The Billefjorden Fault Zone north of Spitsbergen: a major terrane boundary?

  • Jean-Baptiste Koehl Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway; Department of Geosciences, UiT The Arctic University of Norway, Tromsø, Norway; Research Centre for Arctic Petroleum Exploration, UiT The Arctic University of Norway, Tromsø, Norway; and Centre for Arctic Gas Hydrate, Environment and Climate, UiT The Arctic University of Norway, Tromsø, Norway
  • Lis Allaart Department of Geosciences, UiT The Arctic University of Norway, Tromsø, Norway; Department of Geoscience, Århus University, Århus, Denmark; and Department of Arctic Geology, University Centre in Svalbard, Longyearbyen, Norway
Keywords: Fault, basement terranes, seismic facies, Svalbard, tectonic

Abstract

The Billefjorden Fault Zone is a major terrane boundary in the Norwegian Arctic. The fault separates basement rocks of Svalbard’s north-eastern and north-western terranes that recorded discrete Precambrian tectonothermal histories and were accreted, intensely deformed and metamorphosed during the Caledonian Orogeny. Although the fault represents a major, crustal-scale tectonic boundary, its northward extent is not well constrained. The present short contribution addresses this issue and presents new seismic mapping of structures and rock units north of Wijdefjorden, where the Billefjorden Fault Zone may continue. This study shows that there is no evidence for major faulting of the top-basement reflection, and therefore, that the Billefjorden Fault Zone may die out within Wijdefjorden–Austfjorden, step ≥ 20 km laterally, or be invisible on the presented seismic data. Seismic data also suggest that Caledonian basement rocks in Ny-Friesland (north-eastern terrane) are not significantly different from basement rocks below the Devonian Graben in Andrée Land (north-western terrane). Potential implications include the absence of a major terrane boundary in northern Spitsbergen.

Downloads

Download data is not yet available.

References


Allaart L., Müller J., Shomacher A., Rydningen T.A., Håkansson L., Kjellman S.E., Mollenhauer G. & Forwick M. 2020. Late Quaternary glacier and sea-ice history of northern Wijdefjorden, Svalbard. Boreas 49, 417–437, doi: 10.1111/bor.12435.


Bælum K. & Braathen A. 2012. Along-strike changes in fault array and rift basin geometry of the Carboniferous Billefjorden Trough, Svalbard, Norway. Tectonophysics 546–547, 38–55, doi: 10.1016/j.tecto.2012.04.009.


Balashov Y.A., Larionov A.N., Gannibal L.F., Sirotkin A.N., Tebenkov A.M., Ryüngenen G.I. & Ohta Y. 1993. An early proterozoic U–Pb zircon age from an Eskolabreen formation gneiss in southern Ny Friesland, Spitsbergen. Polar Research 12, 147–152, doi: 10.1111/j.1751-8369.1993.tb00429.x.


Braathen A., Bælum K., Maher H.D. Jr. & Buckley S.J. 2011. Growth of extensional faults and folds during deposition of an evaporite-dominated half-graben basin; the Carboniferous Billefjorden Trough, Svalbard. Norsk Geologisk Tidsskrift 91, 137–160.


Braathen A., Osmundsen P.T., Maher H.D. Jr. & Ganerød M. 2018. The Keisarhjelmen detachment records Silurian–Devonian extensional collapse in northern Svalbard. Terra Nova 30, 34–39, doi: 10.1111/ter.12305.


Czuba W. 2007. 2.5-D seismic tomographic modelling of the crustal structure of north-western Spitsbergen based on deep seismic soundings. Marine Geophysical Researches 28, 213–233, doi: 10.1007/s.11001-007-9028-3.


Czuba W., Ritzmann O., Nishimura Y., Grad M., Mjelde R., Guterch A. & Jokat W. 2004. Crustal structure of the continent–ocean transition zone along two deep seismic transects in north-western Spitsbergen. Polish Polar Research 25, 205–221.


