Polar vortex weakening and its impact on surface temperature in recent decades

  • Seong-Joong Kim Division of Atmospheric Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
  • Hyesun Choi Division of Atmospheric Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
Keywords: Stratospheric polar vortex, vortex weakening events, polar cap height, surface temperature, climate change, stratosphere–troposphere coupling

Abstract

The stratospheric polar vortex (SPV) weakening is linked to surface circulation changes. This study employs statistical analysis using reanalysis data to compare the anomalous SPV behaviour in the Northern (NH) and Southern (SH) hemispheres and its downward impacts on surface climate. The onset of annual SPV weakening occurs in mid-January and late September in the NH and SH hemispheres, respectively. Following the onset of SPV weakening, stratospheric polar cap height (PCH) anomalies were strongly correlated with tropospheric PCH anomalies. Significant cold anomalies were observed over Eurasia within 30 days after SPV weakening onset in the NH, whereas warming responses occurred in the SH 30–60 days after onset over Antarctica, except in the Antarctic Peninsula. These contrasting surface temperature responses to SPV weakening events in both hemispheres are the results of changes in the geopotential height in the troposphere, reminiscent of the change in geopotential height in the lower stratosphere, with a trough over Eurasia in the NH, and a higher height anomaly over East Antarctica in the SH. SPV changes have played a role in modulating surface climate via a downward influence on tropospheric circulation in recent decades. Even though they show a weakening trend in both hemispheres, SPV changes cannot fully explain long-term temperature trends. This is partially because SPV trends observed during the analysis period are relatively weak. This study enhances our understanding of the characteristics of the SPV coupled with troposphere circulation and can contribute to improved surface weather forecasting.

Downloads

Download data is not yet available.

References


Alexeev V.A., Esau I., Polyakov I.V., Byam S.J. & Sorokina S. 2012. Vertical structure of recent Arctic warming from observed data and reanalysis products. Climatic Change 111, 215–239, doi: 10.1007/s10584-011-0192-8.


Banerjee A., Fyfe J.C., Polvani L.M., Waugh D. & Chang K.L. 2020. A pause in Southern Hemisphere circulation trends due to the Montreal Protocol. Nature 579, 544–548, doi: 10.1038/s41586-020-2120-4.


Black R.X. & McDaniel B.A. 2007. Interannual variability in the Southern Hemisphere circulation organized by stratospheric final warming events. Journal of the Atmospheric Sciences 64, 2968–2974, doi: 10.1175/JAS3979.1.


Bohlinger P., Sinnhuber B.M., Ruhnke R. & Kirner O. 2014. Radiative and dynamical contributions to past and future Arctic stratospheric temperature trends. Atmospheric Chemistry and Physics 14, 1679–1688, doi: 10.5194/acp-14-1679-2014.


Butler A.H., Seidel D.J., Hardiman S.C., Butchart N., Birner T. & Match A. 2015. Defining sudden stratospheric warmings. Bulletin of the American Meteorological Society 96, 1913–1928, doi: 10.1175/BAMS-D-13-00173.1.


Byrne N.J. & Shepherd T.G. 2018. Seasonal persistence of circulation anomalies in the Southern Hemisphere stratosphere and its implications for the troposphere. Journal of Climate 31, 3467–3483, doi: 10.1175/JCLI-D-17-0557.1.


Charlton A.J. & Polvani L.M. 2007. A new look at stratospheric sudden warmings. Part I: climatology and modeling benchmarks. Journal of Climate 20, 449–469, doi: 10.1175/JCLI3996.1.


Choi H., Kim B.M. & Choi W. 2019. Type classification of sudden stratospheric warming based on pre-and post-warming periods. Journal of Climate 32, 2349–2367, doi: 10.1175/JCLI-D-18-0223.1.


Choi H., Kim J.-H., Kim B.M. & Kim S.J. 2021. Observational evidence of distinguishable weather patterns for three types of sudden stratospheric warming during northern winter. Frontiers in Earth Science 9, article no. 625868, doi: 10.3389/feart.2021.625868.


Cohen J., Agel L., Barlow M., Garfinkel C. & White I. 2021. Linking Arctic variability and change with extreme winter weather in the United States. Science 373, 1116–1121, doi: 10.1126/science.abi9167.


Cohen J., Furtado J.C., Jones J., Barlow M., Whittleston D. & Entekhabi D. 2014. Linking Siberian snow cover to precursors of stratospheric variability. Journal of Climate 27, 5422–5432, doi: 10.1175/JCLI-D-13-00779.1.


Cohen J., Pfeiffer K. & Francis J.A. 2018. Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States. Nature Communications 9, article no. 869, doi: 10.1038/s41467-018-02992-9.


