The relationship between Antarctic sea-ice extent change and the main modes of sea-ice variability in austral winter

  • Lejiang Yu MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
  • Cuijuan Sui Key Laboratory of Marine Hazards Forecasting, National Marine Environmental Forecasting Center, Ministry of Natural Resources, Beijing, China
  • Haixia Dai College of Meteorology and Oceanography, National University of Defense Technology, Changsha, Hunan, China
Keywords: Sea-surface temperature, the Atlantic Multidecadal Oscillation, Southern Annular Mode, zonal wavenumber three

Abstract

Accompanying global warming, Antarctic sea-ice extent shows a somewhat increasing trend from 1979 to 2014, followed by an abrupt decrease after 2016. Our previous study examined the change of Antarctic sea-ice extent in austral summer, autumn and spring. In this study, we turn our attention to the austral winter, relating the main modes of sea-ice variability to sea-ice extent in the Pacific, Atlantic and Indian sectors of the Southern Ocean. We find that the modes with the strongest correlation with the sea-ice extent are the third, first and first modes in the Pacific, Atlantic and Indian sectors, respectively. Atmospheric circulation anomalies of zonal wavenumber three over the Southern Ocean, related to planetary wave trains induced by the SST anomalies over the south-western Pacific and the southern Indian oceans, can explain sea-ice concentration anomalies of the third mode in the Pacific sector through thermodynamic and dynamic processes. Sea-ice anomalies of the first modes in the Atlantic and Indian sectors result from atmospheric circulation anomalies of a positive and negative phases of the Southern Annular Mode, respectively. The anomalous Southern Annular Mode is also associated with wave trains over the Southern Ocean excited by SST anomalies over the southern Indian Ocean and the south-western Pacific Ocean. The relationship between SST anomalies and Antarctic sea-ice anomalies can provide a reference for the prediction of Antarctic sea-ice anomalies in austral winter on interannual and decadal timescales.

Downloads

Download data is not yet available.

References


Anderson S., Tonboe R., Kern S. & Schyberg H. 2006. Improved retrieval of sea ice total concentration from spaceborne passive microwave observations using numerical weather prediction model fields: an intercomparison of nine algorithms. Remote Sensing of Environment 104, 374–392, doi: 10.1016/j.rse.2006.05.013.


Bintanja R., van Oldenborgh G.J., Drijfhout S.S., Wouters B. & Katsman C.A. 2013. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nature Geoscience 6, 376–379, doi: 10.1038/NGEO1767.


Bintanja R., van Oldenborgh G.J. & Katsman C.A. 2015. The effect of increased fresh water from Antarctic ice shelves on future trends in Antarctic sea ice. Annual of Glaciology 56, 120–126, doi: 10.3189/2015AoG69A001.


Blanchard-Wrigglesworth E., Roach L.A., Donohoe A. & Ding Q. 2021. Impact of winds and Southern Ocean SSTs on Antarctic sea ice trends and variability. Journal of Climate 34, 949–965, doi: 10.1175/JCLI-D-20-0386.1.


Cavalieri D.J., Parkinson C.L. Gloersen P. & Zwally H.J. 1996. Updated yearly. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, version 1. NSIDC- 0051. Boulder, CO: NASA National Snow and Ice Data Center Distributed Active Archive Center. Accessed on the internet at https://nsidc.org/data/nsidc-0051/versions/1 on 17 March 2021.


Chung E.S., Kim S.J., Timmermann A., Ha K.J., Lee S.K., Stuecker M.F., Rodgers K.B., Lee S.S. & Huang, L. 2022. Antarctic sea-ice expansion and Southern Ocean cooling linked to tropical variability. Nature Climate Change 12, 461–468, doi: 10.1038/s41558-022-01339-z.


Ciasto L.M. & England M.H. 2011. Observed ENSO teleconnections to Southern Ocean SST anomalies diagnosed from a surface mixed layer heat budget. Geophysical Research Letters 38, L09701, doi: 10.1029/2011GL046895.


Ciasto L.M., Simpkins G.R. & England M.H. 2015. Teleconnections between tropical Pacific SST anomalies and extratropical Southern Hemisphere climate. Journal of Climate 28, 56–65, doi: 10.1175/JCLI-D-14-00438.1.


Ding Q., Steig E.J., Battisti D.S. & Küttel M. 2011. Winter warming in West Antarctica caused by central tropical Pacific warming. Nature Geoscience 4, 398–403, doi: 10.1038/NGEO1129.


Dong X., Wang Y., Hou S., Ding M., Yin, B. & Zhang, Y. 2020. Robustness of the recent global atmospheric reanalyses for Antarctic near-surface wind speed climatology. Journal of Climate 33, 4027–4043, doi: 10.1175/JCLI-D-19-0648.1.


