Surface heat budget in the Southern Ocean from 42°S to the Antarctic marginal ice zone: four atmospheric reanalyses versus icebreaker Aurora Australis measurements

  • Lisan Yu Department of Physical Oceanography, Woods Hole Oceanographic Institution
  • Xiangze Jin Department of Physical Oceanography, Woods Hole Oceanographic Institution
  • Eric W. Schulz Centre for Australian Weather and Climate Research, Australian Bureau of Meteorology
Keywords: Surface fluxes, surface energy budget, overestimation bias, underestimation bias, surface meteorology, icebreaker-based meteorological measurements

Abstract

Surface heat fluxes from four atmospheric reanalyses in the Southern Ocean are evaluated using air–sea measurements obtained from the Aurora Australis during off-winter seasons in 2010–12. The icebreaker tracked between Hobart, Tasmania (ca. 42°S), and the Antarctic continent, providing in situ benchmarks for the surface energy budget change in the Subantarctic Southern Ocean (58–42°S) and the eastern Antarctic marginal ice zone (MIZ, 68–58°S). We find that the reanalyses show a high-level agreement among themselves, but this agreement reflects a universal bias, not a “truth.” Downward shortwave radiation (SW↓) is overestimated (warm biased) and downward longwave radiation (LW↓) is underestimated (cold biased), an indication that the cloud amount in all models is too low. The ocean surface in both regimes shows a heat gain from the atmosphere when averaged over the seven months (October–April). However, the ocean heat gain in reanalyses is overestimated by 10–36 W m−2 (80–220%) in the MIZ but underestimated by 6–20 W m−2 (7–25%) in the Subantarctic. The biases in SW↓ and LW↓ cancel out each other in the MIZ, causing the surface heat budget to be dictated by the underestimation bias in sensible heat loss. These reanalyses biases affect the surface energy budget in the Southern Ocean by meaningfully affecting the timing of the seasonal transition from net heat gain to net heat loss at the surface and the relative strength of SW↓ at different regimes in summer, when the length-of-day effect can lead to increased SW↓ at high latitudes.

Downloads

Download data is not yet available.

References


Alam A. & Curry J. 1995. Lead-induced atmospheric circulations. Journal of Geophysical Research—Oceans 100, 4643–4652, http://dx.doi.org/10.1029/94JC02562.


Allison I., Brandt R.E. & Warren S.G. 1993. East Antarctic sea ice: albedo, thickness distribution, and snow cover. Journal of Geophysical Research—Oceans 98, 12417–12429, http://dx.doi.org/10.1029/93JC00648.


Allison I., Tivendale C.M. & Akerman G.J., Tann J.M. & Wills R.H. 1982. Seasonal variations in the surface energy exchanges over Antarctic sea ice and coastal waters. Annals of Glaciology 3, 12–16, http://dx.doi.org/10.3189/S0260305500002445.


Anderson R.J. 1987. Wind stress measurements over rough ice during the 1984 Marginal Ice Zone Experiment. Journal of Geophysical Research—Oceans 92, 6933–6941, http://dx.doi.org/10.1029/JC092iC07p06933.


Andreas E.L. 1987. A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Boundary-Layer Meteorology 38, 159–184, http://dx.doi.org/10.1007/BF00121562.


Andreas E.L. 2002. Parameterizing scalar transfer over snow and ice: a review. Journal of Hydrometeorology 3, 417–432, http://dx.doi.org/10.1175/1525-7541(2002)003<0417:PSTOSA>2.0.CO;2.


Andreas E.L, Horst T.W., Grachev A.A., Persson P.O.G., Fairall C.W., Guest P.S. & Jordan R.E. 2010. Parameterising turbulent exchange over summer sea ice and the marginal ice zone. Quarterly Journal of the Royal Meteorological Society 136, 927–943, http://dx.doi.org/10.1002/qj.618.


Andreas E.L., Paulson C.A., Williams R.M., Lindsay R.W. & Businger J.A. 1979. The turbulent heat flux from Arctic leads. Boundary Layer Meteorology 17, 57–91. http://dx.doi.org/10.1007/BF00121937.


Andreas E.L., Persson P., Jordan R.E., Horst T.W., Guest P.S., Grachev A.A. & Fairall C.W. 2010. Parameterizing turbulent exchange over sea ice in winter. Journal of Hydrometeorology 11, 87–104, http://dx.doi.org/10.1175/2009JHM1102.1.


