Freshwater input to the Arctic fjord Hornsund (Svalbard)

  • Małgorzata Błaszczyk Department of Geomorphology, Faculty of Earth Sciences, University of Silesia, Poland
  • Dariusz Ignatiuk Department of Geomorphology, Faculty of Earth Sciences, University of Silesia, Poland
  • Aleksander Uszczyk Department of Geomorphology, Faculty of Earth Sciences, University of Silesia, Poland
  • Katarzyna Cielecka-Nowak Department of Climatology, Faculty of Earth Sciences, University of Silesia, Poland
  • Mariusz Grabiec Department of Geomorphology, Faculty of Earth Sciences, University of Silesia, Poland
  • Jacek A. Jania Department of Geomorphology, Faculty of Earth Sciences, University of Silesia, Poland
  • Mateusz Moskalik Department of Polar and Marine Research, Institute of Geophysics, Polish Academy of Sciences, Poland
  • Waldemar Walczowski Physical Oceanography Department, Institute of Oceanology, Polish Academy of Sciences, Poland
Keywords: Svalbard fjords, frontal ablation, glacier meltwater runoff, precipitation, snow cover on land

Abstract

Glaciers draining to the Hornsund basin (southern Spitsbergen, Svalbard) have experienced a significant retreat and mass volume loss over the last decades, increasing the input of freshwater into the fjord. An increase in freshwater input can influence fjord hydrology, hydrodynamics, sediment flux and biota, especially in a changing climate. Here, we describe the sources of freshwater supply to the fjord based on glaciological and meteorological data from the period 2006 to 2015. The average freshwater input from land to the Hornsund bay is calculated as 2517 ± 82 Mt a−1, with main contributions from glacier meltwater runoff (986 Mt a−1; 39%) and frontal ablation of tidewater glaciers (634 Mt a−1; 25%). Tidewater glaciers in Hornsund lose ca. 40% of their mass by frontal ablation. The terminus retreat component accounts for ca. 30% of the mass loss by frontal ablation, but it can vary between 17% and 44% depending on oceanological, meteorological and geomorphological factors. The contribution of the total precipitation over land excluding winter snowfall (520 Mt a−1), total precipitation over the fjord area (180 Mt a−1) and melting of the snow cover over unglaciated areas (197 Mt a−1) to the total freshwater input appear to be small: 21%, 7% and 8%, respectively.

Downloads

Download data is not yet available.

References


Aas K.S., Dunse T., Collier E., Schuler T.V., Berntsen T.K., Kohler J. & Luks B. 2016. The climatic mass balance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere–glacier mass balance model. The Cryosphere 10, 1089–1104, http://dx.doi.org/10.5194/tc-10-1089-2016.


Bartholomaus T.C., Larsen C.F. & O’Neel S. 2013. Does calving matter? Evidence for significant submarine melt. Earth and Planetary Science Letters 380, 21–30, http://dx.doi.org/10.1016/j.epsl.2013.08.014.


Benn D.I. & Evans D.J.A. 1998. Glaciers and glaciation. London: Arnold.


Beszczynska-Möller A., Wȩsławski J.W., Walczowski W. & Zajączkowski M. 1997. Estimation of glacial meltwater discharge into Svalbard coastal waters. Oceanologia 39, 289–299.


Błaszczyk M., Jania J.A. & Hagen J.O. 2009. Tidewater glaciers of Svalbard: recent changes and estimates of calving fluxes. Polish Polar Research 30, 85–142.


Błaszczyk M., Jania J.A. & Kolondra L. 2013. Fluctuations of tidewater glaciers in Hornsund Fiord (southern Svalbard) since the beginning of the 20th century. Polish Polar Research 34, 327–352. http://dx.doi.org/10.2478/popore-2013-0024.


Carr J.R., Stokes C.R. & Vieli A. 2017. Threefold increase in marine-terminating outlet glacier retreat rates across the Atlantic Arctic: 1992–2010. Annals of Glaciology 58(74), 72–91, http://dx.doi.org/10.1017/aog.2017.3.


