North Atlantic Oscillation seesaw effect in leaf morphological records from dwarf birch shrubs in Greenland and Finland

Keywords: Palaeoecology, Betula nana, epidermal cell morphology, climate, Arctic, herbarium


The North Atlantic Oscillation (NAO) determines wind speed and direction, seasonal heat, moisture transport, storm tracks, cloudiness and sea-ice cover through atmospheric mass balance shifts between the Arctic and the subtropical Atlantic. The NAO is characterized by the typical, yet insufficiently understood, seesaw pattern of warmer winter and spring temperatures over Scandinavia and cooler temperatures over Greenland during the positive phase of the NAO, and vice versa during the negative phase. We tested the potential to reconstruct NAO variation beyond the meteorological record through the application of a microphenological proxy. We measured the Undulation Index (UI) in Betula nana epidermal cells from herbarium leaf samples and fossil peat fragments dating back to 1865—exceeding most meteorological records in the Arctic—to estimate imprints of spring thermal properties and NAO in Greenland and Finland. We found negative relations between Greenland UI and late winter, spring and early summer NAO, and mostly positive, but not significant, relations between Finland UI and NAO in years with pronounced NAO expression. The direction of the UI response in this common circumpolar species is, therefore, likely in line with the NAO seesaw effect, with leaf development response to NAO fluctuations in northern Europe opposing the response in Greenland and vice versa. Increased knowledge of the UI response to climate may contribute to understanding ecological properties of key Arctic species, whilst additionally providing a proxy for NAO dynamics.


Download data is not yet available.


Aanes R., Sæther B.-E., Smith F.M., Cooper E.J., Wookey P.A. & Øritsland N.A. 2002. The Arctic Oscillation predicts effects of climate change in two trophic levels in a High-Arctic ecosystem. Ecology Letters 5, 445–453, doi: 10.1046/j.1461-0248.2002.00340.x.

Berner L.T., Massey R., Jantz P., Forbes B.C., Macias-Fauria M., Myers-Smith I., Kumpula T., Gauthier G., Andreu-Hayles L., Gaglioti B.V., Burns P., Zetterberg P., D’Arrigo R. & Goetz S.J. 2020. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nature Communications 11, article no. 4621, doi: 10.1038/s41467-020-18479-5.

Bintanja R., van der Wiel K., Linden E.C., van der Reusen J., Bogerd L., Krikken F. & Selten F.M. 2020. Strong future increases in Arctic precipitation variability linked to poleward moisture transport. Science Advances 6, eaax6869, doi: 10.1126/sciadv.aax6869.

Box J.E., Colgan W.T., Christensen T.R., Schmidt N.M., Lund M., Parmentier F.J.W., Brown R., Bhatt U.S., Euskirchen E.S., Romanovsky, V.E., Walsh J.E., Overland J.E., Wang M., Corell R.W., Meier W.N., Wouters B., Mernild S., Mård J., Pawlak J. & Olsen M.S. 2019. Key indicators of Arctic climate change: 1971–2017. Environmental Research Letters 14, article no. 045010, doi: 10.1088/1748-9326/aafc1b.

Buchwal A., Sullivan P.F., Macias-Fauria M., Post E., Myers-Smith I.H., Stroeve J.C., Blok D., Tape K.D., Forbes B.C., Ropars P., Lévesque E., Elberling B., Angers-Blondin S., Boyle J.S., Boudreau S., Boulanger-Lapointe N., Gamm C., Hallinger M., Rachlewicz G., Young A., Zetterberg P. & Welker J.M. 2020. Divergence of Arctic shrub growth associated with sea ice decline. Proceedings of the National Academy of Sciences 117, 33334–33344, doi: 10.1073/pnas.2013311117.

Chmielewski F.M. & Rotzer T. 2001. Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology 108, 101–112, doi: 10.1016/S0168-1923(01)00233-7.

Cook B.I., Smith T.M. & Mann M.E. 2005. The North Atlantic Oscillation and regional phenology prediction over Europe. Global Change Biology 11, 919–926, doi: 10.1111/j.1365-2486.2005.00960.x.

Cook E.R., D’Arrigo R.D. & Mann M.E. 2002. A well-verified, multiproxy reconstruction of the winter North Atlantic Oscillation index since A.D. 1400. Journal of Climate 15, 1754–1764, doi: 10.1175/1520-0442(2002)015<1754:AWVMRO>2.0.CO;2.

Cullen H.M., D’Arrigo R.D., Cook E.R. & Mann M.E. 2001. Multiproxy reconstructions of the North Atlantic Oscillation. Paleoceanography 16, 27–39, doi: 10.1029/1999PA000434.

