Eurasian winter temperature change in recent decades and its association with Arctic sea ice loss

  • Hye-Jin Kim School of Earth and Environmental Sciences, Seoul National University, Gwanak-gu, Seoul, South Korea
  • Seok-Woo Son School of Earth and Environmental Sciences, Seoul National University, Gwanak-gu, Seoul, South Korea
Keywords: Warm Arctic–cold Eurasia, Eurasian winter cooling, Barents–Kara sea-ice loss


The surface air temperature in the northern mid-latitudes during winter showed a significant cooling trend from the late 1990s to the early 2010s, in spite of increasing greenhouse gas concentrations. This unexpected cooling, which was particularly strong across Eurasia, has been partly attributed to Arctic sea-ice loss. Here, the statistical relationship between Arctic sea-ice loss and surface air-temperature change during winter in Eurasia, which is often referred to as the warm Arctic–cold Eurasia pattern, is re-evaluated by using a break-point trend analysis and maximum covariance analysis. A significant time-lagged covariability is observed between the Arctic sea-ice concentration over the Barents–Kara seas and the Eurasian surface air temperature during winter, with the former leading the latter by approximately two months. More importantly, the timing of an abrupt decline in the autumn Arctic sea ice that occurred in the late 1990s is coincident with the beginning of the Eurasian winter cooling. This concurrent trend change is statistically significant and robustly found in both the break-point analysis and maximum covariance analysis. These results suggest that both the interannual variability and decadal trend change seen for the surface air temperature during Eurasian winters are likely influenced by regional sea-ice changes over the Barents–Kara seas.


Download data is not yet available.


Barnes E.A. & Screen J.A. 2015. The impact of Arctic warming on the midlatitude jet-stream: can it? Has it? Will it? Wiley Interdisciplinary Reviews: Climate Change 6, 277–286, doi: 10.1002/wcc.337.

Blunden J. & Arndt D.S. (eds.) 2016. State of the climate in 2015. Bulletin of the American Meteorological Society 97(8), Supplement, doi: 10.1175/2016BAMSStateoftheClimate.1. Boston, MA: American Meteorological Society.

Blunden J. & Arndt D.S. (eds.) 2017. State of the climate in 2016. Bulletin of the American Meteorological Society 98(8), Supplement, doi: 10.1175/2017BAMSStateoftheClimate.1. Boston, MA: American Meteorological Society.

Bond N.A., Overland J.E., Spillane M. & Stabeno P. 2003. Recent shift in the state of the North Pacific. Geophysical Research Letters 30, article no. 2183, doi: 10.1029/2003GL018597.

Bretherton C.S., Smith C. & Wallace J.M. 1992. An intercomparison of methods for finding coupled patterns in climate data. Journal of Climate 5, 541–560, doi: 10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

Cavalieri D., Parkinson C., Gloersen P. & Zwally H.J. 1996. Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data. Boulder, CO: National Snow and Ice Data Center. doi: 10.5067/8GQ8LZQVL0VL. Accessed on the internet at Colorado USA on, 15 May 2017.

Chang S.Y. & Perron P. 2016. A comparison of alternative methods to construct confidence intervals for the estimate of a break date in linear regression models. Econometric Reviews 37, 577–601, doi: 10.1080/07474938.2015.1122142.

Chen H.W., Alley R.B. & Zhang F. 2016. Interannual Arctic sea ice variability and associated winter weather patterns: a regional perspective for 1979–2014. Journal of Geophysical Research—Atmospheres 121