Representation of Dense Shelf Water formation by global oceanic reanalyses

Keywords: GLORYS, ORAS5, sea surface salinity, Dense Shelf Water, nudging

Abstract

This study evaluates the representation of Dense Shelf Water (DSW) formation in the Southern Ocean by two global oceanic reanalyses: GLORYS2v4 and ORAS5. We found that GLORYS2v4 generally represents larger areas and more consistent temporal patterns of DSW compared to ORAS5. This latter reanalysis significantly underestimates the extent and frequency of DSW formation. Although both reanalyses show good statistical agreement with the World Ocean Circulation Experiment data set, with a root mean squared error of approximately 0.7, a mean absolute percentage error of 1.16% and an r value of 0.99, ORAS5 fails to reproduce the expected sea-surface salinity trend, exhibiting a negative trend across most of the Southern Ocean. This may lead to a weak representation of the water-mass formation processes in the region, thereby affecting its ability to satisfactorily represent the Meridional Overturning Circulation and the global thermohaline circulation. These discrepancies are attributed to the nudging process used for the sea-surface temperature in the ORAS5 model. This study highlights the importance of oceanic reanalyses to validate climate modelling results, in particular in high-latitude regions, where observations are scarce and crucial for understanding global climatic changes.

Downloads

Download data is not yet available.

References


Abernathey R., Cerovecki I., Holland P., Newsom E., Mazloff M. & Talley L. 2016. Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nature Geoscience 9, doi: 10.1038/ngeo2749.




Akhoudas C.H., Sallée J.-B., Haumann F.A., Meredith M.P., Garabato A.N., Reverdin G., Jullion L., Aloisi G., Benetti M., Leng M.J. & Arrowsmith C. 2021. Ventilation of the abyss in the Atlantic sector of the Southern Ocean. Scientific Reports 11, article no. 6760, doi: 10.1038/s41598-021-86043-2.




Almeida L., Mazloff M.R. & Mata M.M. 2021. The impact of Southern Ocean Ekman pumping, heat and freshwater flux variability on intermediate and mode water export in CMIP models: present and future scenarios. Journal of Geophysical Research—Oceans 126, e2021JC017173, doi: 10.1029/2021JC017173.




Aretxabaleta A.L., Smith K.W. & Ballabrera-Poy J. 2015. Regime changes in global sea surface salinity trend. Ocean Science Discussions 12, 983–1011, doi: 10.5194/osd-12-983-2015.




Azaneu M.V.C., Kerr R., Mata M.M. & Garcia C.A.E. 2013. Trends in the deep Southern Ocean (1958-2010): implications for Antarctic Bottom Water properties and volume export. Journal of Geophysical Research—Oceans 118, 4213–4227, doi: 10.1002/jgrc.20303.




Baines P. & Condie S. 1998. Observations and modelling of Antarctic downslope flows: a review. In S.S. Jacobs & R.F. Weiss (eds.): Ocean, ice, and atmosphere: interactions at the Antarctic continental margin. Pp. 29–49. Washington, DC: American Geophysical Union.




Banks H.T. & Gregory J.M. 2006. Mechanisms of ocean heat uptake in a coupled climate model and the implications for tracer-based predictions of ocean heat uptake. Geophysical Research Letters 33, L07608, doi: 10.1029/2005GL025352.




Barnier B., Madec G., Penduff T., Molines J.-M., Treguier A.-M., Le Sommer J., Beckmann A., Biastoch A., Böning C., Dengg J., Derval C., Durand E., Gulev S., Remy E., Talandier C., Theetten S., Maltrud M., McClean J. & De Cuevas B. 2006. Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dynamics 56, 543–567, doi: 10.1007/s10236-006-0082-1.




