for Marine Sciences, Scottish Marine Institute, Oban, UK
  • Agnes Baltzer University of Nantes, Nantes, France
  • Matthias Forwick UiT – The Arctic University of Norway, Tromsø, Norway
  • Maria Jensen University Centre of Svalbard, Longyearbyen, Norway
  • Patrycja Jernas UiT – The Arctic University of Norway, Tromsø, Norway; Department of Marine Geology, Institute of Oceanography, University of Gdańsk, Gdańsk, Poland
  • Sergei Korsun Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
  • Arto Miettinen Norwegian Polar Institute, Tromsø, Norway
  • Rahul Mohan National Centre of Antarctic and Ocean Research, Vasco da Gama, Goa, India
  • Caterina Morigi Department of Earth Sciences, Pisa University, Pisa, Italy; Geological Survey of Denmark and Greenland, Copenhagen, Denmark
  • Per Inge Myhre Norwegian Polar Institute, Tromsø, Norway
  • Maarten A. Prins VU University Amsterdam, Amsterdam, The Netherlands
  • Kari Skirbekk UiT – The Arctic University of Norway, Tromsø, Norway
  • Beata Sternal UiT – The Arctic University of Norway, Tromsø, Norway; Adam Mickiewicz University in Poznan, Poznań, Poland
  • Michel Boos VU University Amsterdam, Amsterdam, The Netherlands
  • Noortje Dijkstra UiT – The Arctic University of Norway, Tromsø, Norway; VU University Amsterdam, Amsterdam, The Netherlands
  • Simon Troelstra VU University Amsterdam, Amsterdam, The Netherlands
Keywords: fjord, environment, geology, climate, sediments, deglaciation

Abstract

Kongsfjorden, a fjord in north-western Svalbard, is characterized by large environmental gradients driven by meltwater processes along the margins of tidewater glaciers and the inflow of relatively warm Atlantic Water, the main heat source for the European Arctic. These factors make Kongsfjorden a key area to investigate changes in the polar climate–ocean–glacier system and to examine the resulting effects on the marine environment. The aim of this paper is to synthesize knowledge about the marine sedimentary environment in Kongsfjorden since the last deglaciation. Fjords act as natural sedimentary traps, archiving information about past and present environmental conditions and changes. Geological studies of Kongsfjorden have demonstrated a good potential for reconstructing palaeoenvironments and establishing baselines values for the natural climate changes in the Arctic. Palaeoceanographic reconstructions reveal rising water temperatures similar to modern temperatures ca. 12 000 years ago. The extent of warm Atlantic Water entering the fjords influences processes at, and the stability of, the margins of the tidewater glaciers. Enhanced inflow may cause accelerated glacial melting that, in consequence, leads to an increase in the sediment flux from the glacial catchments into the fjord, as observed ca. 12 000 years ago and at present. However, responses of sediment flux to modern environmental changes remain poorly understood, hence long-term and monitoring studies are needed to quantify and model the effects of climate warming on the sedimentary environment of Kongsfjorden.

Downloads

Download data is not yet available.

References


Aagaard K. & Carmack E.C. 1994. The Arctic ocean and climate: a perspective. In J. Johannessen et al. (eds.): The polar oceans and their role in shaping the global environment. Pp. 5–20, http://dx.doi/10.1029/GM085p0005. Washington, DC: American Geophysical Union.


Aagaard-Sørensen S., Husum K., Hald M. & Knies J. 2010. Paleoceanographic development in the SW Barents Sea during the Late Weichselian–Early Holocene transition. Quaternary Science Reviews 29, 3442–3456, http://dx.doi.org/10.1016/j.quascirev.2010.08.014.


Aagaard-Sørensen S., Husum K., Hald M., Marchitto T. & Godtliebsen F. 2014. Sub sea surface temperatures in the polar North Atlantic during the Holocene: planktic foraminiferal Mg/Ca temperature reconstructions. Holocene 24, 93–103, http://dx.doi.org/10.1177/0959683613515730.


