Glacial mass balance of Austre Brøggerbreen (Spitsbergen), 1971–1999, modelled with a precipitation-run-off model

  • Oddbjørn Bruland
  • Jon Ove Hagen

Abstract

An energy balance based HBV model was calibrated to the run-off from Bayelva catchment in western Spitsbergen, Svalbard. The model simulated the glacier mass balance, and the results were compared to observations at Austre Brøggerbreen for the period 1971-1997. Even though the model was optimized to observed run-off from a catchment in which the glaciers constitute 50% of the area, and not to the observation of glacier mass balance, the model was able to reconstruct the trends and values of the mass balance found through observations. On average the simulation gave a negative net balance of 696 mm. The observed average is 442 mm. The simulated winter accumulation was in average for the same period 9% lower and the summer ablation 17% higher than the observed. The years 1994-96 show deviations between simulated and observed winter accumulation up to 160%. This can probably be accounted for by extreme rainfall during the winter, leading to thick ice layers which make accurate observations difficult. The higher simulated summer ablation might indicate that the glaciers in the catchment as a whole have a larger negative mass balance than Austre Brøggerbreen. The simulations showed that the glacier mass-balance would be in equilibrium with a summer temperature 1.2°C lower than the average over the last decades or with a 100% increase in the winter (snow) precipitation. These are higher values than former estimates. A combined change of temperature and precipitation showed a synergic effect and thereby less extreme values.

Downloads

Download data is not yet available.
Published
2002-01-06
How to Cite
Bruland, O., & Hagen, J. O. (2002). Glacial mass balance of Austre Brøggerbreen (Spitsbergen), 1971–1999, modelled with a precipitation-run-off model. Polar Research, 21(1), 109-121. https://doi.org/10.3402/polar.v21i1.6477
Section
Research/review articles

Most read articles by the same author(s)

1 2 > >>