Cohen J., Screen J.A., Furtado J.C., Barlow M., Whittleston D., Coumou D., Francis J., Dethloff K., Entekhabi D., Overland J. & Jones J. 2014. Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience 7, 627–637, doi: 10.1038/ngeo2234.


Cohen J., Zhang X., Francis J., Jung T., Kwok R., Overland J., Ballinger T.J., Bhatt U.S., Chen H.W., Coumou D., Feldstein S., Gu H., Handorf D., Henderson G., Ionita M., Kretschmer M., Laliberte F., Lee S., Linderholm H.W., Maslowski W., Peings Y., Pfeiffer K., Rigor I., Semmler T., Stroeve J., Taylor P.C., Vavrus S., Vihma T., Wang S., Wendisch M., Wu Y. & Yoon J. 2020. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nature Climate Changge 10, 20–29, doi: 10.1038/s41558-019-0662-y.


Cohen J.L., Furtado J.C., Barlow M.A., Alexeev V.A. & Cherry J.E. 2012. Arctic warming, increasing snow cover and widespread boreal winter cooling. Environmental Research Letters 7, article no. 014007, doi: 10.1088/1748-9326/7/1/014007.


Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.-N. & Vitart F. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society 137, 553–597, doi: 10.1002/qj.828.


England M.R., Polvani L.M. & Sun L. 2020. Robust Arctic warming caused by projected Antarctic sea ice loss. Environmental Research Letters 15, 104005, doi: 10.1088/1748-9326/abaada.


Francis J.A. & Vavrus S.J. 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophysical Research Letters 39, article no. L06801, doi: 10.1029/2012GL051000.


Fu Q., Solomon S. & Lin P. 2010. On the seasonal dependence of tropical lower-stratospheric temperature trends. Atmospheric Chemistry and Physics 10, 2643–2653, doi: 10.5194/acp-10-2643-2010.


Garfinkel C.I., Feldstein S.B., Waugh D.W., Yoo C. & Lee S. 2012. Observed connection between stratospheric sudden warmings and the Madden-Julian Oscillation. Geophysical Research Letters 39, article no. L18807, doi: 10.1029/2012GL053144.


Garfinkel C.I., Hurwitz M.M. & Oman L.D. 2015. Effect of recent sea surface temperature trends on the Arctic stratospheric vortex. Journal of Geophysical Research—Atmospheres 120, 5404–5416. doi: 10.1002/2015JD023284.


Garfinkel C.I., Son S.W., Song K., Aquila V. & Oman L.D. 2017. Stratospheric variability contributed to and sustained the recent hiatus in Eurasian winter warming. Geophysical Research Letters 441, 374–382, doi: 10.1002/2016GL072035.


Graversen R.G. & Christiansen B. 2003. Downward propagation from the stratosphere to the troposphere: a comparison of the two hemispheres. Journal of Geophysical Research—Atmospheres 108, article no. 4780, doi: 10.1029/2003JD004077.


Hirano S., Kohma M. & Sato K. 2016. A three-dimensional analysis on the role of atmospheric waves in the climatology and interannual variability of stratospheric final warming in the Southern Hemisphere. Journal of Geophysical Research—Atmospheres 121, 8429–8443. doi: 10.1002/2015JD024481.


Hu D. & Guan Z. 2018. Decadal relationship between the stratospheric Arctic vortex and Pacific decadal oscillation. Journal of Climate 31, 3371–3386, doi: 10.1175/JCLI-D-17-0266.1.


Hu D., Guan Z., Tian W. & Ren R. 2018. Recent strengthening of the stratospheric Arctic vortex response to warming in the central North Pacific. Nature Communications 9, article no. 1697, doi: 10.1038/s41467-018-04138-3.


Hu Y. & Pan L. 2009. Arctic stratospheric winter warming forced by observed SSTs. Geophysical Research Letters 36, article no. L11707, doi: 10.1029/2009GL037832.


Hu Y., Tung K.K. & Liu J. 2005. A closer comparison of early and late-winter atmospheric trends in the Northern Hemisphere. Journal of Climate 18, 3204–3216, doi: 10.1175/JCLI3468.1.


Huang J., Hitchcock P., Maycock A.C., McKenna C.M. & Tian W. 2021. Northern Hemisphere cold air outbreaks are more likely to be severe during weak polar vortex conditions. Communications Earth & Environment 2, article no. 147, doi: 10.1038/s43247-021-00215-6.


Huang J., Tian W., Gray L.J., Zhang J., Li Y., Luo J. & Tian H. 2018. Preconditioning of Arctic stratospheric polar vortex shift events. Journal of Climate 31, 5417–5436. doi: 10.1175/JCLI-D-17-0695.1.