Boyer T., Baranova O., Locarnini R., Mishonov A., Grodsky A., Paver C., Weathers K., Smolyar I., Reagan J., Seidov D. & Zweng M. 2019. World Ocean atlas 2018. Product documentation. Silver Spring, MD: Ocean Climate Laboratory, National Centers for Environmental Information, National Oceanic and Atmospheric Administration. Doi: 10.13140/RG.2.2.34758.01602.




Bracegirdle T.J., Shuckburgh E., Sallee J.-B., Wang Z., Meijers A.J.S., Bruneau N., Phillips T. & Wilcox L.J. 2013. Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence. Journal of Geophysical Research—Atmospheres 118, 547–562, doi: 10.1002/jgrd.50153.




Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.-N. & Vitart F. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society 137, 553–597, doi: 10.1002/qj.828.




Downes S.M., Farneti R., Uotila P., Griffies S.M., Marsland S.J., Bailey D., Behrens E., Bentsen M., Bi D.H., Biastoch A., Boning C., Bozec A., Canuto V.M., Chassignet E., Danabasoglu G., Danilov S., Diansky N., Drange H., Fogli P.G., Gusev A., Howard A., Ilicak M., Jung T., Kelley M., Large W.G., Leboissetier A., Long M., Lu J.H., Masina S., Mishra A., Navarra A., Nurser A.J.G., Patara L., Samuels B.L., Sidorenko D., Spence P., Tsujino H., Wang Q. & Yeager S.G. 2015. An assessment of Southern Ocean water masses and sea ice during 1988-2007 in a suite of interannual CORE-II simulations. Ocean Modelling 94, 67–94, doi: 10.1016/j.ocemod.2015.07.022.




Dufour C.O., Griffies S.M., de Souza G.F., Frenger I., Morrison A.K., Palter J.B., Sarmiento J.L., Galbraith E.D., Dunne J.P., Anderson W.G. & Slater R.D. 2015. Role of mesoscale eddies in cross-frontal transport of heat and biogeochemical tracers in the Southern Ocean. Journal of Physical Oceanography 45, 3057–3081, doi: 10.1175/JPO-D-14-0240.1.




Dunstone N.J. & Smith D.M. 2010. Impact of atmosphere and sub-surface ocean data on decadal climate prediction. Geophysical Research Letters 37, L02709, doi: 10.1029/2009GL041609.




Farneti R., Downes S.M., Griffies S.M., Marsland S.J., Behrens E., Bentsen M., Bi D., Biastoch A., Böning C., Bozec A., Canuto V.M., Chassignet E., Danabasoglu G., Danilov S., Diansky N., Drange H., Fogli P.G., Gusev A., Hallberg R.W., Howard A., Ilicak M., Jung T., Kelley M., Large W.G., Leboissetier A., Long M., Lu J., Masina S., Mishra A., Navarra A., Nurser A.J.G., Patara L., Samuels B.L., Sidorenko D., Tsujino H., Uotila P. & Yeager S.G. 2015. An assessment of Antarctic Circumpolar Current and Southern Ocean Meridional Overturning Circulation during 1958–2007 in a suite of interannual CORE-II simulations. Ocean Modelling 93, 84–120, doi: 10.1016/j.ocemod.2015.07.009.




Ferry N., Parent L., Garric G., Barnier B. & Jourdain N. 2010. Mercator global eddy permitting ocean reanalysis GLORYS1V1: description and results. Mercator Quarterly Newsletter 36 (January), 15–27.




Foldvik A., Gammelsrød T., Østerhus S., Fahrbach E., Rohardt G., Schröder M., Nicholls K.W., Padman L. & Woodgate R.A. 2004. Ice shelf water overflow and bottom water formation in the southern Weddell Sea. Journal of Geophysical Research—Oceans 109, C02015, doi: 10.1029/2003JC002008.




Foster T.D. 1995. Abyssal water mass formation off the eastern Wilkes Land coast of Antarctica. Deep-Sea Research Part I 42, 501–522, doi: 10.1016/0967-0637(95)00002-N.




