Sedimentary facies and mineral provenance of Upper Triassic sandstones offshore Kvitøya, Svalbard: implications for palaeogeographic interpretations in the northern Barents Shelf area

  • Mai Britt E. Mørk Department of Geoscience and Petroleum, Norwegian University of Science and Technology, Trondheim, Norway
  • Atle Mørk Department of Geoscience and Petroleum, Norwegian University of Science and Technology, Trondheim, Norway
  • Sondre K. Johansen Norwegian Petroleum Directorate, Harstad, Norway
  • Kristian Drivenes Department of Geoscience and Petroleum, Norwegian University of Science and Technology, Trondheim, Norway; and The Geological Survey of Norway, Trondheim, Norway
  • Bjørn A. Lundschien Norwegian Petroleum Directorate, Stavanger, Norway
Keywords: De Geerdalen Formation, Carnian, deltaic sedimentation, feldspar compositions, garnet, Cr-spinel

Abstract

Upper Triassic (Carnian) sandstones of the De Geerdalen Formation cored south of the island of Kvitøya (80°N), north-easternmost Svalbard, are described in terms of sedimentary facies and petrography and compared regionally in the northern Barents Shelf. The succession off Kvitøya is characterized by its great thickness and is dominated by deltaic deposits with high sand content of lithic–feldspathic compositions. Comparison of sediment facies and sandstone compositions with adjacent areas suggest that the succession off Kvitøya is part of a larger delta system with its main sediment source from the east. The delta sedimentation was terminated by marine transgression in the earliest Norian. The sandstone compositions off Kvitøya differ from nearby locations by the higher content of cherty rock fragments and reworked volcanic debris in the Kvitøya sandstone, which is most distinct in the lower part of the succession. Provenance signatures are investigated by mineral–chemical analysis of detrital feldspars, rock fragments, garnet and Cr-spinel, characterizing a wide variety of igneous, metamorphic and sedimentary terranes, including palaeo-Urals and areas farther to east. Additional, more proximal sediment source areas may also have existed that could explain the increased sediment thickness and the mineralogical immature sandstone compositions of the Carnian sediments off Kvitøya.

Downloads

Download data is not yet available.

References


Bergan M. & Knarud R. 1993. Apparent changes in clastic mineralogy of the Triassic–Jurassic succession, Norwegian Barents Sea: possible implications for palaeodrainage and subsidence. In T.O. Vorren et al. (eds.): Arctic geology and petroleum potential. Pp. 481–493. Amsterdam: Elsevier.


Bhat I.M., Ahmad T. & Subba Rao D.V. 2019. Alteration of primary Cr-spinel mineral composition from the Suru Valley ophiolitic peridotites, Ladakh Himalaya: their low temperature metamorphic implications. Journal of Earth System Science 128, article no. 188, doi: 10.1007/s12040-019-1222-6.


Bojanowski M.J., Jaroszewicz E., Košir A., Łoziński M., Marynowski L., Wysocka A. & Derkowski A. 2016. Root-related rhodochrosite and concretionary siderite formation in oxygen-deficient conditions induced by a ground-water table rise. Sedimentology 63, 523–551, doi: 10.1111/sed.12227.


Brusnitsyn A.I., Kuleshov V.N., Perova E.N. & Zaitsev A.N. 2017. Ferromanganese carbonate metasediments of the Sob area, Polar Urals: bedding, conditions, composition, and genesis. Lithology and Mineral Resources 52, 192–213, doi: 10.1134/S0024490217030026.


Bugge T., Elvebakk G., Fanavoll S., Mangerud G., Smelror M., Weiss H.M., Gjelberg J., Kristensen S.E. & Nilsen K. 2002. Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea. Marine and Petroleum Geology 19, 13–37, doi: 10.1016/S0264-8172(01)00051-4.


