A climatology of wintertime low-level jets in Nares Strait

  • Svenja H.E. Kohnemann Environmental Meteorology, University of Trier, Trier, Germany
  • Günther Heinemann Environmental Meteorology, University of Trier, Trier, Germany
Keywords: Arctic, gap flow, atmospheric modelling, Greenland, North Water Polynya, wind

Abstract

Intense, southward low-level winds are common in Nares Strait, between Ellesmere Island and northern Greenland. The steep topography along Nares Strait leads to channelling effects, resulting in an along-strait flow. This research study presents a 30-year climatology of the flow regime from simulations of the COSMO-CLM climate model. The simulations are available for the winter periods (November–April) 1987/88 to 2016/17, and thus, cover a period long enough to give robust long-term characteristics of Nares Strait. The horizontal resolution of 15 km is high enough to represent the complex terrain and the meteorological conditions realistically. The 30-year climatology shows that LLJs associated with gap flows are a climatological feature of Nares Strait. The maximum of the mean 10-m wind speed is around 12 m s-1 and is located at the southern exit of Smith Sound. The wind speed is strongly related to the pressure gradient. Single events reach wind speeds of 40 m s-1 in the daily mean. The LLJs are associated with gap flows within the narrowest parts of the strait under stably stratified conditions, with the main LLJ occurring at 100–250 m height. With increasing mountain Froude number, the LLJ wind speed and height increase. The frequency of strong wind events (>20 m s-1 in the daily mean) for the 10 m wind shows a strong interannual variability with an average of 15 events per winter. Channelled winds have a strong impact on the formation of the North Water polynya.

Downloads

Download data is not yet available.

References


Andreas E.L., Claffy K.J. & Makshtas A.P. 2000. Low-level atmospheric jets and inversions over the western Weddell Sea. Boundary Layer Meteorology 97, 459–486, doi: 10.1023/A:1002793831076.


Barstad I. & Adakudlu M. 2011. Observation and modelling of gap flow and wake formation on Svalbard. Quarterly Journal of the Royal Meteorological Society 137, 1731–1738, doi: 10.1002/qj.782.


Bromwich D.H., Wilson A.B., Bai L.S., Liu Z., Barlage M., Shih C.-F., Maldonado S., Hines K.M., Wang S.-H., Woollen J., Kuo B., Lin H.C., Wee T.-K., Serreze M.C. & Walsh J.E. 2018. The Arctic System Reanalysis version 2. Bulletin of the American Meteorological Society 99, 805–828, doi: 10.1175/BAMS-D-16-0215.1.


Bromwich D.H., Wilson A.B., Bai L.S., Moore G.W.K. & Bauer P. 2016. A comparison of the regional Arctic System Reanalysis and the global ERA-Interim Reanalysis for the Arctic. Quarterly Journal of the Royal Meteorological Society 142, 644–658, doi: 10.1002/qj.2527.


Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.-N. & Vitart F. 2011. The ERA-Interim Reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society 137, 553–597, doi: 10.1002/qj.828.


Doms G., Förster J., Heise E., Herzog H., Raschendorfer M., Reinhardt T., Ritter B., Schrodin R., Schulz J.P. & Vogel G. 2011. A description of the Nonhydrostatic Regional COSMO-Model. Part II: physical parameterization. Offenbach, Germany: Consortium for Small-scale Modelling.


Doyle J.D. & Shapiro M. 1999. Flow response to large-scale topography: the Greenland tip jet. Tellus Series A 51, 728–748, doi: 10.3402/tellusa.v51i5.14471.


DuVivier A.K. & Cassano J.J. 2013. Evaluation of WRF Model Resolution on simulated mesoscale winds and surface fluxes near Greenland. Monthly Weather Review 141, 941–963, doi: 10.1175/MWR-D-12-00091.1.


Gaberšek S. & Durran D.R. 2004. Gap flows through idealized topography. Part I: forcing by large scale winds in the nonrotating limit. Journal of the Atmospheric Sciences 61, 2846–2862, doi: 10.1175/JAS-3340.1.


Gutjahr O. & Heinemann G. 2018. A model-based comparison of extreme winds in the Arctic and around Greenland. International Journal of Climatology 38, 5272–5292, doi: 10.1002/joc.5729.


Gutjahr O., Heinemann G., Preusser A., Willmes S. & Drüe C. 2016. Quantification of ice production in Laptev Sea polynyas and its sensitivity to thin-ice parameterizations in a regional climate model. The Cryosphere 10, 2999–3019, doi: 10.5194/tc-10-2999-2016.