Cogley J.G., Hock R., Rasmussen L.A., Arendt A.A., Bauder A., Braithwaite R.J., Jansson P., Kaser G., Möller M., Nicholson L. & Zemp M. 2011. Glossary of glacier mass balance and related terms. Paris: United Nations Educational, Scientific and Cultural Organization, International Hydrological Programme.


Cuffey K.M. & Paterson W.S.B. 2010. The physics of glaciers. Amsterdam: Academic Press.


DLR EOC 2013. TanDEM-X ground segment DEM products specification document, Issue 3.0. Weßling: Earth Observation Center, German Aerospace Center. Accessed on the internet at http://elib.dlr.de/108014/1/TD-GS-PS-0021_DEM-Product-Specification_v3.1.pdf on 15 November 2016.


Dowdeswell J.A., Benham T.J., Strozzi T. & Hagen J.O. 2008. Iceberg calving flux and mass balance of the Austfonna ice cap on Nordaustlandet, Svalbard. Journal of Geophysical Research—Earth Surface 113, F03022, http://dx.doi.org/10.1029/2007JF000905.


Dowdeswell J.A., Hogan K.A., Arnold N.S., Mugford R.I., Wells M., Hirst J.P.P. & Decalf C. 2015. Sediment-rich meltwater plumes and ice-proximal fans at the margins of modern and ancient tidewater glaciers: observations and modeling. Sedimentology 62, 1665–1692, http://dx.doi.org/10.1111/sed.12198.


Dunse T., Schellenberger T., Hagen J.O., Kääb A., Schuler T.V. & Reijmer C.H. 2015. Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt. The Cryosphere 9, 197–215, http://dx.doi.org/10.5194/tc-9-197-2015.


Dunse T., Schuler T.V., Hagen J.O. & Reijmer C.H. 2012. Seasonal speed-up of two outlet glaciers of Austfonna, Svalbard, inferred from continuous GPS measurements. The Cryosphere 6, 453–466, http://dx.doi.org/10.5194/tc-6-453-2012.


Enderlin E.M., Howat I.M., Jeong S., Noh M.J., Angelen J.H. & Broeke M.R. 2014. An improved mass budget for the Greenland ice sheet. Geophysical Research Letters 41, 866–872, http://dx.doi.org/10.1002/2013GL059010.


Førland E.J., Benestad R., Hanssen-Bauer I., Haugen J.E. & Skaugen T.E. 2011. Temperature and precipitation development at Svalbard 1900–2100. Advances in Meteorology 2011, article no. 893790, http://dx.doi.org/10.1155/2011/893790.


Gjelten H.M., Nordli Ø., Isaksen K., Førland E., Sviashchennikov P., Wyszyński P., Prokhorova U., Przybylak R., Ivanov B. & Urazgildeeva A. 2016. Air temperature variations and gradients along the coast and fjords of western Spitsbergen. Polar Research 35, article no. 29878, http://dx.doi.org/10.3402/polar.v35.29878.


Grabiec M., Ignatiuk D., Jania J.A., Moskalik M., Głowacki P., Błaszczyk M., Budzik T. & Walczowski W. 2018. Coast formation in an Arctic area due to glacier surge and retreat: the Hornbreen–Hambergbreen case from Spitsbergen. Earth Surface Processes and Landforms 43, 387–400, http://dx.doi.org/10.1002/esp.4251.


Grabiec M., Puczko D., Budzik T. & Gajek G. 2011. Snow distribution patterns on Svalbard glaciers derived from radio-echo soundings. Polish Polar Research 32, 393–421, http://dx.doi.org/10.2478/v10183-011-0026-4.


Grünewald T., Bühler Y. & Lehning M. 2014. Elevation dependency of mountain snow depth. The Cryosphere 8, 2381–2394, http://dx.doi.org/10.5194/tc-8-2381-2014.


Hagen J.O., Kohler J., Melvold K. & Winther J.G. 2003. Glaciers in Svalbard: mass balance, runoff and freshwater flux. Polar Research 22, 145–159, http://dx.doi.org/10.1111/j.1751-8369.2003.tb00104.x.