Cookenboo H.O., Bustin R.M. & Wilks K.R. 1997. Detrital chromium spinel compositions used to reconstruct the tectonic setting of provenance: implications for orogeny in the Canadian Cordillera. Journal of Sedimentary Research 67, 116–123, doi: 10.1306/d4268509-2b26-11d7-8648000102c1865d.


Deer W.A., Howie R.A. & Zussmann J. 1965. Rock forming minerals. Vol. 5. Non-silicates. New York: Longman.


Deer W.A., Howie R.A. & Zussmann J. 2001. Rock forming minerals. Vol. 4A. Framework silicates: feldspars. 2nd edn. London: The Geological Society.


Dypvik H., Sokolov A., Pcelina T., Fjellså B., Bjærke T., Korchinskaja M. & Nagy J. 1998. The Triassic succession of Franz Josef Land, stratigraphy and sedimentology of three wells from Alexandra, Hayes and Graham Bell islands. In A. Solheim et al. (eds.): Geological aspects of Franz Josef Land and the northernmost Barents Sea. Norsk Polarinstitutt Meddelelser 151. Pp. 50–82. Oslo: Norwegian Polar Institute.


Fleming E.J., Flowerdew M.J., Smyth H.R., Scott R.A., Morton A.C., Omma J.E., Frei D. & Whitehouse M.J. 2016. Provenance of Triassic sandstones on the southwest Barents Shelf and the implication for sediment dispersal patterns in northwest Pangaea. Marine and Petroleum Geology 78, 516–535, doi: 10.1016/j.marpetgeo.2016.10.005.


Flood B., Nagy J. & Winsnes T.S. 1971. The Triassic succession of Barentsøya, Edgeøya and Hopen (Svalbard). Norsk Polarinstitutt Meddelelser 100. Oslo: Norwegian Polar Institute.


Flowerdew M.J., Fleming E.J., Morton A.C., Frei D., Chew D.M. & Daly J.S. 2020. Assessing mineral fertility and bias in sedimentary provenance studies: examples from the Barents Shelf. In P. Dowey et al. (eds.): Application of analytical techniques to petroleum systems. Pp. 255–274. London: The Geological Society.


Folk R.L., Andrews P.B. & Lewis D.W. 1970. Detrital sedimentary rock classification and nomenclature for use in New Zealand. New Zealand Journal of Geology and Geophysics 13, 937–968.


Gee D.G., Fossen H., Henriksen N. & Higgins A.K. 2008. From the early Paleozoic platforms of Baltica and Laurentia to the Calédonie orogen of Scandinavia and Greenland. Episodes 31, 44–51, doi: 10.18814/epiiugs/2008/v31i1/007.


Gilmullina A., Klausen T.G., Doré A.G., Rossi V.M., Suslova A. & Eide C.H. 2022. Linking sediment supply variations and tectonic evolution in deep time, source-to-sink systems—the Triassic Greater Barents Sea Basin. The Geological Society of America Bulletin 134, 1760–1780, doi: 10.1130/B36090.1.


Gilmullina A., Klausen T.G., Doré A.G., Sirevaag H., Suslova A. & Eide C.H. 2022. Arctic sediment routing during the Triassic: sinking the Arctic Atlantis. Journal of the Geological Society 180, article no. jgs2022-018, doi: 10.1144/jgs2022-018.


Gilmullina A., Klausen T.G., Paterson N.W., Suslova A. & Eide C.H. 2021. Regional correlation and seismic stratigraphy of Triassic Strata in the Greater Barents Sea: implications for sediment transport in Arctic basins. Basin Research 33, 1546–1579, doi: 10.1111/bre.12526.


Glørstad-Clark E., Faleide J.I., Lundschien B.A. & Nystuen J.P. 2010. Triassic seismic sequence stratigraphy and paleogeography of the western Barents Sea area. Marine and Petroleum Geology 27, 1448–1475, doi: 10.1016/j.marpetgeo.2010.02.008.


