Evidence of profuse bark shedding in Dicroidium seed ferns (Umkomasiales) from the Triassic of Antarctica

  • Philipp Hiller Institute for Geology and Palaeontology, Palaeobotany Research Group, University of Münster, Münster, Germany https://orcid.org/0009-0009-5903-2748
  • Michael Krings Bavarian Natural History Collections—Bavarian State Collection for Palaeontology and Geology, Munich, Germany; and Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig- Maximilians-Universität München, Munich, Germany
  • Hans Kerp Institute for Geology and Palaeontology, Palaeobotany Research Group, University of Münster, Münster, Germany https://orcid.org/0000-0003-3683-4093
  • Zhuo Feng Institute of Palaeontology, Yunnan Key Laboratory of Earth System Science, Yunnan University, Kunming, China; and Southwest United Graduate School, Kunming, China https://orcid.org/0000-0001-9635-1144
  • Benjamin Bomfleur Institute for Geology and Palaeontology, Palaeobotany Research Group, University of Münster, Münster, Germany https://orcid.org/0000-0002-2186-4970
Keywords: Epiphytes, fossil wood, palaeoecology, periderm, Transantarctic Mountains, Gondwana

Abstract

During the 11th German Antarctic North Victoria Land Expedition in 2015/16, exceptionally well-preserved permineralized Kykloxylon stems—the wood of the iconic Dicroidium plants of the Gondwanan Triassic—were collected from the Middle to Upper Triassic Helliwell Formation in north Victoria Land, Transantarctic Mountains, Antarctica. Some of these logs show large borings and cavities that are partly filled with multi-layered periderm. This periderm is identical in cell shape and dimensions to isolated flakes of tissue that are superabundant in bulk macerations of Dicroidium-bearing rock samples from different coeval locations in the Transantarctic Mountains. These flakes are interpreted as shed bark fragments of Dicroidium-bearing umkomasialean trees. Various hypotheses on the adaptive advantages of bark shedding are discussed, including the reduction of epiphyte load. Palynological data document an abundance of potentially epiphytic cryptogams (spikemosses and bryophytes) in the environments in which the Dicroidium trees grew, and modern ecosystems with a climate comparable to that of the Late Triassic in Antarctica are in many cases also characterized by a lush epiphyte vegetation. Another advantage could lie in the reduction of infections by phytopathogenic microorganisms, as abundant fungal remains in both the wound periderm and the dispersed periderm flakes indicate.

Downloads

Download data is not yet available.

References


Anderson H.M., Barbacka M., Bamford M.K., Holmes W.B.K. & Anderson J.M. 2020. Dicroidium (foliage) and affiliated wood; part 3 of a reassessment of Gondwana Triassic plant genera and a reclassification of some previously attributed. Alcheringa: An Australasian Journal of Palaeontology 44, 64–92, doi: 10.1080/03115518.2019.1622779.


Anderson J.M. & Anderson H.M. 1983. Palaeoflora of Southern Africa: Molteno Formation (Triassic). Vol. 2. Gymnosperms (excluding Dicroidium). Rotterdam: A.A. Balkema.


Archangelsky S. 1968. Studies on Triassic fossil plants from Argentina. IV. The leaf genus Dicroidium and its possible relation to Rhexoxylon stems. Palaeontology 11, 500–512.


Benzing D.H. 1990. Vascular epiphytes. Cambridge: Cambridge University Press.


Blomenkemper P., Kerp H., Abu Hamad A., DiMichele W.A. & Bomfleur B. 2018. A hidden cradle of plant evolution in Permian tropical lowlands. Science 362, 1414–1416, doi: 10.1126/science.aau4061.


Bomfleur B., Decombeix A.-L., Schwendemann A.B., Escapa I.H., Taylor E.L., Taylor T.N. & McLoughlin S. 2014. Habit and ecology of the Petriellales, an unusual group of seed plants from the Triassic of Antarctica. International Journal of Plant Sciences 175, 1062–1075, doi: 10.1086/678087.


Bomfleur B. & Kerp H. 2010. Dicroidium diversity in the Upper Triassic of North Victoria Land, East Antarctica. Review of Palaeobotany and Palynology 160, 67–101, doi: 10.1016/j.revpalbo.2010.02.006.


Bomfleur B., Klymiuk A.A., Taylor E.L., Taylor T.N., Gulbranson E.L. & Isbell J.L. 2014. Diverse bryophyte mesofossils from the Triassic of Antarctica. Lethaia 47, 120–132, doi: 10.1111/let.12044.