Jaiser R., Dethloff K., Handorf D., Rinke A. & Cohen J. 2012. Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus Series A 64, article no. 11595, doi: 10.3402/tellusa.v64i0.11595.


Jucker M. & Goyal R. 2022. Ozone-forced Southern Annular Mode during Antarctic stratospheric warming events. Geophysical Research Letters 49, e2021GL095270, doi: 10.1029/2021GL095270.


Jun S.-Y., Kim J.-H., Choi J., Kim S.J., Kim B.M. & An S.-I. 2020. The internal origin of the west–east asymmetry of Antarctic climate change. Science Advances 6, eaaz1490, doi: 10.1126/sciadv.aaz1490.


Kidston J., Scaife A. & Hardiman S. 2015. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nature Geoscience 8, 433–440, doi: 10.1038/ngeo2424.


Kim B.M., Son S.W., Min S.K., Jeong J.H., Kim S.J., Zhang X., Shim T. & Yoon J.H. 2014. Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nature Communications 5, article no. 4646, doi: 10.1038/ncomms5646.


Kim S.J. & Choi H. 2021. Role of polar vortex weakening in cold events in central Asia during late winter. Polar Science 30, article no. 100640. doi: 10.1016/j.polar.2021.100640.


Kretschmer M., Cohen J., Matthias V., Runge J. & Coumou D. 2018. The different stratospheric influence on cold-extremes in Eurasia and North America. NPJ Climate and Atmospheric Science 1, article no. 44, doi: 10.1038/s41612-018-0054-4.


Kretschmer M., Coumou D., Agel L., Barlow M., Tziperman E. & Cohen J. 2018. More-persistent weak stratospheric polar vortex states linked to cold extremes. Bulletin of the American Meteorological Society 99, 49–60, doi: 10.1175/BAMS-D-16-0259.1.


Kwok R. & Comiso J.C. 2002. Spatial patterns of variability in Antarctic surface temperature: connections to the Southern Hemisphere annular mode and the Southern Oscillation. Geophysical Research Letters 29, 50–51, doi: 10.1029/2002GL015415.


Kwon H., Choi H., Kim B.M., Kim S.W. & Kim S.J. 2020. Recent weakening of the southern stratospheric polar vortex and its impact on the surface climate over Antarctica. Environmental Research Letters 15, article no. 094072, doi: 10.1088/1748-9326/ab9d3d.


Langematz U. & Kunze M. 2006. An update on dynamical changes in the Arctic and Antarctic stratospheric polar vortices. Climate Dynamics 27, 647–660, doi: 10.1007/s00382-006-0156-2.


Lehtonen I. & Karpechko A.Y. 2016. Observed and modeled tropospheric cold anomalies associated with sudden stratospheric warmings. Journal of Geophysical Research—Atmospheres 121, 1591–1610, doi: 10.1002/2015JD023860.


Lim E.P., Hendon H.H., Butler A.H., Garreaud R.D., Polichtchouk I., Shepherd T.G., Scaife A., Comer R., Coy L., Newman P.A., Thompson D.W.J. & Nakamura H. 2020. The 2019 Antarctic sudden stratospheric warming. SPARC Newsletter 54, 10–13.


Lim E.P., Hendon H.H., Shi L., de Burgh-Day C., Hudson D., King A., Trewin B., Griffiths M. & Marshall A. 2021. Tropical forcing of Australian extreme low minimum temperatures in September 2019. Climate Dynamics 56, 3625–3641, doi: 10.1007/s00382-021-05661-8.


Lim E.P., Hendon H.H. & Thompson D.W.J. 2018. On the seasonal evolution and impacts of stratosphere–troposphere coupling in the Southern Hemisphere. Journal of Geophysical Research—Atmospheres 123, 12002–12016, doi: 10.1029/2018JD029321.


Manney G.L., Butler A.H., Lawrence Z.D., Wargan K. & Santee M.L. 2022. What’s in a name? On the use and significance of the term “polar vortex.” Geophysical Research Letters 49, e2021GL097617, doi: 10.1029/2021GL097617.


Ogawa F., Omrani N.-E., Nishii K., Nakamura H. & Keenlyside N. 2015. Ozone-induced climate change propped up by the Southern Hemisphere oceanic front. Geophysical Research Letters 42, 10056–10063, doi: 10.1002/2015GL066538.


Polvani L.M., Waugh D.W., Correa G.J.P. & Son S.-W. 2011. Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. Journal of Climate 24, 795–812, doi: 10.1175/2010JCLI3772.1.