Czuba W., Ritzmann O., Nishimura Y., Grad M., Mjelde R., Guterch A. & Jokat W. 2005. Crustal structure of northern Spitsbergen along the deep seismic transect between the Molloy Deep and Nordaustlandet. Geophysical Journal International 161, 347–364, doi: 10.1111/j.1365-246X.2005.02593.x.


Dallmann W.K. 2015. Geoscience atlas of Svalbard. Norsk Polarinstitutt Rapportserie 148. Tromsø: Norwegian Polar Institute.


Dallmann W.K. & Piepjohn K. 2018. Comment on “The Keisarhjelmen detachment records Silurian–Devonian extensional collapse in Northern Svalbard.” Terra Nova 30, 319–321, doi: 10.1111/ter.12335.


Dallmann W.K. & Piepjohn K. 2020. The architecture of Svalbard’s Devonian basins and the Svalbardian Orogenic Event. Norges Geologiske Undersøkelse Bulletin, Special Publications 15. Trondheim: Geological Survey of Norway.


Dallmeyer R.D., Peucat J.J. & Ohta Y. 1990. Tectonothermal evolution of contrasting metamorphic complexes in northwest Spitsbergen (Biskayarhalvøya): evidence from 40Ar/39Ar and Rb-Sr mineral ages. Geological Society of America Bulletin 102, 653–663.


Eiken O. 1992. An outline of the northwestern Svalbard continental margin. In T.O. Vorren et al. (eds.): Arctic geology and petroleum potential. Vol. 2. Pp. 619–629. Amsterdam: Elsevier.


Fleming W.L.S. & Edmonds J.M. 1941. Hecla Hoek rocks of New Friesland (Spitsbergen). Geological Magazine 78, 405–428.


Friend P.F., Harland W.B., Rogers D.A., Snape I. & Thornley R.S. 1997. Late Silurian and early Devonian stratigraphy and probable strike-slip tectonics in northwestern Spitsbergen. Geological Magazine 134, 459–479.


Gee D.G., Björklund L. & Stølen L.-K. 1994. Early Proterozoic basement in Ny Friesland—implications for the Caledonian tectonics of Svalbard. Tectonophysics 231, 171–182, doi: 10.1016/0040-1951(94)90128-7.


Gee D.G. & Hjelle A. 1966. On the crystalline rocks of north-west Spitsbergen. Norsk Polarinstitutt Årbok 1964, 31–46.


Gee D.G. & Page L.M. 1994. Caledonian Terrane Assembly on Svalbard: new evidence from 40Ar/39Ar Dating in Ny Friesland. American Journal of Science 294, 1166–1186, doi: 10.2475/ajs.294.9.1166.


Gee D.G., Schouenborg B., Peucat J.-J., Abakoumov S.A., Krasil’scikov A.A. & Tebenkov A. 1992. New evidence of basement in the Svalbard Caledonides: early Proterozoic zircon ages from Ny-Friesland granites. Norwegian Journal of Geology 72, 181–190.


Geissler W.H. & Jokat W. 2004. A geophysical study of the northern Svalbard continental margin. Geophysical Journal International 158, 50–66, doi: 10.1111/j.1365-246X.2004.02315.x.


Geissler W.H., Jokat W. & Brekke H. 2011. The Yermak Plateau in the Arctic Ocean in the light of reflection seismic data–implication for its tectonic and sedimentary evolution. Geophysical Journal International 187, 1334–1362, doi: 10.1111/j.1365-246X.2011.05197.x.


Gjelsvik T. 1979. The Hecla Hoek ridge of the Devonian Graben between Liefdefjorden and Holtefonna, Spitsbergen. Norsk Polarinstitutt Skrifter 167, 63–71.


Haremo P., Andresen A., Dypvik H., Nagy J., Elverøi A., Eikeland T.A. & Johansen H. 1990. Structural development along the Billefjorden Fault Zone in the area between Kjellströmdalen and Adventdalen/Sassendalen, central Spitsbergen. Polar Research, 8, 195–216, doi: 10.3402/polar.v8i2.6812.