Foster T.D. & Carmack E.C. 1976. Frontal zone mixing and Antarctic Bottom Water formation in the southern Weddell Sea. Deep Sea Research and Oceanographic Abstracts 23, 301–317, doi: 10.1016/0011-7471(76)90872-X.




Frölicher T.L., Sarmiento J.L., Paynter D.J., Dunne J.P., Krasting J.P. & Winton M. 2015. Dominance of the Southern Ocean in anthropogenic Carbon and heat uptake in CMIP5 models. Journal of Climate 28, 862–886, doi: 10.1175/JCLI-D-14-00117.1.




Good S.A., Martin M.J. & Rayner N.A. 2013. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. Journal of Geophysical Research—Oceans 118, 6704–6716, doi: 10.1002/2013JC009067.




Gordon A., Zambianchi E., Orsi A., Visbeck M., Giulivi C., Whitworth T. & Spezie G. 2004. Energetic plumes over the western Ross Sea continental slope. Geophysical Research Letters 31, L21302, doi: 10.1029/2004GL020785.




Gordon A.L. 2001. Bottom water formation. In J.H. Steele (ed.): Encyclopedia of ocean sciences. 2nd edn. Pp. 415–421. Oxford: Academic Press.




Gordon A.L., Huber B.A., Hellmer H.H. & Ffield A. 1993. Deep and Bottom Water of the Weddell Sea’s western rim. Science 262, 95–97, doi: 10.1126/science.262.5130.95.




Gordon A.L., Orsi A.H., Muench R., Huber B.A., Zambianchi E. & Visbeck M. 2009. Western Ross Sea continental slope gravity currents. Deep-Sea Research Part II 56, 796–817, doi: 10.1016/j.dsr2.2008.10.037.




Hartin C.A., Fine R.A., Sloyan B.M., Talley L.D., Chereskin T.K. & Happell J. 2011. Formation rates of Subantarctic Mode Water and Antarctic Intermediate Water within the South Pacific. Deep-Sea Research Part I 58, 524–534, doi: 10.1016/j.dsr.2011.02.010.




Jackett D.R. & McDougall T.J. 1997. A neutral density variable for the world’s oceans. Journal of Physical Oceanography 27, 237–263, doi: 10.1175/1520-0485(1997)027<0237:ANDVFT>2.0.CO;2.




Jacobs S.S., Amos A.F. & Bruchhausen P.M. 1970. Ross Sea oceanography and Antarctic Bottom Water formation. Deep Sea Research and Oceanographic Abstracts 17, 935–962, doi: 10.1016/0011-7471(70)90046-X.




Johnson G.C. 2008. Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes. Journal of Geophysical Research—Oceans 113, C05027, doi: 10.1029/2007JC004477.




Justino F., Setzer A., Bracegirdle T., Mendes D., Grimm A., Dechiche G. & Schaefer C. 2011. Harmonic analysis of climatological temperature over Antarctica: present day and greenhouse warming perspectives. International Journal of Climatology 31, 514–530, doi: 10.1002/joc.2090.




Justino F., Silva A.S., Pereira M.P., Stordal F., Lindemann D. & Kucharski F. 2015. The large-scale climate in response to the retreat of the West Antarctic Ice Sheet. Journal of Climate 28, 637–650, doi: 10.1175/JCLI-D-14-00284.1.




Khatiwala S., Tanhua T., Mikaloff F.S., Gerber M., Doney S.C., Graven H.D., Gruber N., McKinley G.A., Murata A., Ríos A.F. & Sabine C.L. 2013. Global Ocean storage of anthropogenic carbon. Biogeosciences 10, 2169–2191, doi: 10.5194/bg-10-2169-2013.




Lumpkin R. & Speer K. 2007. Global ocean meridional overturning. Journal of Physical Oceanography 37, 2550–2562, doi: 10.1175/JPO3130.1.




