The radiolarian fauna during the Younger Dryas–Holocene transition in Andfjorden, northern Norway

  • Kjell R. Bjørklund Natural History Museum, University of Oslo, Oslo, Norway
  • Svetlana B. Kruglikova P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
  • Øyvind Hammer Natural History Museum, University of Oslo, Oslo, Norway
Keywords: Palaeoclimate, biostratigraphy, age models, Preboreal Oscillation, transfer functions


We report on the changing radiolarian faunas from the Younger Dryas (ca.12.9 calibrated thousands of years BP [cal. Ky BP]) and into the Holocene (ca. 10.3 cal. Ky BP) in the core JM99-1200 from Andfjorden, northern Norway. Temperature reconstructions using both the Q-mode factor analysis and modern analogue technique methods show stable, cold temperatures below ca. 410 cm core depth, followed by abrupt warming into a relatively stable Holocene temperature regime. Age-depth modelling with three different methods gives an age of ca. 11.9–12.0 cal. Ky BP at this core depth, clearly older than the Younger Dryas–Holocene transition at ca. 11.65 cal. Ky BP according to ice core chronology. Considering that the age models may be insufficiently informed in an interval without radiometric dates, it is possible that the base of the Holocene is indeed at 410 cm, as indicated by the radiolarian and other core data. Such a change in the chronology would have implications for previously published work on the JM99-1200 core. Alternatively, the abrupt warming in Andfjorden predated the Younger Dryas–Holocene transition by a few hundred years. A distinct cold pulse at ca. 315–335 cm, or 11.4–11.5 cal. Ky BP is interpreted as the Preboreal Oscillation. The Preboreal Oscillation has not previously been detected in temperature curves based on planktic foraminifera in the same core, indicating that Radiolaria may be a more sensitive temperature indicator in this region.


Download data is not yet available.


Agterberg F.P., Hammer Ø. & Gradstein F.M. 2012. Statistical procedures. In F.M. Gradstein et al. (eds.): The geologic time scale 2012. Pp. 269–274, doi: 10.1016/C2011-1-08249-8. Amsterdam: Elsevier.

Andersen K.K., Svensson A., Johnsen S.J., Rasmussen S.O., Bigler M., Röthlisberger R., Ruth U., Siggaard-Andersen M.-L., Steffensen J.P., Dahl-Jensen D., Vinther B.M. & Clausen H.B. 2006. The Greenland Ice Core Chronology 2005, 15–42 ka. Part 1: constructing the time scale. Quaternary Science Reviews 25, 3246–3257, doi: 10.1016/j.quascirev.2006.08.002.

Björck S., Rundgren M., Ingolfsson O. & Funder S. 1997. The Preboreal Oscillation around the Nordic seas: terrestrial and lacustrine responses. Journal of Quaternary Science 12, 455–465, doi: 10.1002/(SICI)1099-1417(199711/12)12:6<455::AID-JQS316>3.0.CO;2-S.

Bjørklund K.R., Cortese G., Swanberg N. & Schrader H.J. 1998. Radiolarian faunal provinces in surface sediments of the Greenland, Iceland and Norwegian (GIN) seas. Marine Micropaleontology 35, 105–140, doi: 10.1016/S0377-8398(98)00013-9.

Bjørklund K.R., Itaki T. & Dolven J.K. 2014. Per Theodor Cleve: a short résumé and his radiolarian results from the Swedish expedition to Spitsbergen in 1898. Journal of Micropalaeontology 33, 59–93, doi: 10.1144/jmpaleo2012-024.

Bjørklund K.R., Kruglikova S.B. & Anderson O.R. 2012. Modern incursions of tropical Radiolaria into the Arctic Ocean. Journal of Micropalaeontology 31, 139–158, doi: 10.1144/0262-821X11-030.

Boyer T., Levitus S., Garcia H., Locarnini R.A., Stephens C. & Antonov J. 2004. Objective analyses of annual, seasonal, and monthly temperature and salinity for the world ocean on a 1/4-degree grid. International Journal of Climatology 25, 931–945, doi: 10.1002/joc.1173.

Broecker W.S. 1997. Thermohaline circulation, the Achilles heel of our climate system: will man-made CO2 upset the current balance? Science 278, 1582–1588, doi:

Bronk Ramsey C. 2008. Deposition models for chronological records. Quaternary Science Reviews 27, 42–60, doi: 10.1016/j.quascirev.2007.01.019.

Bronk Ramsey C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360, doi: 10.1017/S0033822200033865.

Bronk Ramsey C. & Lee S. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55, 720–730, doi: 10.1017/S0033822200057878.

Cabedo-Sanz P., Belt S.T., Knies J. & Husum K. 2013. Identification of contrasting seasonal ice conditions during the Younger Dryas. Quaternary Science Reviews 79, 74–86, doi: 10.1016/j.quascirev.2012.10.028.

Cleve P.T. 1899. Plankton collected by the Swedish Expedition to Spitzbergen in 1898. Kongliga Svenska Vetenskaps Akademiens Handlingar 32, 1–51.