Harland W.B., Cutbill L.J., Friend P.F., Gobbett D.J., Holliday D.W., Maton P.I., Parker J.R. & Wallis R.H. 1974. The Billefjorden Fault Zone, Spitsbergen: the long history of a major tectonic lineament. Norsk Polarinstitutt Skrifter 161. Oslo: Norwegian Polar Institute.


Harland W.B., Hambrey M.J. & Waddams P. 1993. Vendian geology of Svalbard. Norsk Polarinstitutt Skrifter 193. Oslo: Norwegian Polar Institute.


Harland W.B., Scott R.A., Auckland K.A. & Snape I. 1992. The Ny Friesland Orogen, Spitsbergen. Geological Magazine 129, 679–708.


Jakobsson M., Mayer L., Coackley B., Dowdeswell J.A., Forbes S., Fridman B., Hodnesdal H., Noormets R., Pedersen R., Rebesco M., Schenke H.W., Zarayskaya Y., Accettella D., Armstrong A., Anderson R.M., Bienhoff P., Camerlenghi A., Church I., Edwards M., Gardner J.V., Hall J.K., Hell B., Hestvik O., Kristoffersen Y., Marcussen C., Mohammad R., Mosher D., Nghiem S.V., Pedrosa M.T., Travaglini P.G. & Weatherall P. 2012. The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0. Geophysical Research Letters 39, L12609, doi: 10.1029/2012GL052219.


Ji S. & Long C. 2006. Seismic reflection response of folded structures and implications for the interpretation of deep seismic reflection profiles. Journal of Structural Geology 28, 1380–1387, doi: 10.1016/j.jsg.2006.05.003.


Jokat W., Geissler W.H. & Voss M. 2008. Basement structure of the north-western Yermak Plateau. Geophysical Research Letters 35, L05309, doi:10.1029/2007GL032892.


Kowalewski W., Rudowski S. & Zalewski S.M. 1990. Seismoacoustic studies within Wijdefjorden, Spitsbergen. Polish Polar Research 11, 287–300.


Kubiak A. 2020. Structural analysis along seismic profiles trough late-Paleozoic deposits in Billefjorden and Sassenfjorden, Svalbard and their relation to the Billefjorden Fault Zone. Master’s thesis, UiT The Arctic University of Norway, Tromsø.


Labrousse L., Elvevold S., Lepvrier C. & Agard P. 2008. Structural analysis of high-pressure metamorphic rocks of Svalbard: reconstructing the early stages of the Caledonian orogeny. Tectonics 27, TC5003, doi: 10.1029/2007TC002249.


Lamar D.L. & Douglass D.N. 1995. Geology of an area astride the Billefjorden Fault Zone, northern Dicksonland, Spitsbergen, Svalbard. Norsk Polarinstitutt Skrifter 197. Oslo: Norwegian Polar Institute.


Lamar D.L., Reed W.E. & Douglass D.N. 1986. Billefjorden Fault Zone, Spitsbergen: is it part of a major Late Devonian transform? Geological Society of America 97, 1083–1088, doi: 0.1130/0016-7606(1986)97<1083:BFZSII>2.0.CO;2.


Major H. & Nagy J. 1972. Geology of the Adventdalen map area. Norsk Polarinstitutt Skrifter 138. Oslo: Norwegian Polar Institute.


Manby G.M. 1990. The petrology of the Harkerbreen Group, Ny Friesland, Svalbard: protoliths and tectonic significance. Geological Magazine 127, 129–146, doi: 10.1017/S0016756800013820.


Manby G.M. & Lyberis N. 1992. Tectonic evolution of the Devonian Basin of northern Svalbard. Norsk Geologisk Tidsskrift 72, 7–19.


Manby G.M., Lyberis N., Chorowicz J. & Thiedig F. 1994. Post-Caledonian tectonics along the Billefjorden Fault Zone, Svalbard, and implications for the Arctic region. Geological Society of America Bulletin 105, 201–216.


Mazur S., Czerny J., Majka J., Manecki M., Holm D., Smyrak A. & Wypych A. 2009. A strike-slip terrane boundary in Wedel Jarlsberg Land, Svalbard, and its bearing on correlations of SW Spitsbergen with the Pearya terrane and Timanide belt. Journal of the Geological Society, London 166, 529–544, doi: 10.1144/0016-76492008-106.