Eayrs C., Li X., Raphael M.N. & Holland D.M. 2021. Rapid decline in Antarctic sea ice in recent years hints at future change. Nature Geoscience 14, 460–464, doi: 10.1038/s41561-021-00768-3.


Ferreira D., Marshall J., Bitz C.M., Solomon S. & Plumb, A. 2015. Antarctic ocean and sea ice response to ozone depletion: a two-time scale problem. Journal of Climate 28, 1206–1226, doi: 10.1175/JCLI-D-14-00313.1.


Fogt R.L. & Bromwich D.H. 2006. Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the Southern Annular Mode. Journal of Climate 19, 979–997, doi: 10.1175/JCLI3671.1.


Fogt R.L., Bromwich D.H. & Hines, K.M. 2011. Understanding the SAM influence on the south Pacific ENSO teleconnection. Climate Dynamics 36, 1555–1576, doi: 10.1007/s00382-010-0905-0.


Goosse H. & Zunz V. 2014. Decadal trends in the Antarctic sea ice extent ultimately controlled by ice–ocean feedback. The Cryosphere 8, 453–470, doi: 10.5194/tc-8-453-2014.


Gossart A., Helsen S., Lenaerts J.T.M., Broucke S.V., van Lipzig N.P.M. & Souverijns N. 2019. An evaluation of surface climatology in state-of-the-art reanalyses over the Antarctic ice sheet. Journal of Climate 32, 6899–6915, doi: 10.1175/JCLI-D-19-0030.1.


Harangozo S.A. 2004. The relationship of Pacific deep tropical convection to the winter and springtime extratropical atmospheric circulation of the South Pacific in El Niño events. Geophysical Research Letters 31, L05206, doi: 10.1029/2003GL018667.


Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., De Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S. & Thépaut J.-N. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146, 1999–2049, doi: 10.1002/qj.3803.


Hobbs W.R., Bindoff N.L. & Raphael M.N. 2015. New perspectives on observed and simulated Antarctic sea ice extent trends using optimal fingerprinting techniques. Journal of Climate 28, 1543–1560, doi: 10.1175/JCLI-D-14-00367.1.


Hobbs W.R., Massom R., Stammerjohn S., Reid P., Williams G. & Meier W. 2016. A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Global and Planetary Change 143, 228–250, doi: 10.1016/j.gloplacha.2016.06.008.


Holland P.R., Bracegridle T., Dutrieux P., Jenkins A. & Steig E.J. 2019. West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nature Geoscience 12, 718–724, doi: 10.1038/s41561-019-0420-9.


Huang B., Thorne P.W., Banzon V., Boyer T., Chepurin G., Lawrimore J.H., Menne M.J., Smith T.M., Vose R.S. & Zhang H.-M. 2017. Extended reconstructed sea surface temperature version 5 (ERSSTv5): upgrades, validations, and intercomparisons. Journal of Climate 30, 8179–8820, doi: 10.1175/JCLI-D-16-0836.1.


Kidston J., Renwick J. & McGregor J. 2009. Hemispheric-scale seasonality of the Southern Annular Mode and impacts on the climate of New Zealand. Journal of Climate 22, 4759–4770, doi: 10.1175/2009JCLI2640.1.


Kohyama T. & Hartmann D.L. 2016. Antarctic sea ice response to weather and climate modes of variability. Journal of Climate 29, 721–741, doi: 10.1175/JCLI-D-15-0301.1.


Li X., Cai W., Meehl G., Chen D., Yuan X., Holland R.D., Ding Q., Fogt R., Markle B.R., Wang G., Bromwich D., Turner J., Xie S., Steig E., Gille S., Xiao C., Wu B., Lazzara M., Chen X., Stammerjohn S., Holland P., Holland M., Cheng X., Price s., Wang Z., Bitz C., Shi J., Gerber E., Liang X., Goosse H., Yoo C., Ding M., Geng L., Xin M., Li C., Dou T., Liu C., Sun W., Wang X. & Song C. 2021. Tropical teleconnection impacts on Antarctic climate changes. Nature Reviews Earth & Environment 2, 680–698, doi: 10.1038/s43017-021-00204-5.


Li X., Gerber E.P., Holland D.M. & Yoo C. 2015. A Rossby wave bridge from the tropical Atlantic to West Antarctica. Journal of Climate 28, 2256–2273, doi: 10.1175/JCLI-D-14-00450.1.


Li X., Holland D.M., Gerber E.P. & Yoo C. 2014. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature 505, 538–542, doi: 10.1038/nature12945.


Meehl G.A., Arblaster J.M., Bitz C.M., Chung C.T.Y. & Teng H. 2016. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nature Geoscience 9, 590–595, doi: 10.1038/NGEO2751.