Baeten N.J., Forwick M., Vogt C. & Vorren T.O. 2010. Late Weichselian and Holocene sedimentary environments and glacial activity in Billefjorden, Svalbard. In J.A. Howe et al. (eds.): Fjord systems and archives. Pp. 207–223, http://dx.doi.org/10.1144/SP344.15. London: Geological Society.


Bartsch I., Paar M., Fredriksen S., Schwanitz M., Daniel C., Hop H. & Wiencke C. 2016. Changes in kelp forest biomass and depth distribution in Kongsfjorden, Svalbard, between 1996–1998 and 2012–2014 reflect Arctic warming. Polar Biology 39, 2021–2036, http://dx.doi.org/10.1007/s00300-015-1870-1.


Belt S.T., Brown T.A., Smik L., Tatarek A., Wiktor J., Stowasser G., Assmy P., Allen C.S., & Husum K. 2017. Identification of C25 highly branched isoprenoid (HBI) alkenes in diatoms of the genus Rhizosolenia in polar and sub-polar marine phytoplankton. Organic Geochemistry 110, 65–72, http://dx.doi.org/10.1016/j.orggeochem.2017.05.007.


Belt S.T. & Müller J. 2013. The Arctic sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions. Quaternary Science Reviews 79, 9–25, http://dx.doi.org/10.1016/j.quascirev.2012.12.001.


Berge J., Heggland K., Lønne O.J., Cottier F., Hop H., Gabrielsen G.W., Nøttestad L. & Misund O.A. 2015. First records of Atlantic mackerel (Scomber scombrus) from the Svalbard Archipelago, Norway, with possible explanations for the extension of its distribution. Arctic 68, 54–61, http://dx.doi.org/10.14430/arctic4455.


Bergh S.G., Maher H.D. Jr. & Braathen A. 2000. Tertiary divergent thrust directions from partitioned transpression, Brøggerhalvøya, Spitsbergen. Norwegian Geological Society Journal 80, 63–82, http://dx.doi.org/10.1080/002919600750042573.


Beszczynska-Möller A., Fahrbach E., Schauer U. & Hansen E. 2012. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES Journal of Marine Science 69, 852–863, http://dx.doi.org/10.1093/icesjms/fss056.


Boos M. 2012. Holocene environmental changes in the European Arctic: a sediment-provenance study of glacio-marine sediments in Kongsfjorden, Svalbard. Master’s thesis, Vrije Universiteit Amsterdam, in collaboration with Norwegian Polar Institute.


Bourriquen M., Baltzer A., Mercier D., Fournier J., Pérez L., Haquin S., Bernard E. & Jensen M. 2016. Coastal evolution and sedimentary mobility of Brøgger Peninsula, north west Spitsbergen. Polar Biology 39, 1689–1698, http://dx.doi.org/10.1007/s00300-016-1930-1.


Carmack E., Polyakov I., Padman L., Fer I., Hunke E., Hutchings J., Jackson J., Kelly D., Kwok R., Layton C., Melling H., Perovich H., Persson O., Ruddick B., Timmermans M.-L., Toole J., Ross T., Vavrus S. & Winsor P. 2015. Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic. Bulletin of the American Meteorological Society 96, 2079–2105, http://dx.doi.org/10.1175/BAMS-D-13-00177.1.


Cottier F.R., Nilsen F., Inall M.E., Gerland S., Tverberg V. & Svendsen H. 2007. Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophysical Research Letters 34, L10607, http://dx.doi.org/10.1029/2007GL029948.


Cottier F.R., Nilsen F., Skogseth R., Tverberg V., Skarðhamar J. & Svendsen H. 2010. Arctic fjords: a review of the oceanographic environment and dominant physical processes. In J.A. Howe et al. (eds.): Fjord systems and archives. Pp. 35–50, http://dx.doi.org/10.1144/SP344.4. London: Geological Society.


Cottier F.R., Tverberg V., Inall M., Svendsen H., Nilsen F. & Griffiths C. 2005. Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjorden, Svalbard. Journal of Geophysical Research—Oceans 110, C12005, http://dx.doi.org/10.1029/2004JC002757.


Dallmann W.K. 2015. Geoscience atlas of Svalbard. Norwegian Polar Institute Report Series 148. Tromsø: Norwegian Polar Institute.