Haile B.G., Czarniecka U., Xi K., Smyrak-Sikora A., Jahren J., Braathen A. & Hellevang H. 2019. Hydrothermally induced diagenesis: evidence from shallow marine deltaic sediments, Wilhelmøya, Svalbard. Geoscience Frontiers 10, 629–649, doi: 10.1016/j.gsf.2018.02.015.


Haile B.G., Klausen T.G., Czarniecka U., Xi K., Jahren J. & Hellevang H. 2018. How are diagenesis and reservoir quality linked to depositional facies? A deltaic succession, Edgeøya, Svalbard. Marine and Petroleum Geology 92, 519–546, doi: 10.1016/j.marpetgeo.2017.11.019.


Harstad T.S., Mørk M.B.E. & Slagstad T. 2021. The importance of trace element analyses in detrital Cr-spinel provenance studies: an example from the Upper Triassic of the Barents Shelf. Basin Research 33, 1017–1032, doi: 10.1111/bre.12502.


Harstad T.S., Slagstad T., Kirkland C.L. & Mørk M.B.E. 2023. Detrital zircon provenance of the vast Triassic Snadd and De Geerdalen formations, Barents Shelf, reveal temporal change in sediment source. Norwegian Journal of Geology 103, article no. 202308, doi: 10.17850/njg103-2-3.


Henriksen E., Bjørnseth H.M., Hals T.K., Heide T., Kiryukina T., Kløvjan O.S., Larssen G.B., Ryseth A.E., Rønning K., Sollid K. & Stoupakova A.V. 2011. Uplift and erosion of the greater Barents Sea. In A. Spencer et al. (eds.): Arctic petroleum geology. Pp. 271–281. London: The Geological Society.


Hjelle A., Ohta Y. & Winsnes T.S. 1978. The geology of northeastern Svalbard. Norsk Polarinstitutt Årbok 1977, 7–24.


Johansson Å., Maluski H. & Gee D.G. 2001. Ar-Ar dating of Caledonian and Grenvillian rocks from northeasternmost Svalbard—evidence of two stages of Caledonian tectonothermal activity in the High Arctic? Norwegian Journal of Geology 81, 263–281.


Kastner M. & Siever R. 1979. Low temperature feldspars in sedimentary rocks. American Journal of Science 279, 435–479.


Khudoley A.K., Sobolev N.N., Petrov E.O., Ershova V.B., Makariev A.A., Makarieva E.V., Gaina C. & Sobolev P.O. 2019. A reconnaissance provenance study of Triassic–Jurassic clastic rocks of the Russian Barents Sea. GFF 141, doi: 10.1080/11035897.2019.1621372.


Kimball K.I. 1990. Effects of hydrothermal alteration on the composition of chromian spinels. Contributions to Mineralogy and Petrology 105, 337–346, doi: 10.1007/BF00306543.


Klausen T.G. & Mørk A. 2014. The Upper Triassic paralic deposits of the De Geerdalen Formation on Hopen: outcrop analog to the subsurface Snadd Formation in the Barents Sea. American Association of Petroleum Geologists Bulletin 98, 1911–1941, doi: 10.1306/02191413064.


Klausen T.G., Nyberg B. & Helland-Hansen W. 2019. The largest delta plain in Earth’s history. Geology 47, 470–474, doi: 10.1130/G45507.1.


Klausen T.G., Rismyhr B., Müller R. & Olaussen S. 2022. Changing provenance and stratigraphic signatures across the Triassic–Jurassic boundary in eastern Spitsbergen and the subsurface Barents Sea. Norwegian Journal of Geology 102, article no. 202205, doi: 10.17850/njg102-2-1.


Klausen T.G., Ryseth A.E., Helland-Hansen W., Gawthorpe G. & Laursen I. 2015. Regional development and sequence stratigraphy of the Middle to Late Triassic Snadd Formation, Norwegian Barents Sea. Marine and Petroleum Geology 62, 102–122, doi: 10.1016/j.marpetgeo.2015.02.004.