Hagen J.O., Melvold K., Pinglot F. & Dowdeswell J.A. 2003. On the net mass balance of the glaciers and ice caps in Svalbard, Norwegian Arctic. Arctic, Antarctic, and Alpine Research 35, 264–270. http://dx.doi.org/10.1657/1523-0430(2003)035[0264:OTNMBO]2.0.CO;2.


Howat I.M., Joughin I., Fahnestock M., Smith B.E. & Scambos T. 2008. Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–2006: ice dynamics and coupling to climate. Journal of Glaciology 54, 646–660, http://dx.doi.org/10.3189/002214308786570908.


Iken A. 1981. The effect of the subglacial water pressure on the sliding velocity of a glacier in an idealized numerical model. Journal of Glaciology 27, 407–421, http://dx.doi.org/10.3189/S0022143000011448.


Jakacki J., Przyborska A., Kosecki S., Sundfjord A. & Albretsen J. 2017. Modelling of the Svalbard fjord Hornsund. Oceanologia 59, 473–495, http://dx.doi.org/10.1016/j.oceano.2017.04.004.


Jania J. 1988. Dynamiczne procesy glacjalne na południowym Spitsbergenie (w s’wietle badań fotointerpretacyjnych i fotogrametrycznych). (Dynamic glacial processes in south Spitsbergen [in light of photo interpretation and photogrammetric research].) Katowice: Wydawnictwo Uniwersytetu S´ląskiego.


Jania J. & Pulina M. 1996. Polish hydrological studies in Spitsbergen, Svalbard: a review of some results. In K. Sand & Å. Killingtveit (eds.): Proceedings. Tenth International Northern Research Basins Symposium and Workshop, Norway 1994. Pp. 47–76. Trondheim: SINTEF Norwegian Hydrotechnical Laboratory.


Killingtveit Å. 2004. Water balance studies in two catchments on Spitsbergen. In D.L. Kane & D. Yang (eds.): Northern research basins water balance. Proceedings of a workshop held at Victoria, Canada, March 2004. IAHS Publishing 290. Pp. 120–128. Wallingford: International Association of Hydrological Sciences Press.


Kirnbauer R., Blöschl G., Waldhäusl P. & Hochstöger F. 1991. An analysis of snow cover patterns as derived from oblique aerial photographs. In H. Bergmann et al. (eds.): Snow, hydrology and forests in high alpine areas. Vol. 205. Pp. 91–99. Wallingford: International Association of Hydrological Sciences Press.


Kohler J., James T.D., Murray T., Nuth C., Brandt O., Barrand N.E., Aas H.F. & Luckman A. 2007. Acceleration in thinning rate on western Svalbard glaciers. Geophysical Research Letters 34(18), L18502, http://dx.doi.org/10.1029/2007GL030681.


Laska M., Grabiec M., Ignatiuk D. & Budzik T. 2017. Snow deposition patterns on southern Spitsbergen glaciers, Svalbard, in relation to recent meteorological conditions and local topography. Geografiska Annaler Series A 99, 262–287, http://dx.doi.org/10.1080/04353676.2017.1327321.


Lehning M., Grünewald T. & Schirmer M. 2011. Mountain snow distribution governed by an altitudinal gradient and terrain roughness. Geophysical Research Letters 38(19), L19504, http://dx.doi.org/10.1029/2011GL048927.


Lliboutry L. 1968. General theory of subglacial cavitation and sliding of temperate glaciers. Journal of Glaciology 7(49), 21–58, http://dx.doi.org/10.1017/S0022143000020396.


Luckman A., Benn D.I., Cottier F., Bevan S., Nilsen F. & Inall M. 2015. Calving rates at tidewater glaciers vary strongly with ocean temperature. Nature Communication 6, article no. 8566, http://dx.doi.org/10.1038/ncomms9566.


Lydersen C., Philipp A., Stig F.-P., Kohler J., Kovacs K.M., Reigstad M., Steen H., Strøm H., Sundfjord A., Varpe Ø., Walczowski W., Weslawski J.M. & Zajaczkowski M. 2014. The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. Journal of Marine Systems 129, 452–471, http://dx.doi.org/10.1016/j.jmarsys.2013.09.006.