D’Andrea W.J., Vaillencourt D.A., Balascio N.L., Werner A., Roof S.R., Retelle M. & Bradley R.S. 2012. Mild Little Ice Age and unprecedented recent warmth in an 1800 year lake sediment record from Svalbard. Geology 40, 1007–1010, http://dx.doi.org/10.1130/G33365.1.


Dijkstra N. 2009. Sedimentation processes in two (sub-) Arctic fjord systems: a comparison of modern and Holocene sedimentation processes in Kongsfjorden (NW Svalbard) and Disko Bay (W Greenland). Master’s thesis, Vrije Universiteit Amsterdam, in collaboration with Norwegian Polar Institute.


Dokken T.M. & Hald M. 1996. Rapid climatic shifts during isotope stages 2–4 in the polar North Atlantic. Geology 24, 599–602, http://dx.doi.org/10.1130/0091-7613(1996)024<0599:RCSDIS>2.3.CO;2.


Dowdeswell J.A., Ottesen D. & Forwick M. 2016. Grounding-zone wedges on the western Svalbard shelf. In J.A. Dowdeswell et al. (eds.): Atlas of submarine glacial landforms: modern, Quaternary and ancient. Pp. 233–234, http://dx.doi.org/10.1144/M46.128. London: Geological Society.


Elverhøi A., Liestøl O. & Nagy J. 1980. Glacial erosion, sedimentation and microfauna in the inner part of Kongsfjorden, Spitsbergen. Norsk Polarinstitutt Skrifter 172, 33–61.


Elverhøi A., Lønne Ø. & Seland R. 1983. Glaciomarine sedimentation in a modern fjord environment, Spitsbergen. Polar Research 1, 127–149, http://dx.doi.org/10.3402/polar.v1i2.6978.


Farnsworth W.R., Ingólfsson Ó., Retelle M. & Schomacker A. 2016. Over 400 previously undocumented Svalbard surge-type glaciers identified. Geomorphology 264, 52–60, http://dx.doi.org/10.1016/j.geomorph.2016.03.025.


Forwick M., Laberg J.S., Vorren T.O. & Jernas P. 2015. Quaternary geology and geomorphology, fjord bathymetry and geology. In W.K. Dallmann (ed.): Geoscience atlas of Svalbard. Norwegian Polar Institute Report Series 148. Pp. 53–88. Tromsø: Norwegian Polar Institute.


Forwick M. & Vorren T.O. 2009. Late Weichselian and Holocene sedimentary environments and ice rafting in Isfjorden, Spitsbergen. Palaeogeography Palaeoclimatology Palaeoecology 280, 258–274, http://dx.doi.org/10.1016/j.palaeo.2009.06.026.


Gerland S. & Renner A.H.H. 2007. Sea-ice mass-balance monitoring in an Arctic fjord. Annals of Glaciology 46, 435–442, http://dx.doi.org/10.3189/172756407782871215.


Hagen J.O., Liestøl O., Roland E. & Jørgensen T. 1993. Glacier atlas of Svalbard and Jan Mayen. Norsk Polarinsitutt Meddelelser 129. Oslo: Norwegian Polar Institute.


Hald M., Andersson C., Ebbesen H., Jansen E., Klitgaard-Kristensen D., Risebrobakken L., Salomonsen G.R., Sarnthein M., Sejrup H.P. & Telford R.J. 2007. Variations in temperature and extent of Atlantic Water in the northern North Atlantic during the Holocene. Quaternary Science Reviews 26, 3423–3440, http://dx.doi.org/10.1016/j.quascirev.2007.10.005.


Hald M., Ebbesen H., Forwick M., Godtliebsen F., Khomenko L., Korsun S., Olsen L.R. & Vorren T.O. 2004. Holocene paleoceanography and glacial history of the west Spitsbergen area, Euro-Arctic margin. Quaternary Science Reviews 23, 2075–2088, http://dx.doi.org/10.1016/j.quascirev.2004.08.006.


Hald M. & Korsun S. 2008. The 8200 cal. yr BP event reflected in the Arctic fjord, Van Mijenfjorden, Svalbard. Holocene 18, 981–990, http://dx.doi.org/10.1177/0959683608093536.