Andreas E.L., Tucker W.B. III & Ackley S.F. 1984. Atmospheric boundary-layer modification, drag coefficient, and surface heat flux in the Antarctic marginal ice zone. Journal of Geophysical Research—Oceans 89, 649–661, http://dx.doi.org/10.1029/JC089iC01p00649.


Bennett T.J. Jr. & Hunkins K. 1986. Atmospheric boundary layer modification in the marginal ice zone. Journal of Geophysical Research—Oceans 91, 13033–13044, http://dx.doi.org/10.1029/JC091iC11p13033.


Birnbaum G. & Lupkes C. 2002. A new parameterization of surface drag in the marginal sea ice zone. Tellus 54A, 107–123, http://dx.doi.org/10.1034/j.1600-0870.2002.00243.x.


Brandt R.E., Warren S.G., Worby A.P. & Grenfell T.C. 2005. Surface albedo of the Antarctic sea ice zone. Journal of Climate 18, 3606–3622, http://dx.doi.org/10.1175/JCLI3489.1.


Bromwich D.H., Chen B., Hines K.M. & Cullather R.I. 1998. Global atmospheric responses to Antarctic forcing. Annals of Glaciology 27, 521–527.


Cerovečki I., Talley L.D. & Mazloff M.R. 2011. A comparison of Southern Ocean air–sea buoyancy flux from an ocean state estimate with five other products. Journal of Climate 24, 6283–6306, http://dx.doi.org/10.1175/2011JCLI3858.1.


Comiso J.C. & Zwally H.J. 1984. Concentration gradients and growth/decay characteristics of the seasonal sea ice cover. Journal of Geophysical Research 89, 8081–8103, http://dx.doi.org/10.1029/JC089iC05p08081.


Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann B., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B. Hersbach H., Hólm E.V., Isaksen, L., Kallberg P., Kohler M., Matricardi M., McNally A.P., Monge-Sanz B.;M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavalato C., Thépaut J.-N. & Vitart F. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Meteorological Society 137, 553–597, http://dx.doi.org/10.1002/qj.828.


Fairall C.W., Bradley E.F., Hare J.E., Grachev A.A. & Edson J.B. 2003. Bulk parameterization of air–sea fluxes: updates and verification for the COARE algorithm. Journal of Climate 16, 571–591, http://dx.doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.


Foken T. 2008. The energy balance closure problem: an overview. Ecological Applications 18, 1351–1367, http://dx.doi.org/10.1890/06-0922.1.


Grachev A.A., Andreas E.L., Fairall C.W., Guest P.S. & Persson P.O.G. 2007. SHEBA flux-profile relationships in the stable atmospheric boundary layer. Boundary-Layer Meteorology 124, 315–333, http://dx.doi.org/10.1007/s10546-007-9177-6.


Grachev A.A., Persson P.O.G., Uttal T., Akish E.A., Cox C.J., Morris S.M., Fairall C.W., Stone R.S., Lesins G., Makshtas A.P. & Repina I.A. 2018. Seasonal and latitudinal variations of surface fluxes at two Arctic terrestrial sites. Climate Dynamics 51, 1793–1818, http://dx.doi.org/10.1007/s00382-017-3983-4.


Guest P.S. & Davidson K.L. 1987. The effect of observed ice conditions on the drag coefficient in the summer East Greenland Sea marginal ice zone. Journal of Geophysical Research—Oceans 92, 6943–6954, http://dx.doi.org/10.1029/JC092iC07p06943.


Hastenrath S. 1982. On meridional heat transport in the world ocean. Journal of Physical Oceanography 12, 922–927, http://dx.doi.org/10.1175/1520-0485(1982)012<0922:OMHTIT>2.0.CO;2.


Haynes J.M., Jakob C., Rossow W.B., Tselioudis G. & Brown J. 2011. Characteristics of Southern Ocean cloud regimes and their effects on the energy budget. Journal of Climate 24, 5061–5080, http://dx.doi.org/10.1175/2011JCLI4052.1.


Hibler W.D. III 1979. A dynamic thermodynamic sea ice model. Journal of Physical Oceanography 9, 815–846.