Bomfleur B., Krings M., Kaštovský J. & Kerp H. 2009. An enigmatic non-marine thalloid organism from the Triassic of East Antarctica. Review of Palaeobotany and Palynology 157, 317–325, doi: 10.1016/j.revpalbo.2009.06.004.


Bomfleur B., Krings M. & Kerp H. 2010. Thalloid organisms and the fossil record: new perspectives from the Transantarctic Mountains. Plant Signaling & Behavior 5, 293–295, doi: 10.4161/psb.5.3.10736.


Bomfleur B., Mörs T., Unverfärth J., Liu F., Läufer A., Castillo P., Oh C., Park T.-Y.S., Woo J. & Crispini L. 2021. Uncharted Permian to Jurassic continental deposits in the far north of Victoria Land, East Antarctica. Journal of the Geological Society 178, jgs2020-062, doi: 10.1144/jgs2020-062.


Bomfleur B., Schöner R., Schneider J.W., Viereck L., Kerp H. & McKellar J.L. 2014. From the Transantarctic Basin to the Ferrar Large Igneous Province—new palynostratigraphic age constraints for Triassic–Jurassic sedimentation and magmatism in East Antarctica. Review of Palaeobotany and Palynology 207, 18–37, doi: 10.1016/j.revpalbo.2014.04.002.


Boucher L.D., Taylor E.L. & Taylor T.N. 1993. Dicroidium from the Triassic of Antarctica. In S.G. Lucas & M. Morales (eds.): The nonmarine Triassic. New Mexico Museum of Natural History & Science Bulletin 3. Pp. 39–46. Albuquerque: New Mexico Museum of Natural History.


Burrows G.E. 2002. Epicormic strand structure in Angophora, Eucalyptus and Lophostemon (Myrtaceae): implications for fire resistance and recovery. New Phytologist 153, 111–131, doi: 10.1046/j.0028-646X.2001.00299.x.


Cabal S., Kellerman G. & McKillop-Herr S. 2020. The effects of plant and epiphyte interactions on bark exfoliation in Arbutus menziesii. California Ecology and Conservation Research 4, doi: 10.21973/N3RQ24.


Cantrill D.J. & Poole I. 2012. The Vegetation of Antarctica through geological time. Cambridge: Cambridge University Press.


Collinson J.W. 1997. Paleoclimate of Permo-Triassic Antarctica. In C.A. Ricci (ed.): The Antarctic region: geological evolution and processes. Proceedings of the VII International Symposium on Antarctic Earth Sciences, Siena, 1995. Pp. 1029–1034. Siena: Terra Antartica Publications.


Cúneo N.R., Taylor E.L., Taylor T.N. & Krings M. 2003. In situ fossil forest from the upper Fremouw Formation (Triassic) of Antarctica: paleoenvironmental setting and paleoclimate analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 197, 239–261, doi: 10.1016/S0031-0182(03)00468-1.


Decombeix A.-L., Bomfleur B., Taylor E.L. & Taylor T.N. 2014. New insights into the anatomy, development, and affinities of corystosperm trees from the Triassic of Antarctica. Review of Palaeobotany and Palynology 203, 22–34, doi: 10.1016/j.revpalbo.2014.01.002.


Decombeix A.-L., Serbet R. & Taylor E.L. 2018. Under pressure? Epicormic shoots and traumatic growth zones in high-latitude Triassic trees from East Antarctica. Annals of Botany 121, 681–689, doi: 10.1093/aob/mcx199.


Drovandi J.M., Correa G.A., Colombi C.E. & Césari S.N. 2022. Dicroidium (Zuberia) zuberi (Szajnocha) Archangelsky from exceptional Carnian leaf litters of the Ischigualasto Formation, westernmost Gondwana. Historical Biology 34, 1260–1273, doi: 10.1080/08912963.2021.1974017.


Escapa I.H., Taylor E.L., Cúneo R., Bomfleur B., Bergene J., Serbet R. & Taylor T.N. 2011. Triassic floras of Antarctica: plant diversity and distribution in high paleolatitude communities. Palaios 26, 522–54, doi: 10.2110/palo.2010.p10-122r.


Feng Z., Wang J., Rößler R., Ślipiński A. & Labandeira C. 2017. Late Permian wood-borings reveal an intricate network of ecological relationships. Nature Communications 8, article no. 556, doi: 10.1038/s41467-017-00696-0.


Givnish T.J. 1992. Nature green in leaf and tendril. Science 256, 1339–1341, doi: 10.1126/science.256.5061.1339.