Kontak D.J. & Corey M. 1988. Metasomatic origin of spessartine-rich garnet in the South Mountain Batholith, Nova Scotia. Canadian Mineralogist 26, 315–334.


Krippner A., Meinhold G., Morton A.C. & Von Eynatten H. 2015. Heavy-mineral and garnet compositions of stream sediments and HP–UHP basement rocks from the Western Gneiss Region, SW Norway. Norwegian Journal of Geology 96, 7–17, doi: 10.17850/njg96-1-02.


Kurapov M., Ershovva V., Kudoley A., Luchitskaya M., Stockli D., Makariev A., Makarieva E. & Vishnevskaya I. 2021. Latest Permian–Triassic magmatism of the Taimyr Peninsula: new evidence for a connection to the Siberian Traps large igneous province. Geosphere 17, 2062–2077, doi: 10.1130/GES02421.1.


Lauritzen Ø. & Ohta Y. 1984. Geological map of Svalbard 1:500 000, Sheet 4G, Nordaustlandet. Norsk Polarinstitutt Skrifter 154D. Oslo: Norwegian Polar Institute.


Lee M.R. & Parsons I. 1997. Dislocation formation and albitization in alkali feldspars from the Shap granite. American Mineralogist 82, 557–570, doi: 10.2138/am-1997-5-616.


Lenaz D. & Princivalle F. 2005. The crystal chemistry of detrital chromian spinel from the southeastern Alps and outer Dinares: the discrimination of supplies from areas of similar tectonic setting? The Canadian Mineralogist 43, 1305–1314, doi: 10.2113/gscanmin.43.4.1305.


Letnikova E.F., Izokh A.E., Nikolenko E.I., Pokhilenko N.P., Shelestov V.O., Hilen G. & Lobanov S.S. 2014. Late Triassic high potassium trachitic volcanism of the northeast of the Siberian Platform: evidence in the sedimentary record. Doklady Earth Sciences 459 Part 1, 1344–1347, doi: 10.1134/S1028334X14110221.


Line L.H., Jahren J. & Hellvang H. 2018. Mechanical compaction in chlorite-coated sandstone reservoirs—examples from Middle–Late Triassic channels in the southwestern Barents Sea. Marine and Petroleum Geology 96, 348–370, doi: 10.1016/j.marpetgeo.2018.05.025.


Line L.H., Müller R., Klausen T.G., Jahren J. & Hellevang H. 2020. Distinct petrographic responses to basin reorganization across the Triassic–Jurassic boundary in the southwestern Barents Sea. Basin Research 32, 1463–1484, doi: 10.1111/bre.12437.


Lord G.S., Johansen S.K., Støen S.J. & Mørk A. 2017. Facies development of the Upper Triassic succession on Barentsøya, Wilhelmøya and NE Spitsbergen, Svalbard. Norwegian Journal of Geology 97, 33–62, doi: 10.17850/njg97-1-03.


Lord G.S., Mørk A., Haugan T., Boxaspen M.A., Husteli B., Forsberg C.S., Heggem B. & Olaussen S. 2022. Stratigraphy and palaeosol profiles of the Upper Triassic Isfjorden Member, Svalbard. Norwegian Journal of Geology 102, 202–215, doi: 10.17850/njg102-4-02.


Lord G.S., Solvi K.H., Ask M., Mørk A., Hounslow M.W. & Paterson N.W. 2014. The Hopen Member: a new member of the Triassic De Geerdalen Formation, Svalbard. Norwegian Petroleum Directorate Bulletin 11, 81–96.


Lord G.S., Solvi K.H., Klausen T.G. & Mørk A. 2014. Triassic channel bodies on Hopen, Svalbard: their facies, stratigraphic significance and spatial distribution. Norwegian Petroleum Directorate Bulletin 11, 41–59.