Hill K., Moltmann T., Proctor R. & Allen S. 2010. The Australian Integrated Marine Observing System: delivering data streams to address national and international research priorities. Marine Technology Society Journal 44, 65–72, http://dx.doi.org/10.4031/MTSJ.44.6.13.


Hudson D.A. & Hewitson C. 2001. The atmospheric response to a reduction in summer Antarctic sea-ice extent. Climate Research 16, 79–99, http://dx.doi.org/10.3354/cr016079.


Hunke E.C. & Dukowicz J.K. 1997. An elastic–viscous–plastic model for sea ice dynamics. Journal of Physical Oceanography 27, 1849–1867, http://dx.doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.


Jacobs A.F.G., Heusinkveld B.G. & Holtslag A.A.M. 2008. Towards closing the surface energy budget of a mid-latitude grassland. Boundary-Layer Meteorology 126, 125–136, http://dx.doi.org/10.1007/s10546-007-9209-2.


Kalnay, E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Leetmaa A., Reynolds R., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Jenne R. & Joseph D. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77, 437–472.


Kato S., Loeb N.G., Rose F.G., Doelling D.R., Rutan D.A., Caldwell T.E., Yu L. & Weller R.A. 2013. Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. Journal of Climate 26, 2719–2740, https://doi.org/10.1175/JCLI-D-12-00436.1.


King J.C. & Turner J. 1997. Antarctic meteorology and climatology. Cambridge: Cambridge University Press.


Kottmeier C. & Engelbart D. 1992. Generation and atmospheric heat exchange of coastal polynyas in the Weddell Sea. Boundary Layer Meteorology 60, 207–234, http://dx.doi.org/10.1007/BF00119376.


Kottmeier C. & Sellmann L. 1996. Atmospheric and oceanic forcing of Weddell Sea ice motion. Journal of Geophysical Research—Oceans 101, 20809–20824, http://dx.doi.org/10.1029/96JC01293.


Leuning R., van Gorsel E., Massman W.J. & Isaac P.R. 2012. Reflections on the surface energy imbalance problem. Agricultural and Forest Meteorology 156, 65–74, http://dx.doi.org/10.1016/j.agrformet.2011.12.002.


Lupkes C. & Gryanik V.M. 2015. A stability-dependent parametrization of transfer coefficients for momentum and heat over polar sea ice to be used in climate models. Journal of Geophysical Research—Atmospheres 120, 552–581, http://dx.doi.org/10.1002/2014JD022418.


McPhee M.G., Ackley S.F., Guest P., Huber B.A., Martinson D.G., Morison J.H., Muench R.D., Padman L. & Stanton T.P. 1996. The Antarctic Zone Flux Experiment. Bulletin of the American Meteorological Soceity 77, 1221–1232, http://dx.doi.org/10.1175/1520-0477(1996)077<1221:TAZFE>2.0.CO;2.


McPhee M.G., Maykut G.A. & Morison J.H. 1987. Dynamics and thermodynamics of the ice/upper ocean system in the marginal ice zone of the Greenland Sea. Journal of Geophysical Research 92, 7017–7031, http://dx.doi.org/10.1029/JC092iC07p07017.


Manabe S. & Stouffer R.J. 1980. Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. Journal of Geophysical Research—Oceans 85, 5529–5554, http://dx.doi.org/10.1029/JC085iC10p05529.


Markus T. & Cavalieri D.J. 2000. An enhancement of the NASA Team sea ice algorithm. IEEE Transactions on Geoscience and Remote Sensing 38, 1387–1398, http://dx.doi.org/10.1109/36.843033.


Maykut G.A. & McPhee M.G. 1995. Solar heating of the Arctic mixed layer. Journal of Geophysical Research—Oceans 100, 24691–24703, http://dx.doi.org/10.1029/95JC02554.


Meinel A.B. & Meinel M.P. 1976. Applied solar energy: an introduction. Reading: Addison Wesley Publishing.


Meyers G. 2008. The Australian integrated marine observing system. Journal of Ocean Technology 3, 80–81.


Naud C.M., Booth J.F. & Del Genio A.D. 2014. Evaluation of ERA-Interim and MERRA Cloudiness in the Southern Ocean. Climate 27, 2109–2124, http://dx.doi.org/10.1175/JCLI-D-13-00432.1.


