Five decades of terrestrial and freshwater research at Ny-Ålesund, Svalbard

  • Å.Ø. Pedersen Norwegian Polar Institute, Tromsø, Norway
  • P. Convey British Antarctic Survey, Natural Environment Research Council, Cambridge, UK; and Department of Zoology, University of Johannesburg, Auckland Park, South Africa
  • K.K. Newsham British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
  • J.B. Mosbacher Norwegian Polar Institute, Tromsø, Norway
  • E. Fuglei Norwegian Polar Institute, Tromsø, Norway
  • V. Ravolainen Norwegian Polar Institute, Tromsø, Norway
  • B.B. Hansen Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway; and Norwegian Institute for Nature Research, Trondheim, Norway
  • T.C. Jensen Norwegian Institute for Nature Research, Oslo, Norway
  • A. Augusti Research Institute on Terrestrial Ecosystems, Consiglio Nazionale delle Ricerche, Porano, Italy
  • E.M. Biersma British Antarctic Survey, Natural Environment Research Council, Cambridge, UK; and Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
  • E.J. Cooper Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
  • S.J. Coulson SLU Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
  • G.W. Gabrielsen Norwegian Polar Institute, Tromsø, Norway
  • J.C. Gallet Norwegian Polar Institute, Tromsø, Norway
  • U. Karsten Department of Applied Ecology and Phycology, University of Rostock, Rostock, Germany
  • S.M. Kristiansen Department of Biosciences, University of Oslo, Oslo, Norway
  • M.M. Svenning Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
  • A.T. Tveit Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
  • M. Uchida National Institute of Polar Research, Tokyo, Japan; and The Graduate University for Advanced Studies, Tokyo, Japan
  • I. Baneschi Institute of Geosciences and Earth Resources, Consiglio Nazionale delle Ricerche, Pisa, Italy
  • E. Calizza Department of Environmental Biology, Sapienza University of Rome, Roma, Italy
  • N. Cannone Department of Science and Technology, Insubria University, Como, Italy
  • E.M. de Goede Institute of Environmental Sciences, University of Leiden, Leiden, The Netherlands
  • M. Doveri Institute of Geosciences and Earth Resources, Consiglio Nazionale delle Ricerche, Pisa, Italy
  • J. Elster Centre for Polar Ecology, Faculty of Science, University of South Bohemia, Třeboň, Czechia
  • M.S. Giamberini Institute of Geosciences and Earth Resources, Consiglio Nazionale delle Ricerche, Pisa, Italy
  • K. Hayashi Institute for Agro-Environmental Sciences, Ibaraki, Japan
  • S.I. Lang Department of Arctic Biology, The University Centre in Svalbard, Longyearbyen, Norway
  • Y.K. Lee Korea Polar Research Institute, Incheon, Republic of Korea
  • T. Nakatsubo Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
  • V. Pasquali Section of Neuroscience, Sapienza University of Rome, Roma, Italy
  • I.M.G. Paulsen Norwegian Polar Institute, Tromsø, Norway
  • C. Pedersen Norwegian Polar Institute, Tromsø, Norway
  • F. Peng China Center for Type Culture Collection, College of Life Sciences, Wuhan University, Wuhan, China
  • A. Provenzale Institute of Geosciences and Earth Resources, Consiglio Nazionale delle Ricerche, Pisa, Italy
  • E. Pushkareva Department of Applied Ecology and Phycology, University of Rostock, Rostock, Germany
  • C.A.M. Sandström Arctic Centre, University of Groningen, Groningen, The Netherlands
  • V. Sklet Norwegian Polar Institute, Tromsø, Norway
  • A. Stach Institute of Geoecology and Geoinformation, Faculty of Geographic and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
  • M. Tojo Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
  • B. Tytgat Laboratory of Protistology and Aquatic Ecology, Ghent University, Gent, Belgium
  • H. Tømmervik Norwegian Institute for Nature Research, Tromsø, Norway
  • D. Velazquez Department of Biology, Universidad Autonoma de Madrid, Madrid, Spain
  • E. Verleyen Laboratory of Protistology and Aquatic Ecology, Ghent University, Gent, Belgium
  • J.M. Welker Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA; and Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
  • Y.-F. Yao State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
  • M.J.J.E. Loonen Arctic Centre, University of Groningen, Groningen, The Netherlands
Keywords: Biogeochemical cycles, climate change, ecosystem structure and functioning, environmental change, High Arctic, human impacts, soil


For more than five decades, research has been conducted at Ny-Ålesund, in Svalbard, Norway, to understand the structure and functioning of High-Arctic ecosystems and the profound impacts on them of environmental change. Terrestrial, freshwater, glacial and marine ecosystems are accessible year-round from Ny-Ålesund, providing unique opportunities for interdisciplinary observational and experimental studies along physical, chemical, hydrological and climatic gradients. Here, we synthesize terrestrial and freshwater research at Ny-Ålesund and review current knowledge of biodiversity patterns, species population dynamics and interactions, ecosystem processes, biogeochemical cycles and anthropogenic impacts. There is now strong evidence of past and ongoing biotic changes caused by climate change, including negative effects on populations of many taxa and impacts of rain-on-snow events across multiple trophic levels. While species-level characteristics and responses are well understood for macro-organisms, major knowledge gaps exist for microbes, invertebrates and ecosystem-level processes. In order to fill current knowledge gaps, we recommend (1) maintaining monitoring efforts, while establishing a long-term ecosystem-based monitoring programme; (2) gaining a mechanistic understanding of environmental change impacts on processes and linkages in food webs; (3) identifying trophic interactions and cascades across ecosystems; and (4) integrating long-term data on microbial, invertebrate and freshwater communities, along with measurements of carbon and nutrient fluxes among soils, atmosphere, freshwaters and the marine environment. The synthesis here shows that the Ny-Ålesund study system has the characteristics needed to fill these gaps in knowledge, thereby enhancing our understanding of High-Arctic ecosystems and their responses to environmental variability and change.


Download data is not yet available.


Note: the references below include sources cited in the supplementary file that are not cited in the main article. The reference library (compiled by Silje Marie Kristiansen, Ingrid M.G. Paulsen and Åshild Ønvik Pedersen) can be downloaded in EndNote format as a supplementary file.

Aakra K. & Hauge E. 2003. Checklist of Norwegian spiders (Arachnida: Araneae), including Svalbard and Jan Mayen. Norwegian Journal of Entomology 50, 109–129.

Aanes R., Saether B.E. & Øritsland N.A. 2000. Fluctuations of an introduced population of Svalbard reindeer: the effects of density dependence and climatic variation. Ecography 23, 437–443, doi: 10.1034/j.1600-0587.2000.230406.x.

Aanes R., Saether B.E., Smith F.M., Cooper E.J., Wookey P.A. & Øritsland N.A. 2002. The Arctic Oscillation predicts effects of climate change in two trophic levels in a High-Arctic ecosystem. Ecology Letters 5, 445–453, doi: 10.1046/j.1461-0248.2002.00340.x.

Alfsnes K., Hobæk A., Weider L.J. & Hessen D.O. 2016. Birds, nutrients, and climate change: mtDNA haplotype diversity of Arctic Daphnia on Svalbard revisited. Polar Biology 39, 1425–1437, doi: 10.1007/s00300-015-1868-8.

Alsos I.G., Elvebakk A. & Gabrielsen G.W. 1998. Vegetation exploitation by barnacle geese Branta leucopsis during incubation on Svalbard. Polar Research 17, 1–14, doi: 10.1111/j.1751-8369.1998.tb00255.x.

Andersen M.S., Fuglei E., Konig M., Lipasti I., Pedersen Å.Ø., Polder A., Yoccoz N.G. & Routti H. 2015. Levels and temporal trends of persistent organic pollutants (POPs) in Arctic foxes (Vulpes lagopus) from Svalbard in relation to dietary habits and food availability. Science of the Total Environment 511, 112–122, doi: 10.1016/j.scitotenv.2014.12.039.