Harden B.E., Renfrew I.A. & Petersen G.N. 2011. A climatology of wintertime barrier winds off southeast Greenland. Journal of Climate 24, 4701–4717, doi: 10.1175/2011JCLI4113.1.


Heinemann G. 1999. The KABEG’97 field experiment: an aircraft-based study of the katabatic wind dynamics over the Greenlandic ice sheet. Boundary Layer Meteorology 93, 75–116, doi: 10.1023/A:1002009530877.


Heinemann G. 2004. Local similarity properties of the continuously turbulent stable boundary layer over Greenland. Boundary Layer Meteorology 122, 283–305, doi: 10.1023/B:BOUN.0000027908.19080.b7.


Heinemann G. 2018. An aircraft-based study of strong gap flows in the Nares Strait, Greenland. Monthly Weather Review 146, 3589–3604, doi: 10.1175/MWR-D-18-0178.1.


Heinemann G. 2020. Assessment of regional climate model simulations of the katabatic boundary layer structure over Greenland. Atmosphere 11, article no. 571, doi: 10.3390/atmos11060571.


Heinemann G. & Klein T. 2002. Modeling and observations of the katabatic flow dynamics over Greenland. Tellus Series A 54, 542–544, doi: 10.3402/tellusa.v54i5.12167.


Heinemann G., Willmes S., Schefczyk L., Makshtas A., Kustov V. & Makhotina I. 2021. Observations and simulations of meteorological conditions over Arctic thick sea ice in late winter during the Transarktika 2019 expedition. Atmosphere 12, article no. 174, doi: 10.3390/atmos12020174.


Hersbach H., de Rosnay P., Bell B., Schepers D. & Simmons A., Soci C., Abdalla S., Alonso-Balmaseda M., Balsamo G.; Bechtold P., Berrisford P., Bidlot J., de Boisséson E., Bonavita M., Browne P., Buizza R., Dahlgren P., Dee D., Dragani R., Diamantakis M., Flemming J., Forbes R., Geer A., Haiden T., Hólm E., Haimberger L., Hogan R., Horányi A., Janisková M., Laloyaux P., Lopez P., Muñoz-Sabater J., Peubey C., Radu R., Richardson D., Thépaut J.-N., Vitart, Yang X., Zsoter & Zuo H. 2018. Operational global reanalysis: progress, future directions and synergies with NWP. ERA Report Series 27. Reading: European Centre for Medium Range Weather Forecasts. doi: 10.21957/tkic6g3wm.


Hughes M. & Cassano J.J. 2015. The climatological distribution of extreme Arctic winds and implications for ocean and sea ice processes. Journal of Geophysical Research—Atmospheres 120, 7358–7377, doi: 10.1002/2015JD023189.


Jakobson L., Vihma T., Jakobson E., Palo T., Männik A. & Jaagus J. 2013. Low-level jet characteristics over the Arctic Ocean in spring and summer. Atmospheric Chemistry and Physics 13, 11089–11099, doi: 10.5194/acp-13-11089-2013.


Kohnemann S.H.E., Heinemann G., Bromwich D.H. & Gutjahr O. 2017. Extreme warming in the Kara Sea and Barents Sea during the winter period 2000 to 2016. Journal of Climate 30, 8913–8927, doi: 10.1175/JCLI-D-16-0693.1.


Køltzow M. 2007. The effect of a new snow and sea ice albedo scheme on regional climate model simulations. Journal of Geophysical Research—Atmospheres 112, D07110, doi: 10.1029/2006JD007693.


Melling H. 2011. The best laid schemes: a Nares Strait adventure. Oceanography 24, 124–125, doi: 10.5670/oceanog.2011.63.


Moore G.W.K. & Renfrew I.A. 2005. Tip jets and barrier winds: a QuickSCAT climatology of high wind speed events around Greenland. Journal of Climate 18, 3713–3725, doi: 10.1175/JCLI3455.1.


Moore G.W.K., Renfrew I.A., Harden B.E. & Mernhild S.H. 2015. The impact of resolution on the representation of southeast Greenland barrier winds and katabatic flows. Geophysical Research Letters 42, 3011–3018, doi: 10.1002/2015GL063550.


Moore G.W.K. & Våge K. 2018. Impact of the model resolution on the representation of the air-sea interaction associated with the North Water Polynya. Quarterly Journal of the Royal Meteorological Society 144, 1474–1489, doi: 10.1002/qj.3295.


Münchow A., Melling H. & Falkner K.K. 2006. An observational estimate of volume and freshwater flux leaving the Arctic Ocean through Nares Strait. Journal of Physical Oceanography 36, 2025–2041, doi: 10.1175/JPO2962.1.