Rahaman W., Chatterjee S., Ejaz T. & Thamban M. 2019. Increased influence of ENSO on Antarctic temperature since the Industrial Era. Scientific Reports 9, article no. 6006, doi: 10.1038/s41598-019-42499-x.


Rao J. & Garfinkel C.I. 2021. Projected changes of stratospheric final warmings in the Northern and Southern hemispheres by CMIP5/6 models. Climate Dynamics 56, 3353–3371, doi: 10.1007/s00382-021-05647-6.


Rao J., Garfinkel C.I. & White I.P. 2020. Predicting the downward and surface influence of the February 2018 and January 2019 sudden stratospheric warming events in subseasonal to seasonal (S2S) models. Journal of Geophysical Research—Atmospheres 125, e2019JD031919, doi: 10.1029/2019JD031919.


Seviour W.J. 2017. Weakening and shift of the Arctic stratospheric polar vortex: internal variability or forced response? Geophysical Research Letters 44, 3365–3373, doi: 10.1002/2017GL073071.


Sheshadri A., Plumb R.A. & Domeisen D.I.V. 2014. Can the delay in Antarctic polar vortex breakup explain recent trends in surface westerlies? Journal of the Atmospheric Sciences 71, 566–573, doi: 10.1175/JAS-D-12-0343.1.


Solomon S., Ivy D.J., Kinnison D., Mills M.J., Neely R.R. III & Schmidt A. 2016. Emergence of healing in the Antarctic ozone layer. Science 353, 269–274, doi: 10.1126/science.aae0061.


Sun L., Chen G. & Robinson W.A. 2014. The role of stratospheric polar vortex breakdown in Southern Hemisphere climate trends. Journal of the Atmospheric Sciences 71, 2335–2353, doi: 10.1175/JAS-D-13-0290.1.


Thompson D.W.J., Baldwin M.P. & Solomon S. 2005. Stratosphere–troposphere coupling in the Southern Hemisphere. Journal of the Atmospheric Sciences 62, 708–715, doi: 10.1175/JAS-3321.1.


Thompson D.W.J. & Solomon S. 2002. Interpretation of recent Southern Hemisphere climate change. Science 296, 895–899, doi: 10.1126/science.1069270.


Thompson D.W.J., Solomon S., Kushner P.J., England M.H., Grise K.M. & Karoly D.J. 2011. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geoscience 4, 741–749, doi: 10.1038/ngeo1296.


Thompson D.W.J. & Wallace J.M. 2000. Annular modes in the extratropical circulation. Part I: month-to-month variability. Journal of Climate 13, 1000–1016, doi: 10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.


Wang G., Hendon H.H., Arblaster J.M., Lim E.P., Abhik S. & van Rensch P. 2019. Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016. Nature Communications 10, article no. 13, doi: 10.1038/s41467-018-07689-7.


Wang T., Fu Q., Tian W., Liu H., Peng Y., Xie F., Tian H. & Luo J. 2023. The influence of meridional variation in north Pacific sea surface temperature anomalies on the Arctic stratospheric polar vortex. Advances in Atmospheric Sciences 40, 2262–2278, doi: 10.1007/s00376-022-2033-2.


Wei K., Chen W. & Huang R. 2007. Dynamical diagnosis of the breakup of the stratospheric polar vortex in the Northern Hemisphere. Science in China Series D—Earth Sciences 50, 1369–1379, doi: 10.1007/s11430-007-0100-2.


Woo S.H., Kim B.M. & Kug J.S. 2015. Temperature variation over East Asia during the lifecycle of weak stratospheric polar vortex. Journal of Climate 28, 5857–5872, doi: 10.1175/JCLI-D-14-00790.1.


Zambri B., Solomon S., Thompson D.W.J. & Fu Q. 2021. Emergence of Southern Hemisphere stratospheric circulation changes in response to ozone recovery. Nature Geoscience 14, 638–644, doi: 10.1038/s41561-021-00803-3.


Zhang J., Tian W., Chipperfield M.P., Xie F. & Huang J. 2016. Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nature Climate Change 6, 1094–1099, doi: 10.1038/nclimate3136.


Zhang X., Fu Y., Han Z., Overland J.E., Rinke A., Tang H., Vihma T. & Wang M. 2022. Extreme cold events from East Asia to North America in winter 2020/2021: comparisons, causes, and future implications. Advances in Atmospheric Sciences 39, 553–565, doi: 10.1007/s00376-021-1229-1.
Published
2024-07-05
How to Cite
Kim S.-J., & Choi H. (2024). Polar vortex weakening and its impact on surface temperature in recent decades. Polar Research, 43. https://doi.org/10.33265/polar.v43.9723
Section
Research Articles