Cleve P.T. 1900. Notes on some Atlantic plankton-organisms. Kongliga Svenska Vetenskaps Akademiens Handlingar 34, 1–22.

Dolven J.K. & Bjørklund K.R. 2001. An early Holocene peak occurrence and recent distribution of Rhizoplegma boreale (Radiolaria): a biomarker in the Norwegian Sea. Marine Micropaleontology 42, 25–44, doi: 10.1016/S0377-8398(01)00011-1.

Dolven J.K., Bjørklund K.R. & Itaki T. 2014. Jørgensen’s polycystine radiolarian slide collection and new species. Journal of Micropalaeontology 33, 21–58, doi: 10.1144/jmpaleo2012-027.

Dolven J.K., Cortese G. & Bjørklund K. 2002. A high-resolution radiolarian-derived paleotemperature record for the Late Pleistocene–Holocene in the Norwegian Sea. Paleoceanography 17, article no. 1072, doi: 10.1029/2002PA000780.

Ebbesen H. & Hald M. 2004. Unstable Younger Dryas climate in the northeast North Atlantic. Geology 32, 673–676, doi: 10.1130/G20653.1.

Eldevik T., Risebrobakken B., Bjune A.E., Andersson C., Birks H.J.B., Dokken T.M., Drange H., Glessmer M.S., Li C., Nilsen J.E.Ø., Otterå O.H. Richter K. & Skagseth Ø. 2014. A brief history of climate—the northern seas from the Last Glacial Maximum to global warming. Quaternary Science Reviews 106, 225–246, doi: 10.1016/j.quascirev.2014.06.028.

Goll R.M. & Bjørklund K.R. 1974. Radiolaria in surface sediments of the South Atlantic. Micropaleontology 20, 38–75, doi: 10.2307/1485099.

Haflidason H., Sejrup H.P., Kristensen D.K. & Johnsen S. 1995. Coupled response of the late glacial climatic shifts of northwest Europe reflected in Greenland ice cores: evidence from the northern North Sea. Geology 23, 1059–1062, doi: 10.1130/0091-7613(1995)023<1059:CROTLG>2.3.CO;2.

Hald M. & Vorren T.O. 1984. Modern and Holocene foraminifera and sediments on the continental shelf off Tromsø, north Norway. Boreas 13, 133–154, doi: 10.1111/j.1502-3885.1984.tb00067.x.

Hammer Ø., Harper D.A.T. & Ryan P.D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, article no. 1.

Hughen K.A., Baillie M.G.L., Bard E., Beck J.W., Bertrand C.J.H., Blackwell P.G., Buck C.E., Burr G.S., Cutler K.B., Damon P.E., Edwards R.L., Fairbanks R.G., Friedrich M., Guilderson T.P., Kromer B., McCormac G., Manning S., Ramsey C.B., Reimer P.J., Reimer R.W., Remmele S., Southon J.R., Stuiver M., Talamo S., Taylor F.W., van der Plicht J. & Weyhenmeyer C.E. 2004. Marine04 marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, 1059–1086, doi: 10.1017/S0033822200033002.

Imbrie J. & Kipp N.G. 1971. A new micropaleontological method for quantitative paleoclimatology: application to a late Pleistocene Caribbean core. In K.K. Turekian (ed.): The Late Cenozoic glacial ages. Pp. 71–182. New Haven, CT: Yale University Press.

Jansen E. & Bjørklund K.R. 1985. Surface ocean circulation in the Norwegian Sea 15,000 B.P. to present. Boreas 14, 243–257, doi: 10.1111/j.1502-3885.1985.tb00729.x.

Jørgensen E. 1900. Protophyten und Protozoen im Plankton aus der Norwegischen Westküste. (Protophytes and Protozoa in the plankton of the west coast of Norway.) Bergens Museums Aarbog 1899, 51–95.

Jørgensen E. 1905. The protist plankton and the diatoms in bottom samples. Bergens Museums Skrifter 1905, 49–151.

Knies J. 2005. Climate-induced changes in sedimentary regimes for organic matter supply on the continental shelf off northern Norway. Geochimica et Cosmochimica Acta 69, 4631–4647, doi: 10.1016/j.gca.2005.05.014.

Knies J., Hald M., Ebbesen H., Mann U. & Vogt C. 2003. A deglacial–middle Holocene record of biogenic sedimentation and paleoproductivity changes from the northern Norwegian continental shelf. Paleoceanography 18, article no. 1096, doi: 10.1029/2002PA000872.

Krebs C.J. 1989. Ecological methodology. New York: Harper & Row.

Kruglikova S.B., Bjørklund K.R., Dolven J.K., Hammer Ø. & Cortese G. 2010. High-rank polycystine radiolarian taxa as temperature proxies in the Nordic seas. Stratigraphy 7, 265–281.

Legendre P. & Legendre L. 1998. Numerical ecology. Amsterdam: Elsevier.