Overland J.E. 1984. Scale analysis of marine winds in straits and along mountain coasts. Monthly Weather Review 112, 2530–2534, doi: 10.1175/1520-0493(1984)112<2530:SAOMWI>2.0.CO;2.


Petersen G.N., Renfrew I.A. & Moore G.W.K. 2009. An overview of barrier winds off southeastern Greenland during the Greenland Flow Distortion experiment. Quarterly Journal of Royal Meteorological Society 135, 1950–1967, doi: 10.1002/qj.455.


Preusser A., Heinemann G., Willmes S. & Paul S. 2015. Multi-decadal variability of polynya characteristics and ice production in the North Water Polynya by means of passive microwave and thermal infrared satellite imagery. Remote Sensing 7, 15844–15867, doi: 10.3390/rs71215807.


Preusser A., Heinemann G., Willmes S. & Paul S. 2016. Circumpolar polynya regions and ice production in the Arctic: results from MODIS thermal infrared imagery from 2002/2003 to 2014/2015 with a regional focus on the Laptev Sea. The Cryosphere 10, 3021–3042, doi: 10.5194/tc-10-3021-2016.


Rockel B., Will A. & Hense A. 2008. The regional climate model COSMO-CLM (CCLM). Meteorologische Zeitschrift 17, 347–348, doi: 10.1127/0941-2948/2008/0309.


Samelson R.M., Agnew T., Melling H. & Münchow A. 2006. Evidence for atmospheric control of sea-ice motion through Nares Strait. Geophysical Research Letters 33, L02506, doi: 10.1029/2005GL025016.


Samelson R.M. & Barbour P.L. 2008. Low-level jets, orographic effects and extreme events in Nares Strait: a model-based mesoscale climatology. Monthly Weather Review 136, 4746–4759, doi: 10.1175/2007MWR2326.1.


Schroeder D., Heinemann G. & Willmes S. 2011. The impact of a thermodynamic sea-ice module in the COSMO numerical weather prediction model on simulations for the Laptev Sea, Siberian Arctic Polar Research 30, article no. 6334, doi: 10.3402/polar.v30i0.6334.


Sedlar J., Tjernström M., Rinke A., Orr A., Cassano J., Fettweis X., Heinemann G., Seefeldt M., Solomon A., Matthes H., Phillips T. & Webster S. 2020. Confronting Arctic troposphere, clouds, and surface energy budget representations in regional climate models with observations. Journal of Geophysical Research—Atmospheres 124, article no. e2019JD031783, doi: 10.1029/2019JD031783.


Sharp J. & Mass C.F. 2004. Columbia Gorge gap winds: their climatological influence and synoptic evolution. Weather and Forecasting 19, 970–992, doi: 10.1175/826.1.


Spreen G., Kaleschke L. & Heygster G. 2008. Sea ice remote sensing using AMSR-E 89-GHz channels. Journal of Geophysical Research—Oceans 113, C02S03, doi: 10.1029/2005JC003384.


Steffen K., Box J.E. & Abdalati W. 1996. Greenland Climate Network: GC-Net. CRREL Special Report 96–27, 98–103.


Yao T. & Tang C.L. 2003. The formation and maintenance of the North Water Polynya. Atmosphere–Ocean 41, 187–201, doi: 10.3137/ao.410301.


Zentek R. & Heinemann G. 2020. Verification of the regional atmospheric model CCLM v5.0 with conventional data and Lidar measurements in Antarctica. Geoscientific Model Development 13, 1809–1825, doi: 10.5194/gmd-13-1809-2020.


Zhang J. & Rothrock D.A. 2003. Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Monthly Weather Review 131, 845–861, doi: 10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2.


Satellite and model data



EUMETSAT SAF on Ocean and Sea Ice 2016. Global sea ice concentration climate data record release 1.1 (period 1978–2009)—DMSP. OSI SAF. doi: 10.15770/EUM_SAF_OSI_0001.


Copernicus Climate Change Service (C3S) 2017. ERA5: fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store, 2019. Accessed on the internet at https://cds.climate.copernicus.eu/cdsapp#!/home on 15 October 2019.


National Center for Atmospheric Research/University Corporation for Atmospheric Research, and Polar Meteorology Group/Byrd Polar and Climate Research Center/The Ohio State University 2017. Arctic System Reanalysis version 2. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. Accessed on the internet at https://doi.org/10.5065/D6X9291B on 01 August 2017/ 25 July 2018.
Published
2021-04-19
How to Cite
Kohnemann, S. H., & Heinemann, G. (2021). A climatology of wintertime low-level jets in Nares Strait. Polar Research, 40. https://doi.org/10.33265/polar.v40.3622
Section
Research Articles