Hebbeln D., Dokken T., Andersen E.S., Hald M. & Elverhøi A. 1994. Moisture supply for northern ice-sheet growth during the last glacial-maximum. Nature 370, 357–360, http://dx.doi.org/10.1038/370357a0.


Henriksen M., Alexanderson H., Landvik J.Y., Linge H. & Peterson G. 2014. Dynamics and retreat of the Late Weichselian Kongsfjorden ice stream, NW Svalbard. Quaternary Science Reviews 92, 235–245, http://dx.doi.org/10.1016/j.quascirev.2013.10.035.


Hop H., Falk-Petersen S., Svendsen H., Kwasniewski S., Pavlov V., Pavlova O. & Søreide J.E. 2006. Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Progress in Oceanography 71, 182–231, http://dx.doi.org/10.1016/j.pocean.2006.09.007.


Hop H., Pearson T., Hegseth E.N., Kovacs K.M., Wiencke C., Kwasniewski S., Eiane K., Mehlum F., Gulliksen B., Wlodarska-Kowalczuk M., Lydersen C., Weslawski J.M., Cochrane S., Gabrielsen G.W., Leakey R.J.G., Lønne O.J., Zajaczkowski M., Falk-Petersen S., Kendall M., Wängberg S.-Å, Bischof K., Voronkov A.Y., Kovaltchouk N.A., Wiktor J., Poltermann M., di Prisco G., Papucci C. & Gerland S. 2002. The marine ecosystem of Kongsfjorden, Svalbard. Polar Research 21, 167–208, http://dx.doi.org/10.3402/polar.v21i1.6480.


Howe J.A., Moreton S.G., Morri C. & Morris P. 2003. Multibeam bathymetry and the depositional environments of Kongsfjorden and Krossfjorden, western Spitsbergen, Svalbard. Polar Research 22, 301–316, http://dx.doi.org/10.1111/j.1751-8369.2003.tb00114.x.


Inall M.E., Nilsen F., Cottier F.R. & Daae R. 2015. Shelf/fjord exchange driven by coastal-trapped waves in the Arctic. Journal of Geophysical Research—Oceans 120, 8283–8303, http://dx.doi.org/10.1002/2015JC011277.


Jernas P., Kristensen D.K., Husum K., Koç N., Tverberg V., Loubere P., Prins M., Dijkstra N. & Głuchowska M. 2018. Annual changes in Arctic fjord environment and modern benthic foraminiferal fauna; evidence from Kongsfjorden, Svalbard. Global and Planetary Change 163, 119–140, http://dx.doi.org/10.1016/j.gloplacha.2017.11.013.


Jernas P., Kristensen D.K., Husum K., Wilson L. & Koç N. 2013. Palaeoenvironmental changes of the last two millennia on the western and northern Svalbard shelf. Boreas 42, 236–255, http://dx.doi.org/10.1111/j.1502-3885.2012.00293.x.


Jessen S.P., Rasmussen T.L., Nielsen T. & Solheim A. 2010. A new Late Weichselian and Holocene marine chronology for the western Svalbard slope 30,000–0 cal years BP. Quaternary Science Reviews 29, 1301–1312, http://dx.doi.org/10.1016/j.quascirev.2010.02.020.


Justwan A. & Koç N. 2008. A diatom based transfer function for reconstructing sea ice concentrations in the North Atlantic. Marine Micropalaeontology 66, 264–278, http://dx.doi.org/10.1016/j.marmicro.2007.11.001.


Karner F., Obleitner F., Krismer T., Kohler J. & Greuell W. 2013. A decade of energy and mass balance investigations on the glacier Kongsvegen, Svalbard. Journal of Geophysical Research—Atmospheres 118, 3986–4000, http://dx.doi.org/10.1029/2012JD018342.


Kehrl L.M., Hawley R.L., Powell R.D. & Brigham-Grette J. 2011. Glacimarine sedimentation processes at Kronebreen and Kongsvegen, Svalbard. Journal of Glaciology 57, 841–847, http://dx.doi.org/10.3189/002214311798043708.