MacLachlan S.E., Cottier F.R., Austin W.E. & Howe J.A. 2007. The salinity: δ18O water relationship in Kongsfjorden, western Spitsbergen. Polar Research 26, 160–167, http://dx.doi.org/10.1111/j.1751-8369.2007.00016.x.


Małecki J. 2016. Accelerating retreat and high-elevation thinning of glaciers in central Spitsbergen. The Cryosphere 10, 1317–1329, http://dx.doi.org/10.5194/tc-10-1317-2016.


Mansell D., Luckman A. & Murray T. 2012. Dynamics of tidewater surge-type glaciers in northwest Svalbard. Journal of Glaciology 58, 110–118, http://dx.doi.org/10.3189/2012JoG11J058.


Marchand W.D. & Killingtveit Å. 2001. Analyses of the relation between spatial snow distribution and terrain characteristics. In: Proceedings of the 58th Eastern Snow Conference. Pp. 14–17. Ottawa: American Geophysical Union, American Water Resources Association.


Meier M.F. & Post A.S. 1969. What are glacier surges? Canadian Journal of Earth Sciences 6, 807–817, http://dx.doi.org/10.1139/e69-081.


Meier M.F. & Post A.S. 1987. Fast tidewater glaciers. Journal of Geophysical Research 92—Solid Earch and Planets 92, 9051–9058, http://dx.doi.org/10.1029/JB092iB09p09051.


Moholdt G., Hagen J.O., Eiken T. & Schuler T.V. 2010. Geometric changes and mass balance of the Austfonna ice cap, Svalbard. The Cryosphere 4, 21–34, http://dx.doi.org/10.5194/tc-4-21-2010.


Moskalik M., Ćwiąkała J., Szczuciński W., Dominiczak A., Głowacki O., Wojtysiak K. & Zagórski P. 2018. Spatiotemporal changes in the concentration and composition of suspended particulate matter in front of Hansbreen, a tidewater glacier in Svalbard. Oceanologia 60, 446–463, http://dx.doi.org/10.1016/j.oceano.2018.03.001.


Moskalik M., Grabowiecki P., Tȩgowski J. & Żulichowska M. 2013. Bathymetry and geographical regionalization of Brepollen (Hornsund, Spitsbergen) based on bathymetric profiles interpolations. Polish Polar Research 34, 1–22, http://dx.doi.org/10.2478/popore-2013-0001.


Motyka R.J., Hunter L., Echelmeyer K.A. & Connor C. 2003. Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, USA. Annals of Glaciology 36, 57–65, http://dx.doi.org/10.3189/172756403781816374.


Müller F. & Iken A. 1973. Velocity fluctuations and water regime of Arctic valley glaciers. International Association of Scientific Hydrology Publication 95, 165–182.


Nowak A. & Hodson A. 2013. Hydrological response of a High-Arctic catchment to changing climate over the past 35 years: a case study of Bayelva watershed, Svalbard. Polar Research 32, article no. 19691, http://dx.doi.org/10.3402/polar.v32i0.19691.


Nuth C., Kohler J., König M., von Deschwanden A., Hagen J.O., Kääb A., Moholdt G. & Pettersson R. 2013. Decadal changes from a multi-temporal glacier inventory of Svalbard. The Cryosphere 7, 1603–1621, http://dx.doi.org/10.5194/tc-7-1603-2013.


Nuth C., Moholdt G., Kohler J., Hagen J.O. & Kääb A. 2010. Svalbard glacier elevation changes and contribution to sea level rise. Journal of Geophysical Research 115, F01008, http://dx.doi.org/10.1029/2008JF001223.


O’Leary M. & Christoffersen P. 2013. Calving on tidewater glaciers amplified by submarine frontal melting. The Cryosphere 7, 119–128, http://dx.doi.org/10.5194/tc-7-119-2013.


Østby T.I., Schuler T.V., Hagen J.O., Hock R., Kohler J. & Reijmer C.H. 2017. Diagnosing the decline in climatic mass balance of glaciers in Svalbard over 1957–2014. The Cryosphere 11, 191–215, http://dx.doi.org/10.5194/tc-11-191-2017.