Marinov I., Gnanadesikan A., Toggweiler J.R. & Sarmiento J.L. 2006. The Southern Ocean biogeochemical divide. Nature 441, 964–967, doi: 10.1038/nature04883.




Marshall J., Scott J.R., Armour K.C., Campin J.-M., Kelley M. & Romanou A. 2015. The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Climate Dynamics 44, 2287–2299, doi: 10.1007/s00382-014-2308-0.




Marshall J. & Speer K. 2012. Closure of the Meridional Overturning Circulation through Southern Ocean upwelling. Nature Geoscience 5, 171–180, doi: 10.1038/ngeo1391.




Masina S. & Storto A. 2017. Reconstructing the recent past ocean variability: status and perspective. Journal of Marine Research 75, 727–764, doi: 10.1357/002224017823523973.




Moorman R., Morrison A.K. & McC. Hogg A. 2020. Thermal responses to Antarctic ice shelf melt in an eddy-rich global ocean–sea ice model. Journal of Climate 33, 6599–6620, doi: 10.1175/JCLI-D-19-0846.1.




Nicolas J. & Bromwich D. 2011. Precipitation changes in high southern latitudes from global reanalyses: a cautionary tale. Surveys in Geophysics 32, 475–494, doi: 10.1007/s10712-011-9114-6.




Ohshima K.I., Fukamachi Y., Williams G.D., Nihashi S., Roquet F., Kitade Y., Tamura T., Hirano D., Herraiz-Borreguero L., Field I., Hindell M., Aoki S. & Wakatsuchi M. 2013. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya. Nature Geoscience 6, 235–240, doi: 10.1038/ngeo1738.




Orsi A.H., Johnson G.C. & Bullister J.L. 1999. Circulation, mixing, and production of Antarctic Bottom Water. Progress in Oceanography 43, 55–109, doi: 10.1016/S0079-6611(99)00004-X.




Pellichero V., Sallée J.-B., Chapman C.C. & Downes S.M. 2018. The Southern Ocean meridional overturning in the sea-ice sector is driven by freshwater fluxes. Nature Communications 9, article no. 1789, doi: 10.1038/s41467-018-04101-2.




Rintoul S.R. 1998. On the origin and influence of Adélie Land Bottom Water. In S.S. Jacobs & R.F. Weiss (eds.): Ocean, ice, and atmosphere: interactions at the Antarctic continental margin. Pp. 151–171. Washington, DC: American Geophysical Union.




Rintoul S.R. 2007. Rapid freshening of Antarctic Bottom Water formed in the Indian and Pacific oceans. Geophysical Research Letters 34, L06606, doi: 10.1029/2006GL028550l.




Rintoul S.R. 2018. The global influence of localized dynamics in the Southern Ocean. Nature 558, 209–218, doi: 10.1038/s41586-018-0182-3.




Sabine C.L., Feely R.A., Gruber N., Key R.M., Lee K., Bullister J.L., Wanninkhof R., Wong C.S., Wallace D.W.R., Tilbrook B., Millero F.J., Peng T.-H., Kozyr A., Ono T. & Rios A.F. 2004. The Oceanic sink for anthropogenic CO2. Science 305, 367–371, doi: 10.1126/science.1097403.




Sallée J.-B., Shuckburgh E., Bruneau N., Meijers A.J.S., Bracegirdle T.J., Wang Z. & Roy T. 2013. Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: historical bias and forcing response. Journal of Geophysical Research—Oceans 118, 1830–1844, doi: 10.1002/jgrc.20135.




Sarmiento J.L., Gruber N., Brzezinski M.A. & Dunne J.P. 2004. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60, doi: 10.1038/nature02127.




Schmitt R., Bogden P. & Dorman C. 1989. Evaporation minus precipitation and density fluxes for the North Atlantic. Journal of Physical Oceanography 19, 1208–1221, doi: 10.1175/1520-0485(1989)019<1208:EMPADF>2.0.CO;2.