Kortsch S., Primicerio R., Beuchel F., Renaud P.E., Rodrigues J., Lønne O.J. & Gulliksen B. 2012. Climate-driven regime shifts in Arctic marine benthos. Proceedings of the National Academy of Sciences of the United States of America 109, 14052–14057, http://dx.doi.org/10.1073/pnas.1207509109.


Kremer A., Stein R., Fahl K., Ji Z., Yang Z., Wiers S., Matthiessen J., Forwick M., Löwemark L., O’Regan M., Chen J. & Snowball I. 2018. Changes in sea ice cover and ice sheet extent at the Yermak Plateau during the last 160 ka—reconstructions from biomarker records. Quaternary Science Reviews 182, 93–108, http://dx.doi.org/10.1016/j.quascirev.2017.12.016.


Kumar P., Pattanaik J.K., Khare N. & Balakrishnan S. 2018. Geochemistry and provenance study of sediments from Krossfjorden and Kongsfjorden, Svalbard (Arctic Ocean). Polar Science 18, 72–82, http://dx.doi.org/10.1016/j.polar.2018.06.001.


Lamb H.H. 1977. Climate, present, past and future. London: Methuen & Co.


Landvik J.Y., Brook E.J., Gualtieri L., Linge H., Raisbeck G., Salvigsen O. & Yiou F. 2013. 10Be exposure age constraints on the Late Weichselian ice-sheet geometry and dynamics in inter-ice-stream areas, western Svalbard. Boreas 42, 43–56, http://dx.doi.org/10.1111/j.1502-3885.2012.00282.x.


Landvik J.Y., Brook E.J., Gualtieri L., Raisbeck G., Salvigsen O. & Yiou F. 2003. Northwest Svalbard during the last glaciation: ice-free areas existed. Geology 31, 905–908, http://dx.doi.org/10.1130/G19703.1.


Landvik J.Y., Ingólfsson Ó., Mienert J., Lehman S.J., Solheim A., Elverhøi A. & Ottesen D. 2005. Rethinking Late Weichselian ice-sheet dynamics in coastal NW Svalbard. Boreas 34, 7–24, http://dx.doi.org/10.1080/03009480510012809.


Laudien J., Herrmann M. & Arntz W.E. 2007. Soft bottom species richness and diversity as a function of depth and iceberg scour in Arctic glacial Kongsfjorden (Svalbard). Polar Biology 30, 1035–1046, http://dx.doi.org/10.1007/s00300-007-0263-5.


Lehman S.J. & Forman S.L. 1992. Late Weichselian glacier retreat in Kongsfjorden, west Spitsbergen, Svalbard. Quaternary Research 37, 139–154, http://dx.doi.org/10.1016/0033-5894(92)90078-W.


Luckman A., Benn D.I., Cottier F., Bevan S., Nilsen F. & Inall M. 2015. Calving rates at tidewater glaciers vary strongly with ocean temperature. Nature Communications 6, article no. 8566, http://dx.doi.org/10.1038/ncomms9566.


Lydersen C., Assmy P., Falk-Petersen S., Kohler J., Kovacs K.M., Reigstad M., Steen H., Strom H., Sundfjord A., Varpe O., Walczowski W., Weslawski J.M. & Zajaczkowski M. 2014. The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. Journal of Marine Systems 129, 452–471, http://dx.doi.org/10.1016/j.jmarsys.2013.09.006.


MacLachlan S.E., Howe J.A. & Vardy M.E. 2010. Morphodynamic evolution of Kongsfjorden–Krossfjorden, Svalbard, during the Late Weichselian and Holocene. In J.A. Howe et al. (eds.): Fjord systems and archives. Pp. 195–205. London: Geological Society, http://dx.doi.org/10.1144/SP344.14.


Mangerud J., Bondevik S., Gulliksen S., Karin Hufthammer A. & Høisæter T. 2006. Marine 14C reservoir ages for 19th century whales and molluscs from the North Atlantic. Quaternary Science Reviews 25, 3228–3245, http://dx.doi.org/10.1016/j.quascirev.2006.03.010.