Osuch M. & Wawrzyniak T. 2016. Climate projections in the Hornsund area, southern Spitsbergen. Polish Polar Research 37, 379–402, http://dx.doi.org/10.1515/popore-2016-0020.


Osuch M. & Wawrzyniak T. 2017. Inter- and intra-annual changes in air temperature and precipitation in western Spitsbergen. International Journal of Climatology 37, 3082–3097, http://dx.doi.org/10.1002/joc.4901.


Paterson W.B.S. 1981. The physics of glaciers. Oxford: Pergamon Press.


Promińska A., Cisek M. & Walczowski W. 2017. Kongsfjorden and Hornsund hydrography—comparative study based on a multiyear survey in fjords of west Spitsbergen. Oceanologia 59, 397–412, http://dx.doi.org/10.1016/j.oceano.2017.07.003.


Przybylak R., Araźny A., Nordli Ø., Finkelnburg R., Kejna M., Budzik, T., Migała K., Sikora S., Puczko D., Rymer K. & Rachlewicz G. 2014. Spatial distribution of air temperature on Svalbard during 1 year with campaign measurements. International Journal of Climatology 34, 3702–3719, http://dx.doi.org/10.1002/joc.3937.


Saloranta T. & Svendsen H. 2001. Across the Arctic Front west of Spitsbergen: high resolution CTD sections from 1998–2000. Polar Research 20, 177–184, http://dx.doi.org/10.1111/j.1751-8369.2001.tb00054.x.


Schellenberger T., Dunse T., Kääb A., Kohler J. & Reijmer C.H. 2015. Surface speed and frontal ablation of Kronebreen and Kongsbreen, NW Svalbard, from SAR offset tracking. The Cryosphere 9, 2339–2355, http://dx.doi.org/10.5194/tc-9-2339-2015.


Schellenberger T., Van Wychen W., Copland L., Kääb A. & Gray L. 2016. An inter-comparison of techniques for determining velocities of maritime Arctic glaciers, Svalbard, using Radarsat-2 wide fine mode data. Remote Sensing 8(99), article no. 785, http://dx.doi.org/10.3390/rs8090785/.


Schild K.M. & Hamilton G.S. 2013. Seasonal variations of outlet glacier terminus position in Greenland. Journal of Glaciology 59, 759–770, http://dx.doi.org/10.3189/2013JoG12J238.


Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V. & Midgley P.M. (eds.) 2013. Climate change 2013. The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press.


Strozzi T., Kääb A. & Schellenberger T. 2016. Frontal destabilization of Stonebreen, Edgeøya, Svalbard. The Cryosphere 11, 553–566, http://dx.doi.org/10.5194/tc-11-553-2017.


Strozzi T., Luckman A., Murray T., Wegmüller U. & Werner C.L. 2002. Glacier motion estimation using SAR offset-tracking procedures. IEEE Transactions on Geoscience and Remote Sensing 40, 2384–2391, http://dx.doi.org/10.1109/TGRS.2002.805079.


Strozzi T., Paul F., Wiesmann A., Schellenberger T. & Kääb A. 2017. Circum-Arctic changes in the flow of glaciers and ice caps from satellite SAR data between the 1990s and 2017. Remote Sensing 9, article no. 947, http://dx.doi.org/10.3390/rs9090947


Sund M., Błaszczyk M., Eiken T. & Jania J.A. 2011. The implications of surge and tidewater glacier dynamics related to climate change response of Svalbard glaciers. In M. Sund (ed.): On the dynamics of surge−type and tidewater glaciers in Svalbard. PhD thesis, Faculty of Mathematics and Natural Sciences, University of Oslo, no. 1147.


Sund M., Lauknes T.R. & Eiken T. 2014. Surge dynamics in the Nathorstbreen glacier system, Svalbard. The Cryosphere 8, 623–638, http://dx.doi.org/10.5194/tc-8-623-2014.