Lorenz H., Gee D. & Whitehouse M.J. 2007. New geochronological data on Palaeozoic igneous activity and deformation in the Severnaya Zemlya Archipelago, Russia, and implications for the development of the Eurasian Arctic margin. Geological Magazine 144, 105–125, doi: 10.1017/S001675680600272X.


Lundschien B.A., Høy T. & Mørk A. 2014. Triassic hydrocarbon potential in the northern Barents Sea; integrating Svalbard and stratigraphic core data. Norwegian Petroleum Directorate Bulletin 11, 3–20.


Lundschien B.A., Mattingsdal R., Johansen S.K. & Knutsen S.-M. 2023. North Barents composite tectono-sedimentary element. In S.S. Drachev et al. (eds.): Sedimentary successions of the Arctic region and their hydrocarbon prospectivity. London: The Geological Society.


Makrygina V.A. & Suvorova L.F. 2011. Spessartine in the greenschist facies: crystallization conditions. Geochemical International 49, 299–308, doi: 10.1134/S0016702911030074.


Mehnert K.R. & Büsch W. 1981. The Ba content of K-feldspar megacrysts in granites: a criterion for their formation. Neues Jahrbuch für Mineralogie Abhandlungen 140, 221–252.


Miller E.L., Soloviev A.V., Prokopiev A.V., Toro J., Harris D., Kuzmichev A.B. & Gehrels G.E. 2013: Triassic river-systems and the paleo-Pacific margin of northwestern Pangea. Gondwana Research 23, 1631–1645, doi: 10.1016/j.gr.2012.08.015.


Milliken K.L. 1988. Loss of provenance information through subsurface diagenesis in Plio-Pleistocene sandstones, northern Gulf of Mexico. Journal of Sedimentary Petrology 58, 992–2002, doi: 10.1306/212F8EE0-2B24-11D7-8648000102C1865D.


Mørk A., Dallmann W.K., Dypvik H., Johannessen E.P., Larssen G.B., Nagy J., Nøttvedt A., Olaussen S., Pchelina T.M. & Worsley D. 1999. Mesozoic lithostratigraphy. In W.K. Dallmann (ed.): Lithostratigraphic lexicon of Svalbard, Upper Paleozoic to Quaternary bedrock. Review and recommendations for nomenclature use. Pp. 127–214. Tromsø: Norwegian Polar Institute.


Mørk A., Knarud R. & Worsley D. 1982. Depositional and diagenetic environments of the Triassic and Lower Jurassic succession of Svalbard. In A.F. Embry & H.R. Balkwill (eds.): Arctic geology and geophysics. Proceedings of the Third International Symposium of Arctic Geology. Pp. 371–398. Calgary: Canadian Society of Petroleum Geologists.


Mørk A., Vigran J.O. & Hochuli P.A. 1990. Geology and palynology of the Triassic succession of Bjørnøya. Polar Research 8, 141–163, doi: 10.3402/polar.v8i2.6810.


Mørk M.B.E. 1999. Compositional variations and provenance of Triassic sandstones from the Barents Shelf. Journal of Sedimentary Research 69, 690–710, doi: 10.2110/jsr.69.690.


Mørk M.B.E. 2013. Diagenesis and quartz cement distribution of low permeability Upper Triassic–Middle Jurassic reservoir sandstones, Longyearbyen CO2 Laboratory well site in Svalbard, Norway. American Association of Petroleum Geologists Bulletin 97, 577–596, doi: 10.1306/10031211193.


Morton A., Hallsworth C. & Chalton B. 2004. Garnet compositions in Scottish and Norwegian basement terrains: a framework for interpretation of North Sea sandstone provenance. Marine and Petroleum Geology 21, 393–410, doi: 10.1016/j.marpetgeo.2004.01.001.


