Carbon exchange and primary production in a High-Arctic peatland in Svalbard

  • Takayuki Nakatsubo Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; and Hiroshima University Museum, Higashi-Hiroshima, Japan
  • Mitsuru Hirota School of Life and Environmental Science, University of Tsukuba, Tsukuba, Japan
  • Ayaka W. Kishimoto-Mo Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
  • Noriko Oura Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
  • Masaki Uchida National Institute of Polar Research, Tachikawa, Japan; and School of Multidisciplinary Sciences, The Graduate University for Advanced Studies, Tachikawa, Japan
Keywords: Carbon flow, moss tundra, photosynthesis, respiration, Calliergon richardsonii, Tomenthypnum nitens


Moss tundra with a thick peat layer dominated by bryophytes is one of the most important ecosystems in the High Arctic of Svalbard, but little is known about the carbon dynamics of moss tundra. Here, we estimated the net primary production (NPP) and net ecosystem production (NEP) of moss tundra on Brøggerhalvøya (Brøgger Peninsula) of north-western Svalbard (79°N). The net photosynthetic and respiration rates of the two dominant moss species, Calliergon richardsonii and Tomenthypnum nitens, were measured under laboratory conditions. On the basis of the photosynthetic and respiration characteristics and climatic data, we estimated the cumulative NPP of the dominant moss species during the growing season to be 143–207 gC m-2. Net CO2 exchange, which was determined by subtracting the respiration of the brown moss layer from NPP, was similar to that estimated using field gas flux measurements. The field measurements indicated that methane emissions contributed little to carbon flow. The NEP estimated in this study was much larger than the long-term carbon accumulation rate reported in a previous study. These data suggest that a significant amount of fixed carbon was lost from the peat layer or that carbon accumulation has recently increased. The NPP and NEP values of the moss tundra are larger than those reported for other vegetation types in this area, suggesting that moss tundra is an active site with high rates of carbon fixation.


Download data is not yet available.


Beckebanze L., Runkle B.R.K., Walz J., Wille C., Holl D., Helbig M., Boike J., Sachs T. & Kutzbach L. 2022. Lateral carbon export has low impact on the net ecosystem carbon balance of a polygonal tundra catchment. Biogeosciences 19, 3863–3876, doi: 10.5194/bg-19-3863-2022.

Billett M.F., Palmer S.M., Hope D., Deacon C., Storeton-West R., Hargreaves K.J., Flechard C. & Fowler D. 2004. Linking land–atmosphere–stream carbon fluxes in a lowland peatland system. Global Biogeochemical Cycles 18, GB1024, doi: 10.1029/2003GB002058.

Emmerton C.A., St. Louis V.L., Humphreys E.R., Gamon J.A., Barker J.D. & Pastorello G.Z. 2016. Net ecosystem exchange of CO2 with rapidly changing High Arctic landscapes. Global Change Biology 22, 1185–1200, doi: 10.1111/gcb.13064.

Frolking S., Roulet N.T., Moore T.R., Lafleur P.M., Bubier J.L. & Crill P.M. 2002. Modeling seasonal to annual carbon balance of Mer Bleue Bog, Ontario, Canada. Global Biogeochemical Cycles 16, article no. 1030, doi: 10.1029/2001GB001457.

Groendahl L., Friborg T. & Soegaard H. 2007. Temperature and snow-melt controls on interannual variability in carbon exchange in the High Arctic. Theoretical and Applied Climatology 88, 111–125, doi: 10.1007/s00704-005-0228-y.

Harley P.C., Tenhunen J.D., Murray K.J. & Beyers J. 1989. Irradiance and temperature effects on photosynthesis of tussock tundra sphagnum mosses from the foothills of the Philip Smith Mountains, Alaska. Oecologia 79, 251–259, doi: 10.1007/BF00388485.

Hayashi K., Cooper E.J., Loonen M.J.J.E., Kishimoto-Mo A.W., Motohka T., Uchida M. & Nakatsubo T. 2014. Potential role of Svalbard reindeer winter droppings in atmosphere–land exchanges of methane and nitrous oxide during summer. Polar Science 8, 196–206, doi: 10.1016/j.polar.2013.11.002.

Hirota M., Zhang P., Gu S., Shen H., Kuriyama T., Li Y. & Tang Y. 2010. Small-scale variation in ecosystem CO2 fluxes in an alpine meadow depends on plant biomass and species richness. Journal of Plant Research 123, 531–541, doi: 10.1007/s10265-010-0315-8.