Anesio A.M. & Laybourn-Parry J. 2012. Glaciers and ice sheets as a biome. Trends in Ecology & Evolution 27, 219–225, doi: 10.1016/j.tree.2011.09.012.

Arnell S. & Mårtensson O. 1959. A contribution to the knowledge of the bryophyte flora of W. Spitsbergen and Kongsfjorden (King’s Bay, 79°N) in particular. Arkiv för Botanik 4, 104–164.

Askaer L., Schmidt L.B., Elberling B., Asmund G. & Jonsdottir I.S. 2008. Environmental impact on an Arctic soil–plant system resulting from metals released from coal mine waste in Svalbard (78°N). Water Air and Soil Pollution 195, 99–114, doi: 10.1007/s11270-008-9730-z.

Aslam S.N., Huber C., Asimakopoulos A.G., Steinnes E. & Mikkelsen O. 2019. Trace elements and polychlorinated biphenyls (PCBs) in terrestrial compartments of Svalbard, Norwegian Arctic. Science of the Total Environment 685, 1127–1138, doi: 10.1016/j.scitotenv.2019.06.060.

Aunaas T., Baust J.G. & Zachariassen K.E. 1983. Ecophysiological studies on arthropods from Spitsbergen. Polar Research 1, 235–240, doi: 10.1111/j.1751-8369.1983.tb00739.x.

Ávila-Jiménez M.L. & Coulson S.J. 2011. Can snow depth be used to predict the distribution of the High Arctic aphid Acyrthosiphon svalbardicum (Hemiptera: Aphididae) on Spitsbergen? BMC Ecology 11, article no. 25, doi: 10.1186/1472-6785-11-25.

Baddeley J.A., Woodin S.J. & Alexander I.J. 1994. Effects of increased nitrogen and phosphorus availability on the photosynthesis and nutrient relations of three Arctic dwarf shrubs from Svalbard. Functional Ecology 8, 676–685, doi: 10.2307/2390226.

Bahrndorff S., Petersen S.O., Loeschcke V., Overgaard J. & Holmstrup M. 2007. Differences in cold and drought tolerance of High Arctic and sub-Arctic populations of Megaphorura arctica Tullberg 1876 (Onychiuridae: Collembola). Cryobiology 55, 315–323, doi: 10.1016/j.cryobiol.2007.09.001.

Bakker C. & Loonen M.J.J.E. 1998. The influence of goose grazing on the growth of Poa arctica: overestimation of overcompensation. Oikos 82, 459–466, doi: 10.2307/3546367.

Bartlett J., Westergaard K., Paulsen I.M.G., Wedegartner R., Wilken F. & Ravolainen V. 2021. Moving out of town? The status of alien plants in High-Arctic Svalbard, and a method for monitoring alien flora in high-risk, polar environment. Ecological Solutions and Evidence 2, e12056, doi: 10.1002/2688-8319.12056.

Beck P.S.A., Kalmbach E., Joly D., Stien A. & Nilsen L. 2005. Modelling local distribution of an Arctic dwarf shrub indicates an important role for remote sensing of snow cover. Remote Sensing of Environment 98, 110–121, doi: 10.1016/j.rse.2005.07.002.

Bekku Y.S., Nakatsubo T., Kume A. & Koizumi H. 2004. Soil microbial biomass, respiration rate, and temperature dependence on a successional glacier foreland in Ny-Ålesund, Svalbard. Arctic, Antarctic, and Alpine Research 36, 395–399, doi: 10.1657/1523-0430(2004)036[0395:SMBRRA]2.0.CO;2.

Bengtson S.-A., Fjellberg A. & Solhöy T. 1974. Abundance of tundra arthropods in Spitsbergen. Insect Systematics & Evolution 5, 137–142, doi: 10.1163/187631274X00164.

Berg T., Pfaffhuber K.A., Cole A.S., Engelsen O. & Steffen A. 2013. Ten-year trends in atmospheric mercury concentrations, meteorological effects and climate variables at Zeppelin, Ny-Ålesund. Atmospheric Chemistry and Physics 13, 6575–6586, doi: 10.5194/acp-13-6575-2013.

Bintanja R. & Andry O. 2017. Towards a rain-dominated Arctic. Nature Climate Change 7, 263–267, doi: 10.1038/nclimate3240.

Birkemoe T. & Sømme L. 1998. Population dynamics of two collembolan species in an Arctic tundra. Pedobiologia 42, 131–145.

Bischof K., Convey P., Duarte P., Gattuso J.-P., Granberg M.E., Hop H., Hoppe C., Jiménez C., Lisitsyn L., Martinez B., Roleda M.Y., Wiktor J. & Gabrielsen G.W. 2019. Kongsfjorden as harbinger of the future Arctic: knowns, unknowns and research priorities. In H. Hop & C. Wiencke (eds.): The ecosystem of Kongsfjorden, Svalbard. Pp. 537–562. Cham, Switzerland: Springer Nature.

Bishop C.M., Butler P.J., Egginton S., Elhaj A.J. & Gabrielsen G.W. 1995. Development of metabolic enzyme activity in locomotor and cardiac muscles of the migratory barnacle goose. American Journal of Physiology 269, R64–R72, doi: 10.1152/ajpregu.1995.269.1.R64.

Biskaborn B.K., Smith S.L., Noetzli J., Matthes H., Vieira G., Streletskiy D.A., Schoeneich P., Romanovsky V.E., Lewkowicz A.G., Abramov A., Allard M., Boike J., Cable W.L., Christiansen H.H., Delaloye R., Diekmann B., Drozdov D., Etzelmüller B., Grosse G., Guglielmin M., Ingeman-Nielsen T., Isaksen K., Ishikawa M., Johansson M., Johannsson H., Joo A., Kaverin D., Kholodov A., Konstantinov P., Kroger T., Lambiel C., Lanckman J.P., Luo D.L., Malkova G., Meiklejohn I., Moskalenko N., Oliva M., Phillips M., Ramos M., Sannel A.B.K., Sergeev D., Seybold C., Skryabin P., Vasiliev A., Wu Q.B., Yoshikawa K., Zheleznyak M. & Lantuit H. 2019. Permafrost is warming at a global scale. Nature Communications 10, article no. 264, doi: 10.1038/s41467-018-08240-4.

Bjerke J.W., Treharne R., Vikhamar-Schuler D., Karlsen S.R., Ravolainen V., Bokhorst S., Phoenix G.K., Bochenek Z. & Tommervik H. 2017. Understanding the drivers of extensive plant damage in boreal and Arctic ecosystems: insights from field surveys in the aftermath of damage. Science of the Total Environment 599, 1965–1976, doi: 10.1016/j.scitotenv.2017.05.050.

Blaalid R., Davey M.L., Kauserud H., Carlsen T., Halvorsen R., Hoiland K. & Eidesen P.B. 2014. Arctic root-associated fungal community composition reflects environmental filtering. Molecular Ecology 23, 649–659, doi: 10.1111/mec.12622.

Blais J.M., Kimpe L.E., McMahon D., Keatley B.E., Mattory M.L., Douglas M.S.V. & Smol J.P. 2005. Arctic seabirds transport marine-derived contaminants. Science 309, 445–445, doi: 10.1126/science.1112658.

Block W., Webb N.R., Coulson S., Hodkinson I.D. & Worland M.R. 1994. Thermal adaptation in the Arctic Collembolan Onychirus-Arcticus (Tullberg). Journal of Insect Physiology 40, 715–722, doi: 10.1016/0022-1910(94)90099-X.

Blok D., Weijers S., Welker J.M., Cooper E.J., Michelsen A., Loffler J. & Elberling B. 2015. Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in High-Arctic Svalbard tundra. Environmental Research Letters 10, article no. 044008, doi: 10.1088/1748-9326/10/4/044008.