Schneider D.P. & Reusch D.B. 2016. Antarctic and Southern Ocean surface temperatures in CMIP5 models in the context of the surface energy budget. Journal of Climate 29, 1689–1716, doi: 10.1175/JCLI-D-15-0429.1.




Servonnat J., Mignot J., Guilyardi E., Swingedouw D., Séférian R. & Labetoulle S. 2014. Reconstructing the subsurface ocean decadal variability using surface nudging in a perfect model framework. Climate Dynamics 44, 315–338, doi: 10.1007/s00382-014-2184-7.




Sigman D.M. & Boyle E.A. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869, doi: 10.1038/35038000.




Silvano A. 2020. Changes in the Southern Ocean. Nature Geoscience 13, 4–5, doi: 10.1038/s41561-019-0516-2.




Sloyan B.M. & Rintoul S.R. 2001. The Southern Ocean limb of the global deep overturning circulation. Journal of Physical Oceanography 31, 143–173, doi: 10.1175/1520-0485(2001)031<0143:TSOLOT>2.0.CO;2.




Talley L.D., Pickard G.L., Emery W.J. & Swift J.H. 2011. Descriptive physical oceanography: an introduction. 6th edn. Boston, MA: Elsevier.




Tamura T., Ohshima K.I. & Nihashi S. 2008. Mapping of sea ice production for Antarctic coastal polynyas. Geophysical Research Letters 35, L07606, doi: 10.1029/2007GL032903.




Uppala S.S., Dee D., Kobayashi S. & Simmons A. 2008. Evolution of reanalysis at ECMWF. Unpublished ms.




Wang G., Cheng L., Abraham J. & Chongyin L. 2018. Consensuses and discrepancies of basin-scale ocean heat content changes in different ocean analyses. Climate Dynamics 50, 2471–2487, doi: 10.1007/s00382-017-3751-5.




Wang G. & Dommenget D. 2015. The leading modes of decadal SST variability in the Southern Ocean in CMIP5 simulations. Climate Dynamics 47, 1775–1792, doi: 10.1007/s00382-015-2932-3.




Watson A.J. & Naveira Garabato A.C. 2006. The role of Southern Ocean mixing and upwelling in glacial–interglacial atmospheric CO2 change. Tellus B 58, 73–87, doi: 10.1111/j.1600-0889.2005.00167.x.




Williams G., Aoki S., Jacobs S., Rintoul S., Tamura T. & Bindoff N. 2010. Antarctic Bottom Water from the Adélie and George V Land Coast, East Antarctica (140–149°E). Journal of Geophysical Research—Oceans 115, doi: 10.1029/2009JC005812.




Williams G.D., Herraiz-Borreguero L., Roquet F., Tamura T., Ohshima K.I., Fukamachi Y., Fraser A.D., Gao L., Chen H., McMahon C.R., Harcourt R. & Hindell M. 2016. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay. Nature Communications 7, article no. 12577, doi: 10.1038/ncomms12577.




Yamamoto A., Abe-Ouchi, A., Shigemitsu M., Oka A., Takahashi K., Ohgaito R. & Yamanaka Y. 2015. Global deep ocean oxygenation by enhanced ventilation in the Southern Ocean under long-term global warming. Global Biogeochemical Cycles 29, 1801–1815, doi: 10.1002/2015GB005181.




Zuo H., Balmaseda M.A., Tietsche S., Mogensen K. & Mayer M. 2019. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment. Ocean Science 15, 779–808, doi: 10.5194/os-15-779-2019.
Published
2025-01-11
How to Cite
Reis R. A. do N., Justino F., de Mendonça L. F. F., Farneti R., Tonelli M., Machado J. P., & Lindemann D. da S. (2025). Representation of Dense Shelf Water formation by global oceanic reanalyses. Polar Research, 43. https://doi.org/10.33265/polar.v43.9732
Section
Research Articles