Meehl G.A., Arblaster J.M., Chung C.T.Y., Holland M.M., DuVivier A., Thompson L., Yang D. & Bitz C.M. 2019. Sustained ocean changes contributed to sudden Antarctic sea ice retreat in the late 2016. Nature Communication 10, article no. 14, doi: 10.1038/s41467-018-07865-9.


Neale R.B., Chen C.-C., Gettelman A., Lauritzen P.H., Park S., Williamson D.L., Conley A.J., Garcia R., Kinnison D., Lamarque J.-F., Marsh D., Mills M., Smith A.K., Tilmes S., Vitt F., Morrison H., Cameron-Smith P., Collins W.D., Iacono M.J., Easter R.C., Ghan S.J., Liu X., Rash P.J. & Taylor M.A. 2012. Description of the NCAR Community Atmosphere Model (CAM5). NCAR Technical Note TN-486+STR. Boulder, CO: National Center for Atmospheric Research.


North G.R., Bell T.L., Cahalan R.F. & Moeng F.J. 1982. Sampling errors in the estimation of empirical orthogonal functions. Monthly Weather Review 110, 699–706, doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.


Nuncio M. & Yuan X. 2015. The influence of the Indian Ocean Dipole on Antarctic sea ice. Journal of Climate 28, 2682–2690, doi: 10.1175/JCLI-D-14-00390.1.


Parkinson C.L. 2019. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proceedings of the National Academy of Sciences of the United States of America 116, 14414–14423, doi: 10.1073/pnas.1906556116.


Parkinson C.L. & DiGirolamo N.E. 2021. Sea ice extents continue to set new records: Arctic, Antarctic, and global results. Remote Sensing of Environment 267, article no. 112753, doi: 10.1016/j.rse.2021.112753.


Pauling A.G., Bitz C.M., Smith I.J. & Langhorne P.J. 2016. The response of the Southern Ocean and Antarctic sea ice to fresh water from ice shelves in an Earth System model. Journal of Climate 29, 1655–1672, doi: 10.1175/JCLI-D-15-0501.1.


Polvani L.M., Banerjee A., Chemke R., Doddridge E.W., Ferreira D., Gnanadesikan A., Holland M.A., Kostov Y., Marshall J., Seviour W.J.M., Solomon S. & Waugh D.W. 2021. Interannual SAM modulation of Antarctic sea ice extent does not account for its long-term trends, pointing to a limited role for ozone depletion. Geophysical Research Letters 48, e2021GL094871, doi: 10.1029/2021GL094871.


Purich A. & Doddridge E. W. 2023. Record low Antarctic sea ice coverage indicates a new sea ice state. Communications Earth & Environment 4, article no. 314, doi: 10.1038/s43247-023-00961-9.


Purich A. & England M.H. 2019. Tropical teleconnections to Antarctic sea ice during austral spring 2016 in coupled pacemaker experiments. Geophysical Research Letters 46, 6848–6858, doi: 10.1029/2019GL082671.


Purich A., England M.H., Cai W. & Chikamoto Y. 2016. Tropical Pacific SST drivers of recent Antarctic sea ice trends. Journal of Climate 29, 8931–8948, doi: 10.1175/JCLI-D-16-0440.1.


Ramon J., Lledó L., Torralba V., Soret A. & Doblas-Reyes F.J. 2019. What global reanalysis best represents near-surface winds? Quarterly Journal of the Royal Meteorological Society 145, 3236–3251, doi: 10.1002/qj.3616.


Raphael M.N. 2007. The influence of atmospheric zonal wave three on Antarctic sea ice variability. Journal of Geophysical ResearchAtmospheres 112, D12112, doi: 10.1029/2006JD007852.


Raphael M.N., Marshall G.J., Turner J., Fogt R.L., Schneider D., Dixon D.A., Hosking J.S., Jones J.M. & Hobbs W.R. 2017. The Amundsen Sea low: variability, change, and impact on Antarctic climate. Bulletin of the American Meteorological Society 97, 111–121, doi: 10.1175/BAMS-D-14-00018.1.


Rayner N.A., Parker D.E., Horton E.B., Folland C.K., Alexander L.V., Rowell D.P., Kent E.C. & Kaplan A. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical ResearchAtmospheres 108, article no. 4407, doi: 10.1029/2002JD002670.


Schlosser E., Haumann F.A. & Raphael M.N. 2018. Atmospheric influences on the anomalous 2016 Antarctic sea ice decay. The Cryosphere 12, 1103–1119, doi: 10.5194/tc-12-1103-2018.


Schneider D.P. & Deser C. 2018. Tropically driven and externally forced patterns of Antarctic sea ice change: reconciling observed and modeled trends. Climate Dynamics 50, 4599–4618, doi: 10.1007/s00382-017-3893-5.