D’Odorico P., Yoo J.C. & Jaeger S. 2002. Changing seasons: an effect of the North Atlantic Oscillation? Journal of Climate 15, 435–445, doi: 10.1175/1520-0442(2002)015<0435:CSAEOT>2.0.CO;2.

Ercan F.E.Z., De Boer H.J. & Wagner-Cremer F. 2020. A growing degree day inference model based on mountain birch leaf cuticle analysis over a latitudinal gradient in Fennoscandia. Holocene 30, 344–349, doi: 10.1177/0959683619865605.

Ercan F.E.Z., Mikola J., Silfver T., Myller K., Vainio E., Słowińska S., Słowiński M., Lamentowicz M., Blok D. & Wagner-Cremer F. 2021. Effects of experimental warming on Betula nana epidermal cell growth tested over its maximum climatological growth range. PLoS One 16, e0251625, doi: 10.1371/journal.pone.0251625.

Finsinger W., Schoning K., Hicks S., Lücke A., Goslar T., Wagner-Cremer F. & Hyyppä H. 2013. Climate change during the past 1000 years: a high-temporal-resolution multiproxy record from a mire in northern Finland. Journal of Quaternary Science 28, 152–164, doi: 10.1002/jqs.2598.

Fischer H., Meissner K.J., Mix A.C., Abram N.J., Austermann J., Brovkin V., Capron E., Colombaroli D., Daniau A., Dyez K.A., Felis T., Finkelstein S.A., Jaccard S.L., McClymont E.L., Rovere A., Sutter J., Wolff E.W., Affolter S., Bakker P. & Zhou L. 2018. Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nature Geoscience 11, 474–485, doi: 10.1038/s41561-018-0146-0.

Flynn D.F.B. & Wolkovich E.M. 2018. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytologist 219, 1353–1362, doi: 10.1111/nph.15232.

Francon L., Corona C., Till-Bottraud I., Choler P., Carlson B.Z., Charrier G., Améglio T., Morin S., Eckert N., Roussel E., Lopez-Saez J. & Stoffel M. 2020. Assessing the effects of earlier snow melt-out on alpine shrub growth: the sooner the better? Ecological Indicators 115, article no. 106455, doi: 10.1016/j.ecolind.2020.106455.

Hanna E. & Cropper T.E. 2017. North Atlantic Oscillation. Oxford Research Encyclopedia of Climate Science 27, 536–539, doi: 10.1093/acrefore/9780190228620.013.22.

Higgens R.F., Pries C.H. & Virginia R.A. 2020. Trade-offs between wood and leaf production in Arctic shrubs along a temperature and moisture gradient in west Greenland. Ecosystems 24, 652–666, doi: 10.1007/s10021-020-00541-4.

Hobbie J.E., Shaver G.R., Rastetter E.B., Cherry J.E., Goetz S.J., Guay K.C., Gould W.A. & Kling G.W. 2017. Ecosystem responses to climate change at a Low Arctic and a High Arctic long-term research site. Ambio 46, 160–173, doi: 10.1007/s13280-016-0870-x.

Hollesen J., Buchwal A., Rachlewicz G., Hansen B.U., Hansen M.O., Stecher O. & Elberling, B. 2015. Winter warming as an important co-driver for Betula nana growth in western Greenland during the past century. Global Change Biology 21, 2410–2423, doi: 10.1111/gcb.12913.

Hurrell J.W. 1995. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269, 676–679, doi: 10.1126/science.269.5224.676.

Hurrell J.W., Kushnir Y., Ottersen G. & Visbeck, M. 2003. An overview of the North Atlantic Oscillation. Geophysical Monograph Series 134, 1–35, doi: 10.1029/134GM01.

Jones P.D., Jonsson T. & Wheeler D. 1997. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. International Journal of Climatology 17, 1433–1450, doi: 10.1002/(sici)1097-0088(19971115)17:13<1433::aid-joc203>;2-g.

Koenigk T., Caian M., Nikulin G. & Schimanke S. 2016. Regional Arctic sea ice variations as predictor for winter climate conditions. Climate Dynamics 46, 317–337, doi: 10.1007/s00382-015-2586-1.

Kruse S., Wieczorek M., Jeltsch F. & Herzschuh U. 2016. Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix. Ecological Modelling 338, 101–121, doi: 10.1016/j.ecolmodel.2016.08.003.