Morton A.C. 1987. Influences of provenance and diagenesis on detrital garnet suites in the Forties Sandstone, Paleocene, central North Sea. Journal of Sedimentary Petrology 57, 1027–1032, doi: 10.1306/212F8CD8-2B24-11D7-8648000102C1865D.


Nikolenko E.I., Logvinova A.M., Izokh A.E., Afanas’ev V.P., Oleynikov O.B. & Biller A.Y. 2018. Cr-spinel assemblage from the Upper Triassic gritstones of the northeastern Siberian Platform. Russian Geology and Geophysics 59, 1345–1361, doi: 10.1016/j.rgg.2018.09.011.


Nyame F.K., Kase K. & Yamamoto M. 1998. Spessartine garnets in a manganiferous carbonate formation from Nsuta, Ghana. Resource Geology 48, 13–22, doi: 10.1111/j.1751-3928.1998.tb00003.x.


Olaussen S., Larssen G.B., Helland-Hansen W., Johannessen E.P., Nøttvedt A., Riis F., Rismyhr B., Smelror M. & Worsley D. 2018. Mesozoic strata of Kong Karls Land, Svalbard, Norway; a link to the northern Barents Sea basins and platforms. Norwegian Journal of Geology 98, 1–69, doi: 10.17850/njg98-4-06.


Parsons I., Thompson P., Lee M.R. & Cayzer N. 2005. Alkali feldspar microtextures as provenance indicators in siliciclastic rocks and their role in feldspar dissolution during transport and diagenesis. Journal of Sedimentary Research 75, 921–942, doi: 10.2110/jsr.2005.071.


Paterson N.W., Mangerud G., Holen L.H., Landa J., Lundschien B.A. & Eide F. 2019. Late Triassic (early Carnian–Norian) palynology of the Sentralbanken High, Norwegian Barents Sea. Palynology 43, 53–75, doi: 10.1080/01916122.2017.1413018.


Paterson N.W., Mangerud G. & Mørk A. 2017. Late Triassic (early Carnian) palynology of shallow stratigraphical core 7830/5-U-1, offshore Kong Karls Land, Norwegian Arctic. Palynology 41, 230–254, doi: 10.1080/01916122.2016.1163295.


Paxton S.T., Szabo J.O., Ajdukiewicz J.M. & Klimentidis R.E. 2002. Construction of an intergranular volume compaction curve for evaluating and predicting compaction and porosity loss in rigid-grain sandstone reservoirs. The American Association of Petroleum Geologists Bulletin 86, 2047–2067, doi: 10.1306/61EEDDFA-173E-11D7-8645000102C1865D.


Pčelina T.M. 1988a. 6. Mezozojskie osadočnye kompleksy. 6.1. Triasovyj kompleks. 6.1. (6. The Mesozoic sedimentary complexes. 6.1. Triassic Complex.) In I.S. Gramberg (ed.): Barencevskaja Šel’fovaja plita. (The Barents Shelf plate.) Pp. 142–157. Leningrad: Nedra.


Pčelina T.M. 1988b. 9. Paleogeografija. 9.7. Triasovyj period. (9. Palaeogeography. 9.7 Triassic.) In I.S. Gramberg (ed.): Barencevskaja Šel’fovaja plita. (The Barents Shelf plate.) Pp. 211–218. Leningrad: Nedra.


Polteau S., Hendriks B.W.H., Planke S., Ganerød M., Corfu F., Faleide J.I., Midtkandal I., Svensen H.S. & Myklebust R. 2016. The Early Cretaceous Barents Sea Sill Complex: distribution, 40Ar/39Ar geochronology, and implications for carbon gas formation. Palaeogeography, Palaeoclimatology, Palaeoecology 441, 83–95, doi: 10.1016/j.palaeo.2015.07.007.


Power M.R., Pirrie D., Andersen J.C.Ø. & Wheeler P.D. 2000. Testing the validity of chrome spinel chemistry as a provenance and petrogenetic indicator. Geology 28, 1027–1030, doi: 10.1130/0091-7613(2000)28<1027:TTVOCS>2.0.CO;2.