McCann A.J. 2000. Deformation of the Old Red Sandstone of NW Spitsbergen; links to the Ellesmerian and Caledonian orogenies. In P.F. Friends & B.P.J. Williams (eds.): New perspectives on the Old Red Sandstone. Pp. 567–584. London: Geological Society of London.


Michalski K., Lewandowski M. & Manby G. 2012. New palaeomagnetic, petrographic and 40Ar/39Ar data to test palaeogeographic reconstructions of Caledonide Svalbard. Geological Magazine 149, 696–721, doi: 10.1017/S0016756811000835.


Murascov L.G. & Mokin J.I. 1979. Stratigraphic subdivision of the Devonian deposits of Spitsbergen. Norsk Polarinstitutt Skrifter 167, 249–261.


Nergård A.P. 2020. Analyse av paleozoiske forkastninger og deres relasjon til devon-karbon avsetninger langs Sassenfjorden og Tempelfjorden, Svalbard, basert på multiverktøy land og fjord-datasett. (Analysis of Palaeozoic faults and their relationship to Devonian–Carboniferous deposits along Sassenfjorden and Tempelfjorden, Svalbard, based on multitool land and fjord data set.) Master’s thesis, UiT The Arctic University of Norway, Tromsø.


Nilsen T.H. & Sylvester A.G. 1995. Strike-slip basins. In C. Busby & R.V. Ingersoll (eds.): Tectonics of sedimentary basins. Pp. 425–457. Blackwell Science: Cambridge, MA.


Piepjohn K. 2000. The Svalbardian–Ellesmerian deformation of the Old Red Sandstone and the pre-Devonian basement in NW Spitsbergen (Svalbard). In P.F. Friend & B.P.J. Williams (eds.): New perspectives on the Old Red Sandstone. Pp. 585–601. London: Geological Society of London Special Publications.


Ritzmann O. & Jokat W. 2003. Crustal structure of northwestern Svalbard and the adjacent Yermak Plateau: evidence for Oligocene detachment tectonics and non-volcanic breakup. Geophysical Journal International 152, 139–159, doi: 10.1046/j.1365-246X.2003.01836.x.


Roy J.-C.L.G. 2007. La géologie du fossé des Vieux Grès Rouges du Spitzberg (archipel du Svalbard, territoire de l’Arctique)—synthèse stratigraphique, consequences paléoenvironnementales et tectoniques synsédimentaires. (Geology of the Old Red Sandstone graben in Spitsbergen [Svalbard Archipelago, Arctic]—stratigraphic synthesis, palaeoenvironmental consequences and synsedimentary tectonics.) PhD thesis, Pierre and Marie Curie University, Paris.


Skilbrei J.R. 1992. Preliminary interpretation of aeromagnetic data from Spitsbergen, Svalbard Archipelago (76°–79°N): implications for structure of the basement. Marine Geology 106, 53–68.


Smyrak-Sikora A.A., Johannessen E.P., Olaussen S., Sandal G. & Braathen A. 2018. Sedimentary architecture during Carboniferous rift initiation—the arid Billefjorden Trough, Svalbard. Journal of the Geological Society, London 176, 225–252, doi: 10.1144/jgs2018-100.


Sylvester A.G. 1988. Strike-slip faults. Geological Society of America Bulletin 100, 1666–1703, doi: 10.1130/0016-7606(1988)100<1666:SSF>2.3.CO;2.


Witt-Nilsson P., Gee D.G. & Hellman F.J. 1998. Tectonostratigraphy of the Caledonian Atomfjella Antiform of northern Ny Friesland, Svalbard. Norsk Geologisk Tidsskrift 78, 67–80.
Published
2021-10-13
How to Cite
Koehl J.-B., & Allaart L. (2021). The Billefjorden Fault Zone north of Spitsbergen: a major terrane boundary?. Polar Research, 40. https://doi.org/10.33265/polar.v40.7668
Section
Research Articles