Matul A. & Mohan R. 2017. Distribution of polycystine radiolarians in bottom surface sediments and its relation to summer sea temperature in the high-latitude North Atlantic. Frontiers in Marine Science 4, article no. 330, doi: 10.3389/fmars.2017.00330.

Matul A.G. & Yushina I.G. 1999. Radiolarians in North Atlantic sediments. Reports on Polar Research 306, 35–45.

Mayewski P.A., Meeker L.D., Whitlow S., Twickler M.S., Morrison M.C., Alley R.B., Bloomfield P. & Taylor K. 1993. The atmosphere during the Younger Dryas. Science 261, 195–197, doi: 10.1126/science.261.5118.195.

Petrushevskaya M.G. & Bjørklund K.R. 1974. Radiolarians in Holocene sediments of the Norwegian–Greenland seas. Sarsia 57, 33–46, doi: 10.1080/00364827.1974.10411269.

Rasmussen S.O., Andersen K.K., Svensson A.M., Steffensen J.P., Vinther B.M., Clausen H.B., Siggaard-Andersen M.-L., Johnsen S.J., Larsen L.B., Dahl-Jensen D., Bigler M., Röthlisberger R., Fischer H., Goto-Azuma K., Hansson M.E. & Ruth U. 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research—Atmospheres 111, D06102, doi: 10.1029/2005JD006079.

Rasmussen S.O., Vinther B.M., Clausen H.B. & Andersen K.K. 2007. Early Holocene climate oscillations recorded in three Greenland ice cores. Quaternary Science Reviews 26, 1907–1914, doi: 10.1016/j.quascirev.2007.06.015.

Reimer P.J., Baillie M.G.L., Bard E., Bayliss A., Beck J.W., Blackwell P.G., Bronk Ramsey C., Buck C.E., Burr G.S., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Hajdas I., Heaton T.J., Hogg A.G., Hughen K.A., Kaiser K.F., Kromer B., McCormac F.G., Manning S.W., Reimer R.W., Richards D.A., Southon J.R., Talamo S., Turney C.S.M., van der Plicht J. & Weyhenmeyer C.E. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, 1111–1150, doi: 10.1017/S0033822200034202.

Reimer P.J., Bard E., Bayliss A., Beck J.W., Blackwell P.G., Bronk Ramsey C., Buck C.E., Cheng H., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Haflidason H., Hajdas I., Hatté C., Heaton T.J., Hoffmann D.L., Hogg A.G., Hughen K.A., Kaiser K.F., Kromer B., Manning S.W., Niu M., Reimer R.W., Richards D.A., Scott E.M., Southon J.R., Staff R.A., Turney C.S.M. & van der Plicht J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887, doi: 10.2458/azu_js_rc.55.16947.

Risebrobakken B., Jansen E., Andersson C., Mjelde E. & Hevrøy K. 2003. A high-resolution study of Holocene paleoclimatic and paleoceanographic changes in the Nordic seas. Paleoceanography 18, article no. 1017, doi: 10.1029/2002PA000764.

Schröder O. 1909. Die nordischen Spumellarien, Teil II: Unterlegion Sphaerellaria. (The Nordic Spumellaria. Part II: sublegion Sphaerellaria.) In K. Brandt & C. Apstein (eds.): Nordisches plankton. Bd. 7, XVII. (Nordic plankton. Vol. 7, XVII.) Pp. 1–66. Kiel: Lipsius & Tischer.

Schröder O. 1914. Die nordischen Nassellarien. (The Nordic Nassellaria.) In K. Brandt & C. Apstein (eds.): Nordisches plankton. Bd. 7, XVII. (Nordic plankton. Vol. 7, XVII.) Pp. 67–146. Kiel: Lipsius & Tischer.

Slagstad D., Tande K.S. & Wassmann P. 1999. Modelled carbon fluxes as validated by field data on the north Norwegian shelf during the productive period in 1994. Sarsia 84, 303–317, doi: 10.1080/00364827.1999.10420434.

Stuiver M., Reimer P.J. & Reimer R.W. 2005. CALIB 6.0. WWW programme and documentation accessed at in 2018.

Telford R.J., Heegaard E. & Birks H.J.B. 2004. All age-depth models are wrong: but how badly? Quaternary Science Reviews 23, 1–5, doi: 10.1016/j.quascirev.2003.11.003.

Ter Braak C.J.F. & Juggins S. 1993. Weighted averaging partial least squares (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiology 269/270, 485–502, doi: 10.1007/BF00028046.

Wassmann P., Andreassen I.J. & Rey F. 1999. Seasonal variation of nutrients and suspended biomass on a transect across Nordvestbanken, north Norwegian shelf, in 1994. Sarsia 84, 199–212, doi: 10.1080/00364827.1999.10420426.
How to Cite
Bjørklund, K. R., Kruglikova, S. B., & Hammer, Øyvind. (2019). The radiolarian fauna during the Younger Dryas–Holocene transition in Andfjorden, northern Norway. Polar Research, 38.
Research Articles