Meslard F., Bourrin F., Many G. & Kerhervé P. 2018. Suspended particle dynamics and fluxes in an Arctic fjord (Kongsfjorden, Svalbard). Estuarine, Coastal and Shelf Science 204, 212–224, http://dx.doi.org/10.1016/j.ecss.2018.02.020.


Miettinen A., Divine D., Husum K., Koç N. & Jennings A. 2015. Exceptional ocean surface conditions on the SE Greenland shelf during the Medieval Climate Anomaly. Palaeoceanography 30, 1675–1674, http://dx.doi.org/10.1002/2015PA002849.


Nilsen F., Skogseth R., Vaardal-Lunde J. & Inall M. 2016. A simple shelf circulation model: intrusion of Atlantic Water on the West Spitsbergen Shelf. Journal of Physical Oceanography 46, 1209–1230, http://dx.doi.org/10.1175/JPO-D-15-0058.1.


Ottesen D. & Dowdeswell J.A. 2009. An inter-ice-stream glaciated margIn: submarine landforms and a geomorphic model based on marine-geophysical data from Svalbard. Geological Society of America Bulletin 121, 1647–1665, http://dx.doi.org/10.1130/B26467.1.


Ottesen D., Dowdeswell J.A., Landvik J.Y. & Mienert J. 2007. Dynamics of the Late Weichselian ice sheet on Svalbard inferred from high-resolution sea-floor morphology. Boreas 36, 286–306, http://dx.doi.org/10.1080/03009480701210378.


Ottesen D., Dowdeswell J.A. & Rise L. 2005. Submarine landforms and the reconstruction of fast-flowing ice streams within a large Quaternary ice sheet: the 2500-km-long Norwegian-Svalbard margin (57°–80°N). Geological Society of America Bulletin 117, 1033–1050, http://dx.doi.org/10.1130/B25577.1.


Pawłowska J., Zajączkowski M., Łącka M., Lejzerowicz F., Esling P. & Pawlowski J. 2016. Palaeoceanographic changes in Hornsund fjord (Spitsbergen, Svalbard) over the last millennium: new insights from ancient DNA. Climate of the Past 12, 1459–1472, http://dx.doi.org/10.5194/cp-12-1459-2016.


Polyakov I.V., Pnyushkov A.V., Alkire M.B., Ashik I.M., Baumann T.M., Carmack E.C., Goszczko I., Guthrie J., Ivanov V.V., Kanzow T., Krishfield R., Kwok R., Sundfjord A., Morison J., Rember R. & Yulin A. 2017. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356, 285–291, http://dx.doi.org/10.1126/science.aai8204.


Ramsey B.C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360, http://dx.doi.org/10.1017/S0033822200033865.


Rasmussen T.L., Forwick M. & Mackensen A. 2012. Reconstruction of inflow of Atlantic Water to Isfjorden, Svalbard during the Holocene: correlation to climate and seasonality. Marine Micropaleontology 94/95, 80–90, http://dx.doi.org/10.1016/j.marmicro.2012.06.008.


Rasmussen T.L., Thomsen E., Skirbekk K., Ślubowska-Woldengen M., Klitgaard Kristensen D. & Koç N. 2014. Spatial and temporal distribution of Holocene temperature maxima in the northern Nordic seas: interplay of Atlantic-, Arctic- and polar water masses. Quaternary Science Reviews 92, 280–291, http://dx.doi.org/10.1016/j.quascirev.2013.10.034.


Reimer P.J., Baillie M.G.L., Bard E., Bayliss A., Beck J.W., Blackwell P.G., Ramsey C.B., Buck C.E., Burr G.S., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Hajdas I., Heaton T.J., Hogg A.G., Hughen K.A., Kaiser K.F., Kromer B., McCormac F.G., Manning S.W., Reimer R.W., Richards D.A., Southon J.R., Talamo S., Turney C.S.M., van der Plicht J. & Weyhenmeye C.E. 2009. INTCAL09 and MARINE09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, 1111–1150, http://dx.doi.org/10.1017/S0033822200034202.