Shu Q., Song Z. & Qiao F. 2015. Assessment of sea ice simulations in the CMIP5 models. The Cryosphere 9, 399–409, doi: 10.5194/tc-9-399-2015.


Simpkins G.R., Ciasto L.M., Thompson D.W.J. & England M.H. 2012. Seasonal relationships between large-scale climate variability and Antarctic sea ice concentration. Journal of Climate 25, 5451–5469, doi: 10.1175/JCLI-D-11-00367.1.


Simpkins G.R., McGregor S., Taschetto A.S., Ciasto L.M. & England M.H. 2014. Tropical connections to climatic change in the extratropical Southern Hemisphere: the role of Atlantic SST trends. Journal of Climate 27, 4923–4936, doi: 10.1175/JCLI-D-13-00615.1.


Stuecker M.F., Bitz C.M. & Armour K.C. 2017. Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring. Geophysical Research Letters 44, 9008–9019, doi: 10.1002/2017GL074691.


Sun S. & Eisenman I. 2021. Observed Antarctic sea ice expansion reproduced in a climate model after correcting biases in sea ice drift velocity. Nature Communications 12, article no. 1060, doi: 10.1038/s41467-021-21412-z.


Swart N.C. & Fyfe J.C. 2013. The influence of recent Antarctic ice-sheet retreat on simulated sea-ice trends. Geophysical Research Letters 40, 4328–4332, doi: 10.1002/grl.50820.


Takaya K. & Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. Journal of the Atmospheric Sciences 58, 608–627, doi: 10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.


Turner J. 2004. The El Niño–Southern Oscillation and Antarctica. International Journal of Climatology 24, 1–31, doi: 10.1002/joc.965.


Turner J., Phillips T., Marshall G.J., Hosking J.S., Pope J.O., Bracegirdle T.J. & Deb P. 2017. Unprecedented springtime retreat of Antarctic sea ice in 2016. Geophysical Research Letters 44, 6868–6875, doi: 10.1002/2017GL073656.


Uotila P., Holland P.R.R., Vihma T., Marsland S.J.J. & Kimura N. 2014. Is realistic Antarctic sea-ice extent in climate models the result of excessive ice drift? Ocean Modelling 79, 33–42, doi: 10.1016/j.ocemod.2014.04.004.


Wang G., Hendon H.H., Arblaster J.M., Lim E.-P., Abhik S. & van Rensch P. 2019. Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016. Nature Communication 10, article no. 13, doi: 10.1038/s41467-018-07689-7.


Wilks D.S. 2006. Statistical methods in the atmospheric sciences. San Diego: Academic Press.


Yu L., Zhong S., Sui C. & Sun B. 2024. Sea surface temperature anomalies related to the Antarctic sea ice extent variability in the past four decades. Theoretical and Applied Climatology 155, 2415–2426, doi: 10.1007/s00704-023-04820-7.


Yu L., Zhong S. & Sun B. 2022. Synchronous variation patterns of monthly sea ice anomalies at the Arctic and Antarctic. Journal of Climate 35, 2823–2847, doi: 10.1175/JCLI-D-21-0756.1.


Yu L., Zhong S., Vihma T., Sui C. & Sun B. 2021. Sea ice changes in the Pacific sector of the Southern Ocean in austral autumn closely associated with the negative polarity of the South Pacific Oscillation. Geophysical Research Letters 48, e2021GL092409, doi: 10.1029/2021GL092409.


Yu L., Zhong S., Vihma T., Sui C. & Sun B. 2022. Linking the Antarctic sea ice extent changes during 1979–2020 to seasonal modes of Antarctic sea ice variability. Environmental Research Letters 17, article no. 114026, doi: 10.1088/1748-9326/ac9c73.


Yu L., Zhong S., Winkler J.A., Zhou M., Lenschow D.H., Li B., Wang X. & Yang Q. 2017. Possible connection of the opposite trends in Arctic and Antarctic sea ice cover. Scientific Reports 7, article no. 45804, doi: 10.1038/srep45804.


Zhang J.L. 2007. Increasing Antarctic sea ice under warming atmospheric and oceanic conditions. Journal of Climate 20, 2515–2529, doi: 10.1175/JCLI4136.1.


Zhang X., Deser C. & Sun L. 2021. Is there a tropical response to recent observed Southern Ocean cooling? Geophysical Research Letters 48, e2020GL091235, doi: 10.1029/2020GL091235.
Published
2024-07-22
How to Cite
Yu L., Sui C., & Dai H. (2024). The relationship between Antarctic sea-ice extent change and the main modes of sea-ice variability in austral winter. Polar Research, 43. https://doi.org/10.33265/polar.v43.9080
Section
Research Articles