Bogen J. & Bonsnes T.E. 2003. Erosion and sediment transport in High Arctic rivers, Svalbard. Polar Research 22, 175–189, doi: 10.1111/j.1751-8369.2003.tb00106.x.

Boheman C.H. 1865. Spitsbergens insekt-fauna. (Spitsbergen’s insect fauna.) Öfversigt af Kongliga Vetenskaps-Akademiens Förhandlingar 22, 563–577.

Boike J., Juszak I., Lange S., Chadburn S., Burke E., Overduin P.P., Roth K., Ippisch O., Bornemann N., Stern L., Gouttevin I., Hauber E. & Westermann S. 2018. A 20-year record (1998–2017) of permafrost, active layer and meteorological conditions at a High Arctic permafrost research site (Bayelva, Spitsbergen). Earth System Science Data 10, 355–390, doi: 10.5194/essd-10-355-2018.

Borchhardt N., Baum C., Mikhailyuk T. & Karsten U. 2017. Biological soil crusts of Arctic Svalbard-water availability as potential controlling factor for microalgal biodiversity. Frontiers in Microbiology 8, article no. 1485, doi: 10.3389/fmicb.2017.01485.

Børresen M. 2003. Miljøundersøkelse av forurensede lokaliteter, Ny-Ålesund. (Environmental survey of contaminated sites, Ny-Ålesund.) NGI Rapport 20021380-1. Oslo: Norwegian Geotechnical Institute.

Box J.E., Colgan W.T., Christensen T.R., Schmidt N.M., Lund M., Parmentier F.J.W., Brown R., Bhatt U.S., Euskirchen E.S., Romanovsky V.E., Walsh J.E., Overland J.E., Wang M.Y, Corell R.W., Meier W.N., Wouters B., Mernild S., Mard J., Pawlak J. & Olsen M.S. 2019. Key indicators of Arctic climate change: 1971–2017. Environmental Research Letters 14, article no. 045010, doi: 10.1088/1748-9326/aafc1b.

Bradley J.A., Anesio A.M. & Arndt S. 2017. Microbial and biogeochemical dynamics in glacier forefields are sensitive to century-scale climate and anthropogenic change. Frontiers in Earth Science 5, article no. 00026, doi: 10.3389/feart.2017.00026.

Brattbakk I. 1981. Kvadehuksletta, Brøggerhalvøya, Svalbard. Vegetasjonskart 1:10.000. (Kvadehuksletta, Brøggerhalvøya, Svalbard. Vegetation map 1:10 000.) Trondheim: Royal Norwegian Society of Sciences and Letters Museum, Botanical Department.

Breedveld G. & Skedsmo M. 2000. Tvillingvann, Ny-Ålesund, Svalbard. Supplerende undersøkelse av forurensede lokaliteter. (Tvillingvann, Ny-Ålesund, Svalbard. Supplementary survey of contaminated sites.) NGI Rapport 994070-3. Oslo: Norwegian Geotechnical Institute.

Breedveld G., Skedsmo M. & Otter R. 1999. Svalbard. Undersøkelse av forurensede lokaliteter Ny-Ålesund. (Svalbard. Survey of contaminated sites. Ny-Ålesund.) NGI Rapport 984096-3. Trondheim: Norwegian Geotechnical Institute.

Bring A., Fedorova I., Dibike Y., Hinzman L., Mard J., Mernild S.H., Prowse T., Semenova O., Stuefer S.L. & Woo M.K. 2016. Arctic terrestrial hydrology: a synthesis of processes, regional effects, and research challenges. Journal of Geophysical Research—Biogeosciences 121, 621–649, doi: 10.1002/2015jg003131.

Brossard T., Deruelle S. & Nimis P.L. 1984. An interdisciplinary approach to vegetation mapping on lichen-dominated systems in High-Arctic environment, Ny Ålesund (Svalbard). Phytocoenologia 12, 433–453, doi: 10.1127/phyto/12/1984/433.

Brossard T., Elvebakk A., Joly D. & Nilsen L. 2002. Modelling index of thermophily by means of a multi-source database on Brøggerhalvøya Peninsula (Svalbard). International Journal of Remote Sensing 23, 4683–4698, doi: 10.1080/01431160110113908.

Brossard T. & Joly D. 1994. Probability-models, remote-sensing and field observation: test for mapping some plant-distributions in the Kongsfjord area, Svalbard. Polar Research 13, 153–161, doi: 10.1111/j.1751-8369.1994.tb00445.x.

Brown L.E., Khamis K., Wilkes M., Blaen P., Brittain J.E., Carrivick J.L., Fell S., Friberg N., Fureder L., Gislason G.M., Hainie S., Hannah D.M., James W.H.M., Lencioni V., Olafsson J.S., Robinson C.T., Saltveit S.J., Thompson C. & Milner A.M. 2018. Functional diversity and community assembly of river invertebrates show globally consistent responses to decreasing glacier cover. Nature Ecology & Evolution 2, 325–333, doi: 10.1038/s41559-017-0426-x.

Brown R., Wikhamar Schuler D., Bulygina O., Derksen C., Luojus K., Mudryk L., Wang L., & Yang D. 2017. Arctic terrestrial snow cover. In AMAP (ed.): Snow, water, ice and permafrost in the Arctic (SWIPA) 2017. Pp. 26–55. Oslo: Arctic Monitoring and Assessment Programme.

Burkow I.C. & Kallenborn R. 2000. Sources and transport of persistent pollutants to the Arctic. Toxicology Letters 112, 87–92, doi: 10.1016/S0378-4274(99)00254-4.

CAFF (Conservation of Arctic Flora and Fauna) 2013. Arctic biodiversity assessment. Status and trends in Arctic biodiversity. Akureyri: CAFF.

Calizza E., Costantini M.L., Rossi D., Pasquali V., Careddu G. & Rossi L. 2016. Stable isotopes and digital elevation models to study nutrient inputs in High-Arctic lakes. Rendiconti Lincei-Scienze Fisiche e Naturali 27, 191–199, doi: 10.1007/s12210-016-0515-9.

Cannone N., Augusti A., Malfasi F., Pallozzi E., Calfapietra C. & Brugnoli E. 2016. The interaction of biotic and abiotic factors at multiple spatial scales affects the variability of CO2 fluxes in polar environments. Polar Biology 39, 1581–1596, doi: 10.1007/s00300-015-1883-9.

Cannone N., Guglielmin M. & Gerdol R. 2004. Relationships between vegetation patterns and periglacial landforms in northwestern Svalbard. Polar Biology 27, 562–571, doi: 10.1007/s00300-004-0622-4.

Cannone N., Ponti S., Christiansen H.H., Christensen T.R., Pirk N. & Guglielmin M. 2019. Effects of active layer seasonal dynamics and plant phenology on CO2 land–atmosphere fluxes at polygonal tundra in the High Arctic, Svalbard. Catena 174, 142–153, doi: 10.1016/j.catena.2018.11.013.

Chapin F.S. III, Berman M., Callaghan T.V., Convey P., Crépin A.-S., Danell K., Ducklow H., Forbes B., Kofinas G., McGuire A.D., Nuttall M., Virginia R., Young O., Zimov S., Christensen T., Godduhn A., Murphy E.J., Wall D. & Zockler C. 2005. Polar systems. In R. Hassan et al. (eds.): Ecosystems and human well-being. Vol. 1. Current states and trends. Findings of the Condition and Trends Working Group. Millennium ecosystem assessment: conditions and trends. Pp. 717–743. Washington, DC: Island Press.

Chapin F.S. III, Shaver G.R., Giblin A.E., Nadelhoffer K.J. & Laundre J.A. 1995. Responses of Arctic tundra to experimental and observed changes in climate. Ecology 76, 694–711, doi: 10.2307/1939337.