Nygard T., Vihma T., Birnbaum G., Hartmann J., King J., Lachlan-Cope T., Ladkin R., Lupkes C. & Weiss A. 2016. Validation of eight atmospheric reanalyses in the Antarctic Peninsula region. Quarterly Journal of the Royal Meteorological Society 142, 684–692, http://dx.doi.org/10.1002/qj.2691.


Pedersen C.A., Roeckner E., Lüthje M. & Winther J.-G. 2009. A new sea ice albedo scheme including melt ponds for ECHAM5 general circulation model. Journal of Geophysical Research—Atmospheres 114, D08101, https://doi.org/10.1029/2008JD010440.


Pidwirny M. 2006. Earth–sun relationships and insolation. In M. Pidwirny: Fundamentals of physical geography. 2nd edn. Accessed on the internet at http://www.physicalgeography.net/fundamentals/6i.html 15 November 2018.


Renfrew I.A., Moore G.W., Guest P.S. & Bumke K. 2002. A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses. Journal of Physical Oceanography 32, 383–400, http://dx.doi.org/10.1175/1520-0485(2002)032<0383:ACOSLA>2.0.CO;2.


Rienecker M.M., Suarez M.J., Gelaro R., Todling R., Bacmeister J., Liu E., Bosilovich M.G., Schubert S.D., Takacs L., Kim G., Bloom S., Chen J., Collins D., Conaty A., da Silva A., Gu W., Joiner J., Koster R.D., Lucchesi R., Molod A., Owens T., Pawson S., Pegion P., Redder C.R., Reichle R., Robertson F.R., Ruddick A.G., Sienkiewicz M. & Woollen J. 2011. MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of Climate 24, 3624–3648, http://dx.doi.org/10.1175/JCLI-D-11-00015.1.


Rintoul S.R., Hughes C.W. & Olbers D. 2001. The antarctic circumpolar current system. In G. Siedler et al. (eds.): Ocean circulation and climate. Vol. 103. Pp. 271–302. New York: Academic Press.


Ruffieux D., Persson P.O.G., Fairall C.W. & Wolfe D.W. 1995. Ice pack and lead surface-energy budgets during LEADEX-1992. Journal of Geophysical Research—Oceans 100, 4593–4612, http://dx.doi.org/10.1029/94JC02485.


Saha S., Moorthi S., Pan H., Wu X., Wang J., Nadiga S., Tripp P., Kistler R., Woollen J., Behringer D., Liu H., Stokes D., Grumbine R., Gayno G., Wang J., Hou Y., Chuang H., Juang H.H., Sela J., Iredell M., Treadon R., Kleist D., Van Delst P., Keyser D., Derber J., Ek M., Meng J., Wei H., Yang R., Lord S., van den Dool H., Kumar A., Wang W., Long C., Chelliah M., Xue Y., Huang B., Schemm J., Ebisuzaki W., Lin R., Xie P., Chen M., Zhou S., Higgins W., Zou C., Liu Q., Chen Y., Han Y., Cucurull L., Reynolds R.W., Rutledge G. & Goldberg M. 2010. The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society 91, 1015–1057, http://dx.doi.org/10.1175/2010BAMS3001.1.


Schnell R.C., Barry R.G., Miles M.W., Andreas E.L., Radke L.F., Brock C.A., McCormick M.P. & Moore J.L. 1989. Lidar detection of lead in Arctic sea ice. Nature 339, 530–532, http://dx.doi.org/10.1038/339530a0.


Schulz E., Josey S.A. & Verein R. 2012. First air–sea flux mooring measurements in the Southern Ocean. Geophysical Research Letters 39, L16606, http://dx.doi.org/10.1029/2012GL052290.


Serreze M.C. & Barry R.G. 2005. The Arctic climate system. Cambridge: Cambridge University Press.


Strong C. & Rigor I.G. 2013. Arctic marginal ice zone trending wider in summer and narrower in winter. Geophysical Research Letter 40, 4864–4868, https://doi.org/10.1002/grl.50928.


Tetzla A., Lupkes C. & Hartmann J. 2015. Aircraft-based observations of atmospheric boundary-layer modification over Arctic leads. Quarterly Journal of the Royal Meteorological Society 141, 2839–2856, http://dx.doi.org/10.1002/qj.2568.