Kürschner W.M. 1997. The anatomical diversity of recent and fossil leaves of the durmast oak (Quercus petraea Lieblein/Q. pseudocastanea Goeppert)—implications for their use as biosensors of paleoatmospheric CO2 levels. Review of Palaeobotany and Palynology 96, 1–30, doi: 10.1016/S0034-6667(96)00051-6.

Li J., Fan K. & Xu Z. 2016. Links between the late wintertime North Atlantic Oscillation and springtime vegetation growth over Eurasia. Climate Dynamics 46, 987–1000, doi: 10.1007/s00382-015-2627-9.

Marcos R., Torralba V., Cortesi N., González N., Soret A. & Doblas-Reyes F.J. 2016. Characterization of near surface wind speed and temperature statistical distributions. Earth Sciences Technical Report BSC-ESS-2016-006. Barcelona: Barcelona Supercomputing Center.

Meredith M., Sommerkorn M., Cassotta S., Derksen C., Ekaykin A., Hollowed A., Kofinas G., Mackintosh A., Melbourne-Thomas J., Muelbert M.M.C., Ottersen G., Pritchard H. & Schuur E.A.G. 2019. Polar regions. In H.-O. Pörtner et al. (eds.): IPCC special report on the ocean and cryosphere in a changing climate. Accessed on the internet at on 12 November 2021.

Ottersen G., Planque B., Belgrano A., Post E., Reid P.C. & Stenseth N.C. 2001. Ecological effects of the North Atlantic Oscillation. Oecologia 128, 1–14, doi: 10.1007/s004420100655.

Park H.S., Kim S.J., Stewart A.L., Son S.W. & Seo K.H. 2019. Mid-Holocene Northern Hemisphere warming driven by Arctic amplification. Science Advances 5, eaax8203, doi: 10.1126/sciadv.aax8203.

Polyakov I.V., Bekryaev R.V., Alekseev G.V., Bhatt U.S., Colony R.L., Johnson M.A., Maskshtas A.P. & Walsh, D. 2003. Variability and trends of air temperature and pressure in the maritime Arctic, 1875–2000. Journal of Climate 16, 2067–2077, doi: 10.1175/1520-0442(2003)016<2067:VATOAT>2.0.CO;2. 2021. QGIS Geographic Information System. QGIS Association. Accessed on the internet at on 19 January 2021.

R Core Team 2020. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Rayback S.A. & Henry G.H.R. 2006. Reconstruction of summer temperature for a Canadian High Arctic site from retrospective analysis of the dwarf shrub, Cassiope tetragona. Arctic, Antarctic, and Alpine Research 38, 228–238, doi: 10.1657/1523-0430(2006)38[228:ROSTFA]2.0.CO;2.

Rohde R., Muller R.A., Jacobsen R., Muller E. & Wickham C. 2013. A new estimate of the average Earth surface land temperature spanning 1753 to 2011. Geoinformatics & Geostatistics: An Overview 1(1), doi: 10.4172/2327-4581.1000101

Rohde R., Muller R., Jacobsen R., Perlmutter S. & Mosher S. 2013. Berkeley Earth temperature averaging process. Geoinformatics & Geostatistics: An Overview 01(02), doi: 10.4172/2327-4581.1000103.

Sakashita W., Yokoyama Y., Miyahara H., Aze T., Obrochta S.P., Ohyama M. & Yonenobu H. 2018. Assessment of northeastern Japan tree-ring oxygen isotopes for reconstructing early summer hydroclimate and spring Arctic Oscillation. Geochemistry, Geophysics, Geosystems 19, 3520–3528, doi: 10.1029/2018GC007634.

Schmutz C., Luterbacher J., Gyalistras D., Xoplaki E. & Wanner H. 2000. Can we trust proxy-based NAO index reconstructions? Geophysical Research Letters 27, 1135–1138, doi: 10.1029/1999GL011045.

Steinthorsdottir M. & Wagner-Cremer F. 2019. Hot summers ahead ? Multi-decadal spring season warming precedes sudden summer temperature rise in pre-anthropogenic climate change summer temperature rise in pre-anthropogenic climate change. GFF 141, 175–180, doi: 10.1080/11035897.2019.1655791.

Trouet V. & Van Oldenborgh G.J. 2013. KNMI Climate Explorer: a web-based research tool for high-resolution paleoclimatology. Tree-Ring Research 69, 3–13, doi: 10.3959/1536-1098-69.1.3.