Richter-Menge J., Overland J.E., Mathis J.T. & Osborne E. 2017. Arctic Report Card 2017. Silver Spring, MD: National Oceanic and Atmospheric Administration.


Risebrobakken B., Dokken T., Smedsrud L.H., Andersson C., Jansen E., Moros M. & Ivanova E.V. 2011. Early Holocene temperature variability in the Nordic seas: the role of oceanic heat advection versus changes in orbital forcing. Palaeoceanography 26, PA4206, http://dx.doi.org/10.1029/2011PA002117.


Rudels B., Jones, E.P., Anderson L.G. & Kattner G. 1994. On the intermediate depth waters of the Arctic Ocean. In O.M. Johannessen et al. (eds.): The polar oceans and their role in shaping the global environment. Pp. 33–46, http://dx.doi/10.1029/GM085p0033. Washington, DC: American Geophysical Union.


Schauer U., Fahrbach E., Osterhus S. & Rohardt G. 2004. Arctic warming through the Fram Strait: oceanic heat transport from 3 years of measurements. Journal of Geophysical Research—Oceans 109, C06026, http://dx.doi.org/10.1029/2003JC001823.


Sejrup H.P., Seppa H., McKay N.P., Kaufman D.S., Geirsdottir A., de Vernal A., Renssen H., Husum K., Jennings A. & Andrews J.T. 2016. North Atlantic–Fennoscandian Holocene climate trends and mechanisms. Quaternary Science Reviews 147, 365–378, http://dx.doi.org/10.1016/j.quascirev.2016.06.005.


Sexton D.J., Dowdeswell J.A., Solheim A. & Elverhøi A. 1992. Seismic architecture and sedimentation in northwest Spitsbergen fjords. Marine Geology 103, 53-68, http://dx.doi/10.1016/0025-3227(92)90008-6.


Shindell D.T., Schmidt G.A., Miller R.L. & Mann M.E. 2003. Volcanic and solar forcing of climate change during the preindustrial era. Journal of Climate 16, 4094–4107, http://dx.doi.org/10.1175/1520-0442(2003)016<4094:VASFOC>2.0.CO;2.


Skirbekk K., Klitgaard Kristensen D., Rasmussen T.L., Koç N. & Forwick M. 2010. Holocene climate variations at the entrance to a warm Arctic fjord: evidence from Kongsfjorden trough, Svalbard. In J.A. Howe et al. (eds.): Fjord systems and archives. Pp. 289–304, http://dx.doi.org/10.1144/SP344.20. London: Geological Society.


Ślubowska M.A., Koç N., Rasmussen T.L. & Klitgaard-Kristensen D. 2005. Changes in the flow of Atlantic water into the Arctic Ocean since the last deglaciation: evidence from the northern Svalbard continental margin, 80°N. Palaeoceanography 20, PA4014, http://dx.doi.org/10.1029/2005PA001141.


Spielhagen R.F., Werner K., Sørensen S.A., Zamelczyk K., Kandiano E., Budeus G., Husum K., Marchitto T.M. & Hald M. 2011. Enhanced modern heat transfer to the Arctic by warm Atlantic Water. Science 331, 450–453, http://dx.doi.org/10.1126/science.1197397.


Sternal B., Szczuciński W., Forwick M., Zajączkowski M., Lorenc S. & Przytarska J. 2014. Postglacial variability in near-bottom current speed on the continental shelf off south-west Spitsbergen. Journal of Quaternary Science 29, 767–777, http://dx.doi.org/10.1002/jqs.2748.


Streuff K., Forwick M., Szczuciński W., Andreassen K. & Ó Cofaigh C. 2015. Submarine landform assemblages and sedimentary processes related to glacier surging in Kongsfjorden, Svalbard. Arktos 1, article no. 14, http://dx.doi.org/10.1007/s41063-015-0003-y.


Stuiver M. & Reimer P.J. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215–230, http://dx.doi.org/10.1017/S0033822200013904.


Sundfjord A., Albretsen J., Kasajima Y., Skogseth R., Kohler J., Nuth C., Skarðhamar J., Cottier F., Nilsen F., Asplin L., Gerland S. & Torsvik T. 2017. Effects of glacier runoff and wind on surface layer dynamics and Atlantic Water exchange in Kongsfjorden, Svalbard; a model study. Estuarine, Coastal and Shelf Science 187, 260–272, http://dx.doi.org/10.1016/j.ecss.2017.01.015.