Givnish T.J. 1995. Plant stems: biomechanical adaptation for energy capture and influence on species distributions. In B.L. Gartner (ed.): Plant stems: physiology and functional morphology. Pp. 3–49. San Diego, CA: Academic Press.


Gothan W. 1912. Über die Gattung Thinnfeldia Ettingshausen. (On the genus Thinnfeldia Ettingshausen.) Abhandlungen der Naturhistorischen Gesellschaft zu Nürnberg 19, 67–80.


Harper C.J., Taylor E.L. & Krings M. 2020. Filamentous cyanobacteria preserved in masses of fungal hyphae from the Triassic of Antarctica. PeerJ 8, e8660, doi: 10.7717/peerj.8660.


Hass H. & Rowe N.P. 1999. Thin sections and wafering. In T.P. Jones & N.P. Rowe (eds.): Fossil plants and spores: modern techniques. Pp. 76–81. London: The Geological Society.


Ingwell L.L., Wright S.J., Becklund K.K., Hubbell S.P. & Schnitzer S.A. 2010. The impact of lianas on 10 years of tree growth and mortality on Barro Colorado Island, Panama. Journal of Ecology 98, 879–887, doi: 10.1111/j.1365-2745.2010.01676.x.


Kerp H. & Krings M. 1999. Light microscopy of fossil cuticles. In T.P. Jones & N.P. Rowe (eds.): Fossil plants and spores: modern techniques. Pp. 52–56. London: The Geological Society.


Klavins S.D., Taylor T.N. & Taylor E.L. 2002. Anatomy of Umkomasia (Corystospermales) from the Triassic of Antarctica. American Journal of Botany 89, 664–676, doi: 0.3732/ajb.89.4.664.


Kozlowski T.T. & Pallardy S.G. 1997. Growth control in woody plants. San Diego, CA: Academic Press.


Ladwig L.M. & Meiners S.J. 2009. Impacts of temperate lianas on tree growth in young deciduous forests. Forest Ecology and Management 259, 195–200, doi: 10.1016/j.foreco.2009.10.012.


Lalica M.A.K. & Tomescu A.M.F. 2024. Plant periderm as a continuum in structural organisation: a tracheophyte-wide survey and hypotheses on evolution. Biological Reviews 99, 1196–1217, doi: 10.1111/brv.13064.


Looy C., Collinson M.E., van Konijnenburg-van Cittert J.H.A., Visscher H. & Brain A.P.R. 2005. The ultrastructure and botanical affinity of end-Permian spore tetrads. International Journal of Plant Sciences 166, 875–887, doi: 10.1086/431802.


Lutz H.J. 1943. Injuries to trees caused by Celastrus and Vitis. Bulletin of the Torrey Botanical Club 70, 436–439.


Meyer-Berthaud B., Taylor E.L. & Taylor T.N. 1992. Reconstructing the Gondwana seed fern Dicroidium: evidence from the Triassic of Antarctica. Geobios 25, 341–344, doi: 10.1016/0016-6995(92)80005-X.


Meyer-Berthaud B., Taylor T.N. & Taylor E.L. 1993. Petrified stems bearing Dicroidium leaves from the Triassic of Antarctica. Palaeontology 36, 337–356.


Milks J.R., Hibbard J. & Rooney T. 2017. Exfoliating bark does not protect Platanus occidentalis from root-climbing lianas. Northeastern Naturalist 24, 520–526, doi: 10.1656/045.024.0410.


Mörs T., Niedźwiedzki G., Crispini L., Läufer A. & Bomfleur B. 2019. First evidence of a tetrapod from the Triassic of northern Victoria Land, Antarctica. Polar Research 38, article no. 3438, doi: 10.33265/polar.v38.3438.


Norris G. 1965. Triassic and Jurassic miospores and acritarchs from the Beacon and Ferrar groups, Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics 8, 236–277, doi: 10.1080/00288306.1965.10428110.


Oh C., Park T.-Y., Woo J., Bomfleur B., Philippe M., Decombeix A.-L-, Kim Y.-H.G. & Lee J.I. 2016. Triassic Kykloxylon wood (Umkomasiaceae, Gymnospermopsida) from Skinner Ridge, northern Victoria Land, East Antarctica. Review of Palaeobotany and Palynology 233, 104–114, doi: 10.1016/j.revpalbo.2016.07.006.


Oliver W.R.B. 1930. New Zealand epiphytes. Journal of Ecology 18, 1–50, doi: 10.2307/2255890.