Uvo C.B. 2003. Analysis and regionalization of northern European winter precipitation based on its relationship with the North Atlantic Oscillation. International Journal of Climatology 23, 1185–1194, doi: 10.1002/joc.930.

van Loon H. & Rogers, J.C. 1978. The seesaw in winter temperatures between Greenland and northern Europe. Part I: general description. Monthly Weather Review 106, 296–310, doi: 10.1175/1520-0493(1978)1062.0.CO;2.

Vinther B.M., Johnsen S.J., Andersen K.K., Clausen H.B. & Hansen A.W. 2003. NAO signal recorded in the stable isotopes of Greenland ice cores. Geophysical Research Letters 30, article no. 1387, doi: 10.1029/2002GL016193.

Visbeck M.H., Hurrell J.W., Polvani L. & Cullen H.M. 2001. The North Atlantic Oscillation: past, present, and future. Proceedings of the National Academy of Sciences of the United States of America 98, 12876–12877, doi: 10.1073/pnas.231391598.

Wagner-Cremer F., Finsinger W. & Moberg A. 2010. Tracing growing degree-day changes in the cuticle morphology of Betula nana leaves: a new micro-phenological palaeo-proxy. Journal of Quaternary Science 25, 1008–1017, doi: 10.1002/jqs.1388.

Walker D.A., Raynolds M.K., Daniëls F.J., Einarsson E., Elvebakk A. & Gould W.A. 2005. The circumpolar Arctic vegetation map. Journal of Vegetation Science 16, 267–282, doi: 10.1658/1100-9233(2005)016[0267:TCAVM]2.0.CO;2.

Wang J. & Ikeda M. 2000. Arctic Oscillation and Arctic Sea-Ice Oscillation. Geophysical Research Letters 27, 1287–1290, doi: 10.1029/1999GL002389.

Weijers S., Beckers N. & Löffler J. 2018. Recent spring warming limits near-treeline deciduous and evergreen alpine dwarf shrub growth. Ecosphere 9, e02328, doi: 10.1002/ecs2.2328.

Weijers S., Broekman R. & Rozema J. 2010. Dendrochronology in the High Arctic: July air temperatures reconstructed from annual shoot length growth of the circumarctic dwarf shrub Cassiope tetragona. Quaternary Science Reviews 29, 3831–3842, doi: 10.1016/j.quascirev.2010.09.003.

Weijers S., Buchwal A., Blok D., Löffler J. & Elberling B. 2017. High Arctic summer warming tracked by increased Cassiope tetragona growth in the world’s northernmost polar desert. Global Change Biology 23, 5006–5020, doi: 10.1111/gcb.13747.

Weijers S., Wagner-Cremer F., Sass-Klaassen U., Broekman R. & Rozema J. 2013. Reconstructing High Arctic growing season intensity from shoot length growth of a dwarf shrub. The Holocene 23, 721–731, doi: 10.1177/0959683612470178.

Welker J.M., Rayback S. & Henry G.H.R. 2005. Arctic and North Atlantic Oscillation phase changes are recorded in the isotopes (δ18O and δ13C) of Cassiope tetragona plants. Global Change Biology 11, 997–1002, doi: 10.1111/j.1365-2486.2005.00961.x.

Wipf S., Stoeckli V. & Bebi P. 2009. Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Climatic Change 94, 105–121, doi: 10.1007/s10584-009-9546-x.

Xu L., Myneni R.B., Chapin F.S. III, Callaghan T.V., Pinzon J.E., Tucker C.J., Zhu Z., Bi J., Ciais P., Tømmervik H., Euskirchen E.S., Forbes B.C., Piao S. L., Anderson B.T., Ganguly S., Nemani R.R., Goetz S.J., Beck P.S. Bunn A.G. & Stroeve J.C. 2013. Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change 3, 581–586, doi: 10.1038/nclimate1836.

Young G.H.F., McCarroll D., Loader N.J., Gagen M.H., Kirchhefer A.J. & Demmler J.C. 2012. Changes in atmospheric circulation and the Arctic Oscillation preserved within a millennial length reconstruction of summer cloud cover from northern Fennoscandia. Climate Dynamics 39, 495–507, doi: 10.1007/s00382-011-1246-3.

Young N.E., Schweinsberg A.D., Briner J.P. & Schaefer J.M. 2015. Glacier maxima in Baffin Bay during the Medieval Warm Period coeval with Norse settlement. Science Advances 1, e1500806, doi: 10.1126/sciadv.1500806.
How to Cite
Ercan, F. E., Blok, D., Weijers, S., Odé, A., & Wagner-Cremer, F. (2021). North Atlantic Oscillation seesaw effect in leaf morphological records from dwarf birch shrubs in Greenland and Finland. Polar Research, 40.
Research Articles