Svendsen H., Beszczynska-Møller A., Hagen J.O., Lefauconnier B., Tverberg V., Gerland S., Ørbøk J.B., Bischof K., Papucci C., Zajaczkowski M., Azzolini R., Bruland O., Wiencke C., Winther J.G. & Dallmann W. 2002. The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard. Polar Research 21, 133–166, http://dx.doi.org/10.1111/j.1751-8369.2002.tb00072.x.


Urbański J.A., Stempniewicz L., Wȩsławski J.M, Dragańska-Deja K., Wochna A, Goc M. & Iliszko L. 2017. Subglacial discharges create fluctuating foraging hotspots for sea birds in tidewater glacier bays. Nature Scientific Reports 7, article no. 43999, http://dx.doi.org/10.1038/srep43999.


Van Pelt W.J.J. & Kohler J. 2015. Modelling the long-term mass balance and firn evolution of glaciers around Kongsfjorden, Svalbard. Journal of Glaciology 61, 731–744, http://dx.doi.org/10.3189/2015JoG14J223.


Van Pelt W.J.J., Kohler J., Liston G.E., Hagen J.O., Luks B., Reijmer C.H. & Pohjola V.A. 2016. Multidecadal climate and seasonal snow conditions in Svalbard. Journal of Geophysical Research—Earth Surface 121, 2100–2117, http://dx.doi.org/10.1002/2016JF003999.


Van Pelt W.J.J., Pohjola V.A., Pettersson R., Ehwald L.E., Reijmer C.H., Boot W.& Jakobs C.L. 2018. Dynamic response of a High Arctic glacier to melt and runoff variations. Geophysical Research Letters 45, 4917–4926, http://dx.doi.org/10.1029/2018GL077252.


Vieli A., Jania J., Blatter H. & Funk M. 2004. Short-term velocity variations on Hansbreen, a tidewater glacier in Spitsbergen. Journal of Glaciology 50, 389–398, http://dx.doi.org/10.3189/172756504781829963.


Vieli A., Jania J. & Kolondra L. 2002. The retreat of a tidewater glacier: observations and model calculations on Hansbreen, Spitsbergen. Journal of Glaciology 48, 592–600, http://dx.doi.org/10.3189/172756502781831089.


Wȩsławski J.M., Jankowski A., Kwas’niewski S., Swerpel S. & Ryg M. 1991. Summer hydrology and zooplankton in two Svalbard fjords. Polish Polar Research 12, 445–460.


Wȩsławski J.M., Koszteyn J., Zajączkowski M., Wiktor J. & Kwas’niewski S. 1995. Fresh water in Svalbard fjord ecosystems. In H.R. Skjoldal et al. (eds.): Ecology of fjords and coastal waters. Pp. 229–242. Amsterdam: Elsevier Science.


Wȩsławski J.M. & Legeżyńska J. 1998. Glaciers caused zooplankton mortality? Journal of Plankton Research 20, 1233–1240, http://dx.doi.org/10.1093/plankt/20.7.1233.


Willis I.C. 1995. Intra-annual variations in glacier motions: a review. Progress in Physical Geography 19, 61–106, http://dx.doi.org/10.1177/030913339501900104.


Winther J.G., Bruland O., Sand K., Gerland S., Marechal D., Ivanov B., Głowacki P. & König M. 2003. Snow research in Svalbard—an overview. Polar Research 22, 125–144, http://dx.doi.org/10.1111/j.1751-8369.2003.tb00103.x.


Ziaja W. & Ostafin K. 2015. Landscape-seascape dynamics in the isthmus between Sørkapp Land and the rest of Spitsbergen: will a new big Arctic island form? Ambio 44, 332–342, http://dx.doi.org/10.1007/s13280-014-0572-1
Published
2019-04-16
How to Cite
Błaszczyk, M., Ignatiuk, D., Uszczyk, A., Cielecka-Nowak, K., Grabiec, M., Jania, J., Moskalik, M., & Walczowski, W. (2019). Freshwater input to the Arctic fjord Hornsund (Svalbard). Polar Research, 38. https://doi.org/10.33265/polar.v38.3506
Section
Research Articles