Svendsen H., Beszczynska-Møller A., Hagen J.O., Lefauconnier B., Tverberg V., Gerland S., Ørbæk J.B., Bischof K., Papucci C., Zajaczkowski M., Azzolini R., Bruland O., Wiencke C., Winther J.G. & Dallmann W. 2002. The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard. Polar Research 21, 133–166, http://dx.doi.org/10.1111/j.1751-8369.2002.tb00072.x.


Szczuciński W., Zajączkowski M. & Scholten J. 2009. Sediment accumulation rates in subpolar fjords—impact of post-Little Ice Age glaciers retreat, Billefjorden, Svalbard. Estuarine, Coastal and Shelf Science 85, 345–356, http://dx.doi.org/10.1016/j.ecss.2009.08.021.


Trouet V., Esper J., Graham N.E., Baker A., Scourse J.D. & Frank D.C. 2009. Persistent positive North Atlantic Oscillation mode dominated the Medieval Climate Anomaly. Science 324, 78–80, http://dx.doi.org/10.1126/science.1166349.


Trusel L.D., Powell R.D., Cumpston R.M. & Brigham-Grette J. 2010. Modern glacimarine processes and potential future behaviour of Kronebreen and Kongsvegen polythermal tidewater glaciers, Kongsfjorden, Svalbard. In J.A. Howe et al. (eds.): Fjord systems and archives. Pp. 89–102, http://dx.doi.org/10.1144/SP344.9. London: Geological Society.


Tverberg V. & Nøst O.A. 2009. Eddy overturning across a shelf edge front: Kongsfjorden, west Spitsbergen. Journal of Geophysical Research—Oceans 114, C04024, http://dx.doi.org/10.1029/2008JC005106.


Urbanski J.A., Stempniewicz L., Węsławski J.M., Dragańska-Deja K., Wochna A., Goc M. & Iliszko L. 2017. Subglacial discharges create fluctuating foraging hotspots for sea birds in tidewater glacier bays. Nature Scientific Reports 7, article no. 43999, http://dx.doi.org/10.1038/srep43999.


Walczowski W., Piechura J., Goszczko I. & Wieczorek P. 2012. Changes in Atlantic Water properties: an important factor in the European Arctic marine climate. ICES Journal of Marine Science 69, 864–869, http://dx.doi/10.1093/icesjms/fss068.


Werner K., Müller J., Husum K., Spielhagen R.F., Kandiano E.S. & Polyak L. 2016. Holocene sea subsurface and surface water masses in the Fram Strait—comparisons of temperature and sea-ice reconstructions. Quaternary Science Reviews 147, 194–209, http://dx.doi.org/10.1016/j.quascirev.2015.09.007.


WGMS 2009. Glacier mass balance bulletin no. 10 (2006–2007). W. Haeberli et al. (eds.). Zürich: World Glacier Monitoring Service.


Wiencke C. & Hop H. 2016. Ecosystem Kongsfjorden: new views after more than a decade of research. Polar Biology 39, 1679–1687, http://dx.doi.org/10.1007/s00300-016-2032-9.


Wlodarska-Kowalczuk M., Pearson T.H. & Kendall M.A. 2005. Benthic response to chronic natural physical disturbance by glacial sedimentation in an Arctic fjord. Marine Ecology Progress Series 303, 31–41, http://dx.doi.org/10.3354/meps303031.
Published
2019-09-16
How to Cite
Husum K., Howe J. A., Baltzer A., Forwick M., Jensen M., Jernas P., Korsun S., Miettinen A., Mohan R., Morigi C., Myhre P. I., Prins M. A., Skirbekk K., Sternal B., Boos M., Dijkstra N., & Troelstra S. (2019). The marine sedimentary environments of Kongsfjorden, Svalbard: an archive of polar environmental change. Polar Research, 38. https://doi.org/10.33265/polar.v38.3380
Section
Research Articles