Pózer Bue E. & Andresen A. 2014. Constraining depositional models in the Barents Sea region using detrital zircon U–Pb data from Mesozoic sediments in Svalbard. In R.A. Scott et al. (eds.): Sediment provenance studies in hydrocarbon exploration and production. Pp. 261–279. London: The Geological Society.


Preobranženskaja E.N., Škola I.V. & Korčinskaja M.V. 1985. Stratigrafija Triasovyh otloženij arhipelaga Zemlja Franca-Iosifa (po materialam parametričeskogo burenija). (Stratigraphy of the Triassic deposits of Franz Josef Land archipelago [on materials of parametric drilling].) In N.D. Vasyilevskaja (ed.): Stratigrafija i paleontologija Mezozojskih osadočnyh vassejnov severa SSSR. (Stratigraphy and palaeontology of the Mesozoic sedimentary basins of the north of the USSR.) Pp. 5–15. Leningrad: Research Institute of Arctic Geology.


Reichow M.K., Pringle M.S., Al’Mukhamedov A.I., Allen M.B., Andreichev V.L., Buslov M.M., Davies C.E., Fedoseev G.S., Fitton J.G., Inger S., Medvedev A.Y., Mitchell C., Puchkov V.N., Safonova I.Y., Scott R.A. & Saunders A.D. 2009. The timing and extent of the eruption of the Siberian Traps large igneous province: implications for the end-Permian environmental crisis. Earth and Planetary Science Letters 277, 9–20, doi: 10.1016/j.epsl.2008.09.030.


Riis F., Lundschien B.A., Høy T., Mørk A. & Mørk M.B.E. 2008. Evolution of the Triassic shelf in the northern Barents Sea region. Polar Research 27, 318–338, doi: 10.3402/polar.v27i3.6198.


Rød R.S., Hynne I.B. & Mørk A. 2014. Depositional environment of the Upper Triassic de Geerdalen Formation—an EW transect from Edgeøya to central Spitsbergen, Svalbard. Norwegian Petroleum Directorate Bulletin 11, 21–40.


Saigal G.C., Morad S., Bjørlykke K., Egeberg P.K. & Aagaard P. 1988. Diagenetic albitization of detrital K‐feldspar in Jurassic, Lower Cretaceous and Tertiary clastic reservoir rocks from offshore Norway, I. Textures and origin. Journal of Sedimentary Petrology 58, 1003–1013.


Savelyev A.A. & Savelyeva G.N. 1979. Ophiolites of the Voykar Massif (Polar Urals). In J. Malpas & R.W. Talkington (eds.): Ophiolites of the Canadian Appalachians and Soviet Urals. Memorial University of Newfoundland Geology Report 8. Pp. 127–140. St Johns, NL: Memorial University of Newfoundland.


Schulze D.J. 2001. Origin of chromian and aluminous spinel macrocrysts from kimberlites in southern Africa. Canadian Mineralogist 39, 361–376, doi: 10.2113/gscanmin.39.2.361.


Senger K., Planke S., Polteau S., Ogata K. & Svensen H. 2014. Sill emplacement and contact metamorphism in a siliciclastic reservoir on Svalbard, Arctic Norway. Norwegian Journal of Geology 94, 155–169.


Senger K., Tveranger J., Ogata K., Braathen A. & Planke S. 2014. Late Mesozoic magmatism in Svalbard: a review. Earth-Science Reviews 139, 123–144, doi: 10.1016/j.earscirev.2014.09.002.


Smelror M., Petrov O.V., Larssen G.B. & Werner S.C. (eds.) 2009. Atlas. Geological history of the Barents Sea. Trondheim: Geological Survey of Norway.


Smith J.V. 1974. Feldspar minerals. Vol. 2. Berlin: Springer.