Holmes R.M., McClelland J.W., Raymond P.A., Frazer B.B., Peterson B.J. & Stieglitz M. 2008. Lability of DOC transported by Alaskan rivers to the Arctic Ocean. Geophysical Research Letters 35, L03402, doi: 10.1029/2007GL032837.

IPCC (Intergovernmental Panel on Climate Change) 2021. Climate change 2021: the physical science basis. Contribution of Working Group I to the sixth assessment report of the Intergovernmental Panel on Climate Change. V. Masson-Delmotte et al. (eds.). Cambridge: Cambridge University Press.

Lloyd C. 2001a. On the physical controls of the carbon dioxide balance at a High Arctic site in Svalbard. Theoretical and Applied Climatology 70, 167–182, doi: 10.1007/s007040170013.

Lloyd C. 2001b. The measurement and modelling of the carbon dioxide exchange at a High Arctic site in Svalbard. Global Change Biology 7, 405–426, doi: 10.1046/j.1365-2486.2001.00422.x.

Longton R.E. 1988. Biology of polar bryophytes and lichens. Avon: Cambridge University Press.

Lougheed V.L., Tweedie C.E., Andresen C.G., Armendariz A.M., Escarzaga S.M. & Tarin G. 2020. Patterns and drivers of carbon dioxide concentrations in aquatic ecosystems of the Arctic coastal tundra. Global Biogeochemical Cycles 34, e2020GB006552, doi: 10.1029/2020GB006552.

Lüers J., Westermann S., Piel K. & Boike J. 2014. Annual CO2 budget and seasonal CO2 exchange signals at a High Arctic permafrost site on Spitsbergen, Svalbard archipelago. Biogeosciences 11, 6307–6322, doi: 10.5194/bg-11-6307-2014.

McGovern M., Pavlov A.K., Deininger A., Granskog M.A., Leu E., Søreide J.E. & Poste A.E. 2020. Terrestrial inputs drive seasonality in organic matter and nutrient biogeochemistry in a High Arctic fjord system (Isfjorden, Svalbard). Frontiers in Marine Science 7, article no. 542563, doi: 10.3389/fmars.2020.542563.

Muraoka H., Noda H., Uchida U., Ohtsuka T., Koizumi H. & Nakatsubo T. 2008. Photosynthetic characteristics and biomass distribution of the dominant vascular plant species in a high Arctic tundra ecosystem, Ny-Ålesund, Svalbard: implications for their role in ecosystem carbon gain. Journal of Plant Research 121, 137–145, doi: 10.1007/s10265-007-0134-8.

Muraoka H., Uchida M., Mishio M., Nakatsubo T., Kanda H. & Koizumi H. 2002. Leaf photosynthetic characteristics and net primary production of the polar willow (Salix polaris) in a High Arctic polar semi-desert, Ny-Ålesund, Svalbard. Canadian Journal of Botany 80, 1193–1202, doi: 10.1139/b02-108.

Nakatsubo T. 2002. Predicting the impact of climatic warming on the carbon balance of the moss Sanionia uncinata on a maritime Antarctic island. Journal of Plant Research 115, 99–106, doi: 10.1007/s102650200014.

Nakatsubo T., Uchida M., Sasaki A., Kondo M., Yoshitake S. & Kanda H. 2015. Carbon accumulation rate of peatland in the High Arctic, Svalbard: implications for carbon sequestration. Polar Science 9, 267–275, doi: 10.1016/j.polar.2014.12.002.

Nordli Ø., Wyszyński P., Gjelten H.M., Isaksen K., Łupikasza E., Niedźwiedź T. & Przybylak R. 2020. Revisiting the extended Svalbard Airport monthly temperature series, and the compiled corresponding daily series 1898–2018. Polar Research 39, article no. 3614, doi: 10.33265/polar.v39.3614.

Opaliński K.W. 1991. Primary production and organic matter destruction in Spitsbergen tundra. Polish Polar Research 12, 419–434.

Pirk N., Sievers J., Mertes J., Parmentier F.-J.W., Mastepanov M. & Christensen T.R. 2017. Spatial variability of CO2 uptake in polygonal tundra: assessing low-frequency disturbances in eddy covariance flux estimates. Biogeosciences 14, 3157–3169, doi: 10.5194/bg-14-3157-2017.