Petriella B. 1977. La reconstrucción de Dicroidium (Pteridospermopsida, Corystospermaceae). (Reconstructing the Dicrodium [Pteridospermopsida, Corystospermaceae].) In: Obra del Centenario del Museo de La Plata. (Centennial of the Museo de La Plata.) Vol. 3. Pp. 107–110. La Plata, Argentina: Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo.


Pfanz H. & Aschan G. 2001. The existence of bark and stem photosynthesis in woody plants and its significance for the overall carbon gain. An eco-physiological and ecological approach. Progress in Botany 62, 475–510, doi: 10.1007/978-3-642-56849-7_19.


Pigg K.B. 1990. Anatomically preserved Dicroidium foliage from the central Transantarctic Mountains. Review of Palaeobotany and Palynology 66, 129–145, doi: 10.1016/0034-6667(90)90031-D.


Pšenička J. & Opluštil S. 2013. The epiphytic plants in the fossil record and its example from in situ tuff from Pennsylvanian of Radnice Basin (Czech Republic). Bulletin of Geosciences 88, 401–416, doi: 10.3140/bull.geosci.1376.


Putz F.E. 1984. How trees avoid and shed lianas. Biotropica 16, 19–23, doi: 10.2307/2387889.


Schimper A.F.W. 1888. Die epiphytische Vegetation Amerikas. Jena: G. Fischer.


Serra O., Mähönen A.P., Hetherington A.J. & Ragni L. 2022. The making of plant armor: the periderm. Annual Review of Plant Biology 73, 405–432, doi: 10.1146/annurev-arplant-102720-031405.


Sfair J.C., Rochelle A.L.C., Rezende A.A., van Melis J., Burnham R.J., de Lara Weiser V. & Martins F.R. 2016. Liana avoidance strategies in trees: combined attributes increase efficiency. Tropical Ecology 57, 559–566.


Stevens G.C. 1987. Lianas as structural parasites: the Bursera simaruba example. Ecology 68, 77–81, doi: 10.2307/1938806.


Stubblefield S.P. & Taylor T.N. 1986. Wood decay in silicified gymnosperms from Antarctica. Botanical Gazette 147, 116–125, doi: 10.1086/337577.


Taylor E.L. 1996. Enigmatic gymnosperms? Structurally preserved Permian and Triassic floras from Antarctica. Review of Palaeobotany and Palynology 90, 303–318, doi: 10.1016/S0034-6667(96)00089-9.


Taylor T.N. & Taylor E.L. 1990. Antarctic paleobiology: its role in the reconstruction of Gondwana. New York: Springer.


Thomas H.H. 1933. On some pteridospermous plants from the Mesozoic rocks of South Africa. Philosophical Transactions of the Royal Society of London Series B 222, 193–265, doi: 10.1098/rstb.1932.0016.


Tomescu A.M.F., Bomfleur B., Bippus A.C. & Savoretti A. 2018. Why are bryophytes so rare in the fossil record? A spotlight on taphonomy and fossil preservation. In M. Krings et al. (eds.): Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Pp. 375–416. London: Academic Press.


Townrow J.A. 1957. On Dicroidium, probably a pteridospermous leaf, and other leaves now removed from this genus. Transactions of the Geological Society of South Africa 60, 21–56.


Unverfärth J., McLoughlin S. & Bomfleur B. 2022. Mummified Dicroidium (Umkomasiales) leaves and reproductive organs from the Upper Triassic of South Australia. Palaeontographica Abteilung B 304, 149–225, doi: 10.1127/palb/2022/0079.


van der Heijden G.M.F & Phillips O.L. 2008. What controls liana success in neotropical forests? Global Ecology and Biogeography 17, 372–383, doi: 10.1111/j.1466-8238.2007.00376.x


Yao X., Taylor T.N. & Taylor E.L. 1995. The corystosperm pollen organ Pteruchus from the Triassic of Antarctica. American Journal of Botany 82, 535–546, doi: 10.1002/j.1537-2197.1995.tb15675.x.


Zotz G. 2005. Vascular epiphytes in the temperate zones—a review. Plant Ecology 176, 173–183, doi: 10.1007/s11258-004-0066-5.
Published
2024-09-27
How to Cite
Hiller P., Krings M., Kerp H., Feng Z., & Bomfleur B. (2024). Evidence of profuse bark shedding in <em>Dicroidium</em&gt; seed ferns (Umkomasiales) from the Triassic of Antarctica. Polar Research, 43. https://doi.org/10.33265/polar.v43.10657
Section
Research Articles