Chertoprud M.V., Palatov D.M. & Dimante-Deimantovica I. 2017. Macrobenthic communities in water bodies and streams of Svalbard, Norway. Journal of Natural History 51, 2809–2825, doi: 10.1080/00222933.2017.1395092.

Chin K.S., Lento J., Culp J.M., Lacelle D. & Kokelj S.V. 2016. Permafrost thaw and intense thermokarst activity decreases abundance of stream benthic macroinvertebrates. Global Change Biology 22, 2715–2728, doi: 10.1111/gcb.13225.

Christensen T., Barry T., Taylor J.J., Doyle M., Aronsson M., Braa J., Burns C., Coon C., Coulson S., Cuyler C., Falk K., Heidmarsson S., Kulmala P., Lawler J., MacNearney D., Ravolainen V., Smith P.A., Soloviev M. & Schmidt N.M. 2020. Developing a circumpolar programme for the monitoring of Arctic terrestrial biodiversity. Ambio 49, 655–665, doi: 10.1007/s13280-019-01311-w.

Christiansen H.H., Gilbert G.L., Demidov N., Guglielmin M., Isaksen K., Osuch M. & Boike J. 2019. Permafrost thermal snapshot and active-layer thickness in Svalbard 2016–2017. In Orr et al. (eds.): SESS report 2018. Pp. 26–47. Longyearbyen: Svalbard Integrated Arctic Earth Observing System.

Christoffersen K.S., Amsinck S.L., Landkildehus F., Lauridsen T.L. & Jeppesen E. 2008. Lake flora and fauna in relation to ice-melt, water temperature and chemistry at Zackenberg. Advances in Ecological Research 40, 371–389, doi: 10.1016/S0065-2504(07)00016-5.

Convey P., Abbandonato H., Bergan F., Beumer L.T., Biersma E.M., Brathen V.S., D’Imperio L., Jensen C.K., Nilsen S., Paquin K., Stenkewitz U., Svoen M.E., Winkler J., Müller E. & Coulson S.J. 2015. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates. Journal of Thermal Biology 54, 111–117, doi: 10.1016/j.jtherbio.2014.07.009.

Convey P., Coulson S.J., Worland M.R. & Sjöblom A. 2018. The importance of understanding annual and shorter-term temperature patterns and variation in the surface levels of polar soils for terrestrial biota. Polar Biology 41, 1587–1605, doi: 10.1007/s00300-018-2299-0.

Cooper E.J. 2004. Out of sight, out of mind: thermal acclimation of root respiration in Arctic Ranunculus. Arctic, Antarctic and Alpine Research 36, 307–312, doi: 10.1657/1523-0430(2004)036[0308:OOSOOM]2.0.CO;2.

Cooper E.J. 2006. Reindeer grazing reduces seed and propagule bank in the High Arctic. Canadian Journal of Botany 84, 1740–1752, doi: 10.1139/b06-127.

Cooper E.J. 2014. Warmer shorter winters disrupt Arctic terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics 45, 271–295, doi: 10.1146/annurev-ecolsys-120213-091620.

Cooper E.J., Alsos I.G., Hagen D., Smith F.M., Coulson S.J. & Hodkinson I.D. 2004. Plant recruitment in the High Arctic: seed bank and seedling emergence on Svalbard. Journal of Vegetation Science 15, 115–124, doi: 10.1658/1100-9233(2004)015[0115:Pritha]2.0.Co;2.

Cooper E.J., Dullinger S. & Semenchuk P. 2011. Late snowmelt delays plant development and results in lower reproductive success in the High Arctic. Plant Science 180, 157–167, doi: 10.1016/j.plantsci.2010.09.005.

Cooper E.J., Jónsdóttir I.S. & Pahud A. 2006. Grazing by captive barnacle geese affects graminoid growth and productivity on Svalbard. Memoirs of the National Institute for Polar Research, Special Issue 59, 1–15.

Cooper E.J., Little C.J., Pilsbacher A.K. & Mörsdorf M.A. 2019. Disappearing green: shrubs decline and bryophytes increase with nine years of increased snow accumulation in the High Arctic. Journal of Vegetation Science 30, 857–867, doi: 10.1111/jvs.12793.

Cooper E.J., Smith F.M. & Wookey P.A. 2001. Increased rainfall ameliorates the negative effect of trampling on the growth of High Arctic forage lichens. Symbiosis 31, 153–171.

Cooper E.J. & Wookey P.A. 2001. Field measurements of the growth rates of forage lichens, and the implications of grazing by Svalbard Reindeer. Symbiosis 31, 173–186.

Cooper E.J. & Wookey P.A. 2003. Floral herbivory of Dryas octopetala by Svalbard reindeer. Arctic, Antarctic, and Alpine Research 35, 369–376, doi: 10.1657/1523-0430(2003)035[0369:fhodob];2.

Cottier F., Tverberg V., Inall M., Svendsen H., Nilsen F. & Griffiths C. 2005. Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjorden, Svalbard. Journal of Geophysical Research—Oceans 110, C12005, doi: 10.1029/2004jc002757.

Coulson S., Gabrielsen G.W., Hübner C. & Loonen M.J.J.E. 2010. Terrestrial Ecosystems—a flagship programme for Ny-Ålesund. Concluding document from workshop 6–8 May 2009. Norwegian Polar Institute Brief Report Series 20. Tromsø: Norwegian Polar Institute.

Coulson S.J. 2015. The alien terrestrial invertebrate fauna of the High Arctic archipelago of Svalbard: potential implications for the native flora and fauna. Polar Research 34, article no. 27364, doi: 10.3402/polar.v34.27364.

Coulson S.J., Convey P., Aakra K., Aarvik L., Avila-Jimenez M.L., Babenko A., Biersma E.M., Bostrom S., Brittain J.E., Carlsson A.M., Christoffersen K., De Smet W.H., Ekrem T., Fjellberg A., Fureder L., Gustafsson D., Gwiazdowicz D.J., Hansen L.O., Holmstrup M., Hulle M., Kaczmarek L., Kolicka M., Kuklinr V., Lakka H.K., Lebedeva N., Makarova O., Maraldo K., Melekhina E., Odegaard F., Pilskog H.E., Simon J.C., Sohlenius B., Solhoy T., Soli G., Stur E., Tanasevitch A., Taskaeva A., Velle G., Zawierucha K. & Zmudczynska-Skarbek K. 2014. The terrestrial and freshwater invertebrate biodiversity of the archipelagoes of the Barents Sea, Svalbard, Franz Josef Land and Novaya Zemlya. Soil Biology and Biochemistry 68, 440–470, doi: 10.1016/j.soilbio.2013.10.006.

Coulson S.J., Hodkinson I.D. & Webb N.R. 2003a. Aerial dispersal of invertebrates over a High-Arctic glacier foreland: Midtre Lovénbreen, Svalbard. Polar Biology 26, 530–537, doi: 10.1007/s00300-003-0516-x.

Coulson S.J., Hodkinson I.D. & Webb N.R. 2003b. Microscale distribution patterns in High Arctic soil microarthropod communities: the influence of plant species within the vegetation mosaic. Ecography 26, 801–809, doi: 10.1111/j.0906-7590.2003.03646.x.

Coulson S.J., Hodkinson I.D., Webb N.R., Block W., Bale J.S., Strathdee A.T., Worland M.R. & Wooley C. 1996. Effects of experimental temperature elevation on High-Arctic soil microarthropod populations. Polar Biology 16, 147–153, doi: 10.1007/BF02390435.

Coulson S.J., Hodkinson I.D., Webb N.R. & Convey P. 2003. A High-Arctic population of Pyla fusca (Lepidoptera, Pyralidae) on Svalbard? Polar Biology 26, 283–285, doi: 10.1007/s00300-002-0475-7.