Roulet N.T., Lafleur P.M., Richard P.J.H., Moore T.R., Humphreys E.R. & Bubier J. 2007. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biology 13, 397–411, doi: 10.1111/j.1365-2486.2006.01292.x.

Rozema J., Boelen P., Doorenbosch M., Bohncke S., Blokker P., Boekel C., Broekman R.A. & Konert M. 2006. A vegetation, climate and environment reconstruction based on palynological analyses of High Arctic tundra peat cores (5000–6000 years BP) from Svalbard. Plant Ecology 182, 155–173, doi: 10.1007/s11258-005-9024-0.

Tveit A., Schwacke R., Svenning M. & Urich T. 2013. Organic carbon transformations in High-Arctic peat soils: key functions and microorganisms. The ISME Journal 7, 299–311, doi: 10.1038/ismej.2012.99.

Uchida M., Kishimoto A., Muraoka H., Nakatsubo T., Kanda H. & Koizumi H. 2010. Seasonal shift in factors controlling net ecosystem production in a High Arctic terrestrial ecosystem. Journal of Plant Research 123, 79–85, doi: 10.1007/s10265-009-0260-6.

Uchida M., Muraoka H. & Nakatsubo T. 2016. Sensitivity analysis of ecosystem CO2 exchange to climate change in High Arctic tundra using an ecological process-based model. Polar Biology 39, 251–265, doi: 10.1007/s00300-015-1777-x.

Uchida M., Muraoka H., Nakatsubo T., Bekku Y., Ueno T., Kanda H. & Koizumi H. 2002. Net photosynthesis, respiration, and production of the moss Sanionia uncinata on a glacier foreland in the High Arctic, Ny-Ålesund, Svalbard. Arctic, Antarctic, and Alpine Research 34, 287–292, doi: 10.1080/15230430.2002.12003496.

Uchida M., Nakatsubo T., Kanda H. & Koizumi H. 2006. Estimation of the annual primary production of the lichen Cetrariella delisei in a glacier foreland in the High Arctic, Ny-Ålesund, Svalbard. Polar Research 25, 39–49, doi: 10.3402/polar.v25i1.6237.

Vanderpuye A.W., Elvebakk A. & Nilsen L. 2002. Plant communities along environmental gradients of High-Arctic mires in Sassendalen, Svalbard. Journal of Vegetation Science 13, 875–884, doi: 10.1111/j.1654-1103.2002.tb02117.x.

Welker J.M., Fahnestock J.T., Henry G.H.R., O’Dea K.W. & Chimner R.A. 2004. CO2 exchange in three Canadian High Arctic ecosystems: response to long-term experimental warming. Global Change Biology 10, 1981–1995, doi: 10.1111/j.1365-2486.2004.00857.x.

Yoshitake S., Uchida M., Koizumi H., Kanda H. & Nakatsubo T. 2010. Production of biological soil crusts in the early stage of primary succession on a High Arctic glacier foreland. New Phytologist 186, 451–460, doi: 10.1111/j.1469-8137.2010.03180.x.

Yoshitake S., Uchida M., Ohtsuka T., Kanda H., Koizumi H. & Nakatsubo T. 2011. Vegetation development and carbon storage on a glacier foreland in the High Arctic, Ny-Ålesund, Svalbard. Polar Science 5, 391–397, doi: 10.1016/j.polar.2011.03.002.

Yr 2021. Ny-Ålesund. (Weather data.) Accessed on the internet atÅlesund on 24 May 2021

Yu Z.C. 2012. Northern peat land carbon stocks and dynamics: a review. Biogeosciences 9, 4071–4085, doi: 10.5194/bg-9-4071-2012.

Zhang W., Jansson P.-E., Schurgers G., Hollesen J., Lund M., Abermann J. & Elberling B. 2018. Process-oriented modeling of a High Arctic tundra ecosystem: long-term carbon budget and ecosystem responses to interannual variations of climate. Journal of Geophysical Research—Biogeosciences 123, 1178–1196, doi: 10.1002/2017JG003956.
How to Cite
Nakatsubo T., Hirota M., Kishimoto-Mo A. W., Oura N., & Uchida M. (2023). Carbon exchange and primary production in a High-Arctic peatland in Svalbard. Polar Research, 42.
Research Articles