Soloviev A., Zaionchek A., Suprunenko O., Brekke H., Faleide J., Rozhkova D., Khisamutdinova A., Stolbov N. & Hourigan J. 2015. Evolution of the provenances of Triassic rocks in Franz Josef Land: U/Pb La-Icp-Ms dating of the detrital zircon from Well Severnaya. Lithology Mineral Resources 50, 102–116, doi: 10.1134/S0024490215020054.


Stimac J.A. & Pearce T.H. 1992. Textural evidence of mafic-felsic magma interaction in dacite lavas, Clear Lake, California. American Mineralogist 77, 795–809.


Stone M. 1988. The significance of almandine garnets in the Lundby and Dartmoor granites. Mineralogical Magazine 52, 651–658, doi: 10.1180/minmag.1988.052.368.09.


Suggate S.M. & Hall R. 2013. Using detrital garnet compositions to determine provenance: a new compositional database and procedure. In R.A. Scott et al. (eds.): Sediment provenance studies in hydrocarbon exploration and production. Pp. 373–394. London: The Geological Society.


Terbenkov A.M., Sandelin S., Gee D.G. & Johansson Å. 2002. Caledonian migmatization in central Nordaustlandet, Svalbard. Norwegian Journal of Geology 82, 15–28.


Ustritckij V.I. 1981. Triasovye i verchnepermskie otlozenija poluostrova Admiraltejstva (Novaja Zemlja). Triassic and Upper Permian deposits of the Admiralteystva Peninsula [Novaya Zemlya]). In D.S. Sorokov & Y.N. Kulakov (eds.): Litologija i paleogeografija Barenceva i Karskogo morej. (Lithology and palaeogeography of the Barents and the Kara Sea.) Pp. 55–65. Leningrad: Research Institute of Arctic Geology.


Vernikovsky V.A., Vernikovskaya A., Proskurnin V., Matushkin N., Proskurnina M., Kadilnikov P., Larionov A. & Travin A. 2020. Late Paleozoic–early Mesozoic granite magmatism on the Arctic margin of the Siberian craton during the Kara–Siberia oblique collision and plume events. Minerals 10, article 571, doi: 10.3390/min10060571.


Vernon R.H. 1986. K-feldspar megacrysts in granites—phenocrysts, not porphyroblasts. Earth Science Review 23, 1–63.


Vigran J.O., Mangerud G., Mørk A., Worsley D. & Hochuli P.A. 2014. Palynology and geology of the Triassic succession on Svalbard and the Barents Sea. Trondheim: Geological Survey of Norway.


Worsley D., Johansen R. & Kristensen S.E. 1988. The Mesozoic and Cenozoic succession of Tromsøflaket. In A. Dalland et al. (eds.): A lithostratigraphic scheme for the Mesozoic and Cenozoic succession offshore mid- and northern Norway. Norwegian Petroleum Directorate Bulletin 4. Pp. 42–65. Stavanger: Norwegian Petroleum Directorate.


Zachariáš J. 2008. Compositional trends in magmatic and hydrothermal silicates of the Petráčkova hora intrusive complex, Bohemian Massif—link between the magmatic processes and intrusion-related gold mineralization. Journal of Geosciences 53, 105–117, doi: 10.3190/jgeosci.021.


Zawidzka K. 2003. Behaviour of garnets in diagenesis of Cenozoic sedimentary rocks: examples from Poland. Archiwum Mineralogiczne 54, 99–112.
Published
2024-04-16
How to Cite
Mørk M. B. E., Mørk A., Johansen S. K., Drivenes K., & Lundschien B. A. (2024). Sedimentary facies and mineral provenance of Upper Triassic sandstones offshore Kvitøya, Svalbard: implications for palaeogeographic interpretations in the northern Barents Shelf area. Polar Research, 43. https://doi.org/10.33265/polar.v43.9715
Section
Research Articles