Coulson S.J., Hodkinson I.D., Webb N.R. & Harrison J.A. 2002. Survival of terrestrial soil-dwelling arthropods on and in seawater: implications for trans-oceanic dispersal. Functional Ecology 16, 353–356, doi: 10.1046/j.1365-2435.2002.00636.x.

Coulson S.J., Hodkinson I.D., Webb N.R., Mikkola K., Harrison J.A. & Pedgley D.E. 2002. Aerial colonization of High Arctic islands by invertebrates: the diamondback moth Plutella xylostella (Lepidoptera: Yponomeutidae) as a potential indicator species. Diversity and Distributions 8, 327–334, doi: 10.1046/j.1472-4642.2002.00157.x.

Coulson S.J., Leinaas H.P., Ims R.A. & Søvik G. 2000. Experimental manipulation of the winter surface ice layer: the effects on a High Arctic soil microarthropod community. Ecography 23, 299–306, doi: 10.1034/j.1600-0587.2000.d01-1638.x.

Crawford R.M.M., Chapman H.M., Abbott R.J. & Balfour J. 1993. Potential impact of climatic warming on Arctic vegetation. Flora 188, 367–381, doi: 10.1016/S0367-2530(17)32286-7

Culp J.M., Goedkoop W., Lento J., Christoffersen K.S., Frenzel S., Guðbergsson G., Liljaniemi P., Sandøy S., Svoboda M., Brittain J., Hammar J., Jacobsen D., Jones B., Juillet C., Kahlert M., Kidd K., Luiker E., Olafsson J., Power M., Rautio M., Ritcey A., Striegl R., Svenning M., Sweetman J. & Whitman M. 2012. The Arctic Freshwater Biodiversity Monitoring Plan. CAFF Monitoring Series Report 7. Akureyri: Conservation of Arctic Flora and Fauna International Secretariat.

Dabert M., Coulson S.J., Gwiazdowicz D.J., Moe B., Hanssen S.A., Biersma E.M., Pilskog H.E. & Dabert J. 2015. Differences in speciation progress in feather mites (Analgoidea) inhabiting the same host: the case of Zachvatkinia and Alloptes living on Arctic and long-tailed skuas. Experimental and Applied Acarology 65, 163–179, doi: 10.1007/s10493-014-9856-1.

Dallmann W. & Elvevold S. 2015. Bedrock geology. In W.K. Dallmann (ed.): Geoscience atlas of Svalbard. Norwegian Polar Institute Report Series 148. Pp. 133–174. Tromsø: Norwegian Polar Institute.

Damsholt K. 2013. The liverworts of Greenland. Lund: Nordic Bryological Society.

Daniel J., Lennart N., Thierry B. & Arve E. 2010. Plants as bioindicator for temperature interpolation purposes: analyzing spatial correlation between botany based index of thermophily and integrated temperature characteristics. Ecological Indicators 10, 990–998, doi: 10.1016/j.ecolind.2010.02.007.

David T.D. & Krishnan K.P. 2017. Recent variability in the Atlantic water intrusion and water masses in Kongsfjorden, an Arctic fjord. Polar Science 11, 30–41, doi: 10.1016/j.polar.2016.11.004.

de Jong M.E., Wetherbee R. & Loonen M.J.J.E. 2019. Effects of fleas on nest success of Arctic barnacle geese: experimentally testing the mechanism. Journal of Avian Biology 50, e01944, doi: 10.1111/jav.01944.

Dekhtyareva A., Holmen K., Maturilli M., Hermansen O. & Graversen R. 2018. Effect of seasonal mesoscale and microscale meteorological conditions in Ny-Ålesund on results of monitoring of long-range transported pollution. Polar Research 37, article no. 1508196, doi: 10.1080/17518369.2018.1508196.

Descamps S. 2013. Winter temperature affects the prevalence of ticks in an Arctic seabird. PLoS One 8, e65374, doi:10.1371/journal.pone.0065374.

Descamps S., Aars J., Fuglei E., Kovacs K.M., Lydersen C., Pavlova O., Pedersen Å.Ø., Ravolainen V. & Strøm H. 2017. Climate change impacts on wildlife in a High Arctic archipelago—Svalbard, Norway. Global Change Biology 23, 490–502, doi: 10.1111/gcb.13381.

Descamps S. & Strøm H.. 2021. As the Arctic becomes boreal: ongoing shifts in a High-Arctic seabird community. Ecology 102, e03485, doi:10.1002/ecy.3485.

Dietze M.C., Fox A., Beck-Johnson L.M., Betancourt J.L., Hooten M.B., Jarnevich C.S., Keitt T.H., Kenney M.A., Laney C.M., Larsen L.G., Loescher H.W., Lunch C.K., Pijanowski B.C., Randerson J.T., Read E.K., Tredennick A.T., Vargas R., Weathers K.C. & White E.P. 2018. Iterative near-term ecological forecasting: needs, opportunities, and challenges. Proceedings of the National Academy of Sciences of the United States of America 115, 1424–1432, doi: 10.1073/pnas.1710231115.

Dimante-Deimantovica I., Walseng B., Chertoprud E. & Novichkova A. 2018. New and previously known species of Copepoda and Cladocera (Crustacea) from Svalbard, Norway—who are they and where do they come from? Fauna Norvegica 38, 18–29, doi: 10.5324/fn.v38i0.2502.

Dolnik O.V. & Loonen M. 2007. Isospora plectrophenaxia n. sp (Apicomplexa: Eimeriidae), a new coccidian parasite found in snow bunting (Plectrophenax nivalis) nestlings on Spitsbergen. Parasitology Research 101, 1617–1619, doi: 10.1007/s00436-007-0703-8.

Dormann C.F. & Brooker R.W. 2002. Facilitation and competition in the High Arctic: the importance of the experimental approach. Acta Oecologica 23, 297–301, doi: 10.1016/s1146-609x(02)01158-x.

Doveri M., Lelli M., Baneschi I., Raco B., Trifirò S., Calvi E. & Provenzale A. 2019. Glacial drainges [sic] and transfer of freshwater to the Artcic [sic] Ocean in Kongsfjorden (Svalbard). Geophysical Research Abstracts 21, EGU2019–16518.

Duran J., Rodriguez A., Heidmarsson S., Lehmann J.R.K., del Moral A., Garrido-Benavent I., & De los Rios A. 2021. Cryptogamic cover determines soil attributes and functioning in polar terrestrial ecosystems. Science of the Total Environment 762, article no. 143169, doi: 10.1016/j.scitotenv.2020.143169.

Edwards A., Anesio A.M., Rassner S.M., Sattler B., Hubbard B., Perkins W.T., Young M. & Griffith G.W. 2011. Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME Journal 5, 150–160, doi: 10.1038/ismej.2010.100.

Ellis-Evans J.C., Galchenko V., Laybourn-Parry J., Mylnikov A.P. & Petz W. 2001. Environmental characteristics and microbial plankton activity of freshwater environments at Kongsfjorden, Spitsbergen (Svalbard). Archiv für Hydrobiologie 152, 609–632, doi: 10.1127/archiv-hydrobiol/152/2001/609.

Elster J., Kviderova J., Hajek T., Laska K. & Simek M. 2012. Impact of warming on Nostoc colonies (cyanobacteria) in a wet hummock meadow, Spitsbergen. Polish Polar Research 33, 395–420, doi: 10.2478/v10183-012-0021-4.

Elster J., Svoboda J. & Kanda H. 2001. Controlled environment platform used in temperature manipulation study of a stream periphyton in the Ny-Ålesund, Svalbard. Nova Hedvigia 123, 63–75.

Elvebakk A. 1994. A survey of plant associations and alliances from Svalbard. Journal of Vegetation Science 5, 791–802, doi: 10.2307/3236194.

Elvebakk A. & Prestrud P. 1996. A catalogue of Svalbard plants, fungi, algae and cyanobacteria. Oslo: Norwegian Polar Institute.

Estiarte M. & Penuelas J. 2015. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Global Change Biology 21, 1005–1017, doi: 10.1111/gcb.12804.

Evenset A., Carroll J., Christensen G.N., Kallenborn R., Gregor D. & Gabrielsen G.W. 2007. Seabird guano is an efficient conveyer of persistent organic pollutants (POPs) to Arctic lake ecosystems. Environmental Science & Technology 41, 1173–1179, doi: 10.1021/es0621142.

Falk J.M., Schmidt N.M., Christensen T.R. & Strom L. 2015. Large herbivore grazing affects the vegetation structure and greenhouse gas balance in a High Arctic mire. Environmental Research Letters 10, article no. 045001, doi: 10.1088/1748-9326/10/4/045001.

Fivez L. 2014. Biogeochemical cycling in wetlands. Goose influences. Antwerp: University of Antwerp.

Fjelldal M.A., Layton-Matthews K., Lee A.M., Grotan V., Loonen M. & Hansen B.B. 2020. High-Arctic family planning: earlier spring onset advances age at first reproduction in barnacle geese. Biology Letters 16, article no. 20200075, doi: 10.1098/rsbl.2020.0075.

Førland E.J., Benestad R., Hanssen-Bauer I., Haugen J.E. & Skaugen T.E. 2011. Temperature and precipitation development at Svalbard 1900–2100. Advances in Meterology 2011, article no. 893790, doi: 10.1155/2011/893790.

Foster A., Jones D.L., Cooper E.J. & Roberts P. 2016. Freeze–thaw cycles have minimal effect on the mineralisation of low molecular weight, dissolved organic carbon in Arctic soils. Polar Biology 39, 2387–2401, doi: 10.1007/s00300-016-1914-1.

Frafjord K. 1992. Denning behavior and activity of Arctic fox Alopex lagopus pups: implications of food availability. Polar Biology 12, 707–712, doi: 10.1007/BF00238871.

Fuglei E. 2000. Physiological adaptations of the Arctic fox to High Arctic conditions. PhD thesis, University of Oslo.

Fuglei E., Øritsland N.A. & Prestrud P. 2003. Local variation in Arctic fox abundance on Svalbard, Norway. Polar Biology 26, 93–98, doi: 10.1007/s00300-002-0458-8.

Fuglei E. & Tarroux A. 2019. Arctic fox dispersal from Svalbard to Canada: one female’s long run across sea ice. Polar Research 38, article no. 3512, doi: 10.33265/polar.v38.3512.

Fujiyoshi M., Yoshitake S., Watanabe K., Murota K., Tsuchiya Y., Uchida M. & Nakatsubo T. 2011. Successional changes in ectomycorrhizal fungi associated with the polar willow Salix polaris in a deglaciated area in the High Arctic, Svalbard. Polar Biology 34, 667–673, doi: 10.1007/s00300-010-0922-9.

Gabrielsen G.W. 1984. Do not disturb nesting eiders! Norsk Polarinstitutt Årbok 1984, 21–24.

Gabrielsen G.W. 1987. Reaksjoner på menneskelige forstyrrelser hos ærfugl, svalbardrype og krykkje. (Common eider, Svalbard ptarmigan and black-legged kittiwake reactions to human disturbance.) Vår Fuglefauna 10, 152–158.

Gabrielsen G.W., Blix A.S. & Ursin H. 1985. Orienting and freezing responses in incubating ptarmigan hens. Physiology & Behavior 34, 925–934, doi: 10.1016/0031-9384(85)90015-0.

Gabrielsen G.W., Hop H., Hübner C., Kallenborn R., Weslawski J.C. & Wiencke C. 2009. The Kongsfjorden System—a flagship programme for Ny-Ålesund. A concluding document from Workshop 28–31 March, 2008. Norwegian Polar Institute Brief Report Series 11. Tromsø: Norwegian Polar Institute.

Gabrielsen G.W., Mehlum F., Karlsen H.E., Andresen Ø. & Parker H. 1991. Energy cost during incubation and thermoregulation in female common eider (Somateria mollissima). In F. Mehlum (ed.): Eider studies in Svalbard. Skrifter 195. Pp. 51–62. Oslo: Norwegian Polar Institute.

Gabrielsen G.W., Nilsen S.Ø. & Nilsen S. 2020. Vadefugler i Kongsfjorden. Rapport til Svalbards Miljøfond. Prosjektnummer 14/35. (Shorebirds of Kongsfjorden. Report for the Svalbard Environmental Fund. Project number 14/35.) Tromsø: Norwegian Polar Institute.

Gabrielsen G.W. & Smith E.N. 1995. Physiological responses to disturbance in animals. In R.L. Knight & K.J. Gutzwiller (eds.): Wildlife and recreationists. Pp.137–153. Washington, DC: Island Press.

Geisen S., Tveit A.T., Clark I.M., Richter A., Svenning M.M., Bonkowski M. & Urich T. 2015. Metatranscriptomic census of active protists in soils. ISME Journal 9, 2178–2190, doi: 10.1038/ismej.2015.30.

Geml J., Timling I., Robinson C.H., Lennon N., Nusbaum H.C., Brochmann C., Noordeloos M.E. & Taylor D.L. 2012. An Arctic community of symbiotic fungi assembled by long-distance dispersers: phylogenetic diversity of ectomycorrhizal basidiomycetes in Svalbard based on soil and sporocarp DNA. Journal of Biogeography 39, 74–88, doi: 10.1111/j.1365-2699.2011.02588.x.

Gillespie M.A.K., Alfredsson M., Barrio I.C., Bowden J., Convey P., Coulson S.J., Culler L.E., Dahl M.T., Daly K.M., Koponen S., Loboda S., Marusik Y., Sandström J.P., Sikes D.S., Slowik J. & Høye T.T. 2020. Circumpolar terrestrial arthropod monitoring: a review of ongoing activities, opportunities and challenges, with a focus on spiders. Ambio 49, 704–717, doi: 10.1007/s13280-019-01185-y.

Gillespie M.A.K., Alfredsson M., Barrio I.C., Bowden J.J., Convey P., Culler L.E., Coulson S.J., Krogh P.H., Koltz A.M., Koponen S., Loboda S., Marusik Y., Sandström J.P., Sikes D.S. & Høye T.T. 2020. Status and trends of terrestrial arthropod abundance and diversity in the North Atlantic region of the Arctic. Ambio 49, 718–731, doi: 10.1007/s13280-019-01162-5.

Gillespie M.A.K., Baggesen N. & Cooper E.J. 2016. High Arctic flowering phenology and plant–pollinator interactions in response to delayed snow melt and simulated warming. Environmental Research Letters 11, article no. 115006, doi: 10.1088/1748-9326/11/11/115006.

Gillespie M.A.K., Jonsdottir I.S., Hodkinson I.D. & Cooper E.J. 2013. Aphid–willow interactions in a High Arctic ecosystem: responses to raised temperature and goose disturbance. Global Change Biology 19, 3698–3708, doi: 10.1111/gcb.12284.

González-Pleiter M., Velázquez D., Edo C., Carretero O., Gago J., Barón-Sola Á., Hernández L.E., Yousef I., Quesada A., Leganés F., Rosal R. & Fernández-Piñas F. 2020. Fibers spreading worldwide: microplastics and other anthropogenic litter in an Arctic freshwater lake. Science of the Total Environment 722, article no. 137904, doi: 10.1016/j.scitotenv.2020.

Gouttevin I., Krinner G., Ciais P., Polcher J. & Legout C. 2012. Multi-scale validation of a new soil freezing scheme for a land–surface model with physically-based hydrology. The Cryosphere 6, 407–430, doi: 10.5194/tc-6-407-2012.

Graef C., Hestnes A.G., Svenning M.M. & Frenzel P. 2011. The active methanotrophic community in a wetland from the High Arctic. Environmental Microbiology Reports 3, 466–472, doi: 10.1111/j.1758-2229.2010.00237.x.

Graham R.M., Cohen L., Petty A.A., Boisvert L.N., Rinke A., Hudson S.R., Nicolaus M. & Granskog M.A. 2017. Increasing frequency and duration of Arctic winter warming events. Geophysical Research Letters 44, 6974–6983, doi: 10.1002/2017gl073395.

Granberg M.E., Ask A. & Gabrielsen G.W. 2017. Local contamination on Svalbard—overview and suggestions for remediation actions. Norwegian Polar Institute Brief Report Series 44. Tromsø: Norwegian Polar Institute.

Gulseth O. & Nilssen K. 2001. Life-history traits of charr, Salvelinus alpinus, from a High Arctic watercourse on Svalbard. Arctic 54, 1–11, doi: 10.14430/arctic758.

Gwiazdowicz D.J., Zawieja B., Olejniczak I., Skubala P., Gdula A.K. & Coulson S.J. 2020. Changing microarthropod communities in front of a receding glacier in the High Arctic. Insects 11, article no. 226, doi: 10.3390/insects11040226.

Hagen D., Vistad O.I., Eide N.E., Flyen A.C. & Fangel K. 2012. Managing visitor sites in Svalbard: from a precautionary approach towards knowledge-based management. Polar Research 31, article no. 18432, doi: 10.3402/polar.v31i0.18432.

Hågvar S. 1971. Field observations on the ecology of a snow insect, Chinoea araneoides Dalm. (Dipt., Tipulidae). Norsk Entomologisk Tidsskrift 18, 33–37.

Halbach K., Mikkelsen O., Berg T. & Steinnes E. 2017. The presence of mercury and other trace metals in surface soils in the Norwegian Arctic. Chemosphere 188, 567–574, doi: 10.1016/j.chemosphere.2017.09.012.

Haldorsen S., Heim M. & van der Ploeg M. 2012. Impacts of climate change on groundwater in permafrost areas—case study from Svalbard, Norway. In H. Treidel et al. (eds.): Climate change effects on groundwater resources: a global synthesis of findings and recommendations. Pp. 323–340. Wallington, UK: CRC Press.

Hallanger I.G. & Gabrielsen G.W. 2018. Plastic in the European Arctic. Norwegian Polar Institute Brief Report Series 45. Tromsø: Norwegian Polar Instutute.

Halvorsen G. & Gullestad N. 1976. Freshwater Crustacea in some areas of Svalbard. Archiv für Hydrobiologie 78, 383–395.

Hampton S.E., Galloway A.W.E., Powers S.M., Ozersky T., Woo K.H., Batt R.D., Labou S.G., O’Reilly C.M., Sharma S., Lottig N.R., Stanley E.H., North R.L., Stockwell J.D., Adrian R., Weyhenmeyer G.A., Arvola L., Baulch H.M., Bertani I., Bowman L.L., Carey C.C., Catalan J., Colom-Montero W., Domine L.M., Felip M., Granados I., Gries C., Grossart H.P., Haberman J., Haldna M., Hayden B., Higgins S.N., Jolley J.C., Kahilainen K.K., Kaup E., Kehoe M.J., MacIntyre S., Mackay A.W., Mariash H.L., McKay R.M., Nixdorf B., Noges P., Noges T., Palmer M., Pierson D.C., Post D.M., Pruett M.J., Rautio M., Read J.S., Roberts S.L., Rucker J., Sadro S., Silow E.A., Smith D.E., Sterner R.W., Swann G.E.A., Timofeyev M.A., Toro M., Twiss M.R., Vogt R.J., Watson S.B., Whiteford E.J. & Xenopoulos M.A. 2017. Ecology under lake ice. Ecology Letters 20, 98–111, doi: 10.1111/ele.12699.

Hansen B.B. & Aanes R. 2012. Kelp and seaweed feeding by High-Arctic wild reindeer under extreme winter conditions. Polar Research 31, article no. 17258, doi: 10.3402/polar.v31i0.17258.

Hansen B.B. & Aanes R. 2015. Habituation to humans in a predator-free wild ungulate. Polar Biology 38, 145–151, doi: 10.1007/s00300-014-1572-0.

Hansen B.B., Aanes R., Herfindal I., Kohler J. & Sæther B.-E. 2011. Climate, icing, and wild Arctic reindeer: past relationships and future prospects. Ecology 92, 1917–1923, doi: 10.1890/11-0095.1.

Hansen B.B., Aanes R., Herfindal I., Sæther B.-E. & Henriksen S. 2009. Winter habitat-space use in a large Arctic herbivore facing contrasting forage abundance. Polar Biology 32, 971–984, doi: 10.1007/s00300-009-0597-2.

Hansen B.B., Gamelon M., Albon S.D., Lee A.M., Stien A., Irvine R.J., Saether B.E., Loe L.E., Ropstad E., Veiberg V. & Grotan V. 2019. More frequent extreme climate events stabilize reindeer population dynamics. Nature Communications 10, article no. 1616, doi: 10.1038/s41467-019-09332-5.

Hansen B.B., Grøtan V., Aanes R., Sæther B.-E., Stien A., Fuglei E., Ims R.A., Yoccoz N.G. & Pedersen Å.Ø. 2013. Climate events synchronize the dynamics of a resident vertebrate community in the High Arctic. Science 339, 313–315, doi: 10.1126/science.1226766.

Hansen B.B., Henriksen S., Aanes R. & Sæther B.-E. 2007. Ungulate impact on vegetation in a two-level trophic system. Polar Biology 30, 549–558, doi: 10.1007/s00300-006-0212-8.

Hansen B.B., Isaksen K., Benestad R.E., Kohler J., Pedersen Å.Ø., Loe L.E., Coulson S.J., Larsen J.O. & Varpe Ø. 2014. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic. Environmental Research Letters 9, article no. 114021, doi: 10.1088/1748-9326/9/11/114021.

Hansen B.B., Pedersen Å.Ø., Peeters B., Le Moullec M., Albon S.D., Herfindal I., Sæther B.-E., Grotan V. & Aanes R. 2019. Spatial heterogeneity in climate change effects decouples the long-term dynamics of wild reindeer populations in the High Arctic. Global Change Biology 25, 3656–3668, doi: 10.1111/gcb.14761.

Hanssen-Bauer I., Førland E.J., Hisdal H., Mayer S., Sandø A.B. & Sorteberg A. 2019. Climate in Svalbard 2100—a knowledge base for climate adaptation. NCCS Report 1/2019. Oslo: Norwegian Meteorological Institute.

Hassel K., Zechmeister H. & Prestø T. 2014. Mosses (Bryophyta) and liverworts (Marchantiophyta) of the Zackenberg Valley, northeast Greenland. Lindbergia 37, 66–84.

Hawes T.C. 2008. Aeolian fallout on recently deglaciated terrain in the High Arctic. Polar Biology 31, 295–301, doi: 10.1007/s00300-007-0357-0.

Hayashi K., Shimomura Y., Morimoto S., Uchida M., Nakatsubo T. & Hayatsu M. 2016. Characteristics of ammonia oxidation potentials and ammonia oxidizers in mineral soil under Salix polaris–moss vegetation in Ny-Ålesund, Svalbard. Polar Biology 39, 725–741, doi: 10.1007/s00300-015-1829-2.

Hayashi K., Tanabe Y., Ono K., Loonen M.J.J.E., Asano M., Fujitani H., Tokida T., Uchida M. & Hayatsu M. 2018. Seabird-affected taluses are denitrification hotspots and potential N2O emitters in the High Arctic. Scientific Reports 8, article no. 17261, doi: 10.1038/s41598-018-35669-w.

Headley A.D. 1996. Heavy metal concentrations in peat profiles from the High Arctic. Science of the Total Environment 177, 105–111, doi: 10.1016/0048-9697(95)04867-7.

Henden J.A., Ims R.A., Fuglei E. & Pedersen A.O. 2017. Changed Arctic–alpine food web interactions under rapid climate warming: implication for ptarmigan research. Wildlife Biology 2017, article no. wlb.00240, doi: 10.2981/wlb.00240.

Hertzberg K. 1997. Migration of Collembola in a patchy environment. Pedobiologia 41, 494–505.

Hertzberg K. & Leinaas H.P. 1998. Drought stress as a mortality factor in two pairs of sympatric species of Collembola at Spitsbergen, Svalbard. Polar Biology 19, 302–306, doi: 10.1007/s003000050250.

Hessen D.O., Borgeraas J. & Orbaek J.B. 2002. Responses in pigmentation and anti-oxidant expression in Arctic Daphnia along gradients of DOC and UV exposure. Journal of Plankton Research 24, 1009–1017, doi: 10.1093/plankt/24.10.1009.

Hessen D.O. & Leu E. 2006. Trophic transfer and trophic modification of fatty acids in High Arctic lakes. Freshwater Biology 51, 1987–1998, doi: 10.1111/j.1365-2427.2006.01619.x.

Hessen D.O., Tombre I.M., van Geest G. & Alfsnes K. 2017. Global change and ecosystem connectivity: how geese link fields of central Europe to eutrophication of Arctic freshwaters. Ambio 46, 40–47, doi: 10.1007/s13280-016-0802-9.

Hitchcock D.J., Andersen T., Varpe Ø., Loonen M.J.J.E., Warner N.A., Herzke D., Tombre I.M., Griffin L.R., Shimmings P. & Borga K. 2019. Potential effect of migration strategy on pollutant occurrence in eggs of Arctic breeding barnacle geese (Branta leucopsis). Environmental Science and Technology 53, 5427–5435, doi: 10.1021/acs.est.9b00014.

Hodkinson I.D. 2003. Metabolic cold adaptation in arthropods: a smaller-scale perspective. Functional Ecology 17, 562–567, doi: 10.1046/j.1365-2435.2003.07431.x.

Hodkinson I.D., Bird J.M., Cooper E.J. & Coulson S.J. 2004. The sexual morphs of the endemic Svalbard aphid Acyrthosiphon calvulus (Ossiannilsson), with notes on species biology. Norwegian Journal of Entomology 51, 131–135.

Hodkinson I.D., Coulson S.J., Harrison J. & Webb N.R. 2001. What a wonderful web they weave: spiders, nutrient capture and early ecosystem development in the High Arctic—some counter-intuitive ideas on community assembly. Oikos 95, 349–352, doi: 10.1034/j.1600-0706.2001.950217.x.

Hodkinson I.D., Coulson S.J. & Webb N.R. 2003. Community assembly along proglacial chronosequences in the High Arctic: vegetation and soil development in north-west Svalbard. Journal of Ecology 91, 651–663, doi: 10.1046/j.1365-2745.2003.00786.x.

Hodkinson I.D., Coulson S.J. & Webb N.R. 2004. Invertebrate community assembly along proglacial chronosequences in the High Arctic. Journal of Animal Ecology 73, 556–568, doi: 10.1111/j.0021-8790.2004.00829.x.

Hodkinson I.D., Coulson S.J., Webb N.R., Block W., Strathdee A.T., Bale J.S. & Worland M.R. 1996. Temperature and the biomass of flying midges (Diptera: Chironomidae) in the High Arctic. Oikos 75, 241–248, doi: 10.2307/3546247.

Hodson A.J., Mumford P.N., Kohler J. & Wynn P.M. 2005. The High Arctic glacial ecosystem: new insights from nutrient budgets. Biogeochemistry 72, 233–256, doi: 10.1007/s10533-004-0362-0.

Hodson A., Roberts T.J., Engvall A.C., Holmen K. & Mumford P. 2010. Glacier ecosystem response to episodic nitrogen enrichment in Svalbard, European High Arctic. Biogeochemistry 98, 171–184, doi: 10.1007/s10533-009-9384-y.

Høj L., Olsen R.A. & Torsvik V.L. 2005. Archaeal communities in High Arctic wetlands at Spitsbergen, Norway (78°N) as characterized by 16S rRNA gene fingerprinting. Fems Microbiology Ecology 53, 89–101, doi: 10.1016/j.femsec.2005.01.004.

Høj L., Olsen R.A. & Torsvik V.L. 2008. Effects of temperature on the diversity and community structure of known methanogenic groups and other archaea in High Arctic peat. ISME Journal 2, 37–48, doi: 10.1038/ismej.2007.84.

Høj L., Rusten M., Haugen L.E., Olsen R.A. & Torsvik V.L. 2006. Effects of water regime on archaeal community composition in Arctic soils. Environmental Microbiology 8, 984–996, doi: 10.1111/j.1462-2920.2006.00982.x.

Hop H., Pearson T., Hegseth E.N., Kovacs K.M., Wiencke C., Kwasniewski S., Eiane K., Mehlum F., Gulliksen B., Wlodarska-Kowalczuk M., Lydersen C., Weslawski J.M., Cochrane S., Gabrielsen G.W., Leakey R.J.G., Lønne O.J., Zajaczkowski M., Falk-Petersen S., Kendall M., Wängberg S.A., Bischof K., Voronkov A.Y., Kovaltchouk N.A., Wiktor J., Poltermann M., di Prisco G., Papucci C. & Gerland S. 2002. The marine ecosystem of Kongsfjorden, Svalbard. Polar Research 21, 167–208, doi: 10.3402/polar.v21i1.6480.

Hoshino T., Tojo M., Kanda H. & Tronsmo A.M. 2011. Ecological role of fungal infections of moss carpet in Svalbard. Memoirs of National Institute of Polar Research, Special Issue 54, 507–513.

Hoshino T., Xiao N. & Tkachenko O.B. 2009. Cold adaptation in the phytopathogenic fungi causing snow molds. Mycoscience 50, 26–38, doi: 10.1007/s10267-008-0452-2.

Hovinen J.E.H., Welcker J., Descamps S., Strøm H., Jerstad K., Berge J. & Steen H. 2014. Climate warming decreases the survival of the little auk (Alle alle), a High Arctic avian predator. Ecology and Evolution 4, 3127–3138, doi: 10.1002/ece3.1160.

Høye T.T., Loboda S., Koltz A.M., Gillespie M.A.K., Bowden J.J. & Schmidt N.M. 2021. Nonlinear trends in abundance and diversity and complex responses to climate change in Arctic arthropods. Proceedings of the National Academy of Sciences of the United States of America 118, e2002557117, doi: 10.1073/pnas.2002557117.

Hugelius G., Tarnocai C., Broll G., Canadell J.G., Kuhry P. & Swanson D.K. 2013. The northern circumpolar soil carbon database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost re
How to Cite
Pedersen Å.Ø., ConveyP., NewshamK., MosbacherJ., FugleiE., RavolainenV., HansenB., JensenT., AugustiA., BiersmaE., CooperE., CoulsonS., GabrielsenG., GalletJ., KarstenU., KristiansenS., SvenningM., TveitA., UchidaM., BaneschiI., CalizzaE., CannoneN., de GoedeE., DoveriM., ElsterJ., GiamberiniM., HayashiK., LangS., LeeY., NakatsuboT., PasqualiV., PaulsenI., PedersenC., PengF., ProvenzaleA., PushkarevaE., SandströmC., SkletV., StachA., TojoM., TytgatB., TømmervikH., VelazquezD., VerleyenE., WelkerJ., YaoY.-F., & LoonenM. (2022). Five decades of terrestrial and freshwater research at Ny-Ålesund, Svalbard. Polar Research, 41.
Review Articles