Trenberth K.E. & Fasullo J. 2010. Simulation of present-day and twenty-first-century energy budgets of the Southern Oceans. Journal of Climate 23, 440–454, http://dx.doi.org/10.1175/2009JCLI3152.1.


Vihma T. 1995. Subgrid parameterization of surface heat and momentum fluxes over polar oceans. Journal of Geophysical Research—Oceans 100, 22625–22646, http://dx.doi.org/10.1029/95JC02498.


Vihma T., Uotila J., Cheng B. & Launiainen J. 2002. Surface heat budget over the Weddell Sea: buoy results and model comparisons. Journal of Geophysical Research—Oceans 107, article no. 3013, http://dx.doi.org/10.1029/2000JC000372.


Wadhams P., Squire V.A., Ewing J.A. & Pascal R.W. 1986. The effect of the marginal ice zone on the directional wave spectrum of the ocean. Journal of Physical Oceanography 16, 358–376, http://dx.doi.org/10.1175/1520-0485(1986)016<0358:TEOTMI>2.0.CO;2.


Walden V.P., Hudson S.R., Cohen L., Murphy S.Y. & Granskog M.A. 2017. Atmospheric components of the surface energy budget over young sea ice: results from the N-ICE2015 campaign. Journal of Geophysical Research—Atmospheres 122, 8427–8446, http://dx.doi.org/10.1002/2016JD026091.


Walsh J.E., Chapman W.L. & Portis D.H. 2009. Arctic cloud fraction and radiative fluxes in atmospheric reanalyses. Journal of Climate 22, 2316–2334, https://doi.org/10.1175/2008JCLI2213.1.


Wendler G., Hartmann B., Wyatt C., Shulski M. & Stone H. 2005. Midsummer energy balance for the southern seas. Boundary Layer Meteorology 117, 131–148, https://doi.org/10.1007/s10546-004-7090-9.


Wilson K., Goldstein A., Falge E., Aubinet M., Baldocchi D., Berbigier P., Bernhofer C., Ceulemans R., Dolman H., Field C., Grelle A., Ibrom A., Law B.E., Kowalski A., Meyers T., Moncrieff J., Monson R., Oechel W., Tenhunen J., Valentini R. & Verma S., 2002. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology 113, 223–243, https://doi.org/10.1016/S0168-1923(02)00109-0.


Winton M. 2000. A reformulated three-layer sea ice model. Journal of Atmospheric and Oceanic Technology 17, 525–531, https://doi.org/10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2.


Wu X. & Grumbine R. 2014. Sea ice in the NCEP climate forecast system. Climate Prediction S&T Digest. Science and Technology Infusion Climate Bulletin Supplement February 2014, 28–35.


Yu L. 2019. Global air–sea fluxes of heat, fresh water, and momentum: energy budget closure and unanswered questions. Annual Review of Marine Science 11, 227–248, https://doi.org/10.1146/annurev-marine-010816-060704.


Yu L., Jin X., Schulz E. & Josey S.A. 2017. Air–sea interaction regimes in the sub-Antarctic Southern Ocean and Antarctic marginal ice zone revealed by icebreaker measurements. Journal of Geophysical Research—Oceans 122, 6547–6564. https://doi.org/10.1002/2016JC012281.


Yu L. & Weller R.A. 2007. Objectively analyzed air–sea heat fluxes for the global ocean-free oceans (1981–2005). Bulletin of the American Meteorological Society 88, 527–539, https://doi.org/10.1175/BAMS-88-4-527.


Yuan X.J. & Martinson D.G. 2000. Antarctic sea ice extent variability and its global connectivity. Journal of Climate 13, 1697–1717, https://doi.org/10.1175/1520-0442(2000)013<1697:ASIEVA>2.0.CO;2.


Zwally H.J., Comiso J.C., Parkinson C.L., Cavalieri D.J. & Gloersen P. 2002. Variability of Antarctic sea ice 1979–1998. Journal of Geophysical Research—Oceans 107, article no. 3041, https://doi.org/10.1029/2000JC000733.
Published
2019-06-28
How to Cite
Yu L., Jin X., & Schulz E. W. (2019). Surface heat budget in the Southern Ocean from 42°S to the Antarctic marginal ice zone: four atmospheric reanalyses versus icebreaker <em>Aurora Australis</em&gt; measurements. Polar Research, 38. https://doi.org/10.33265/polar.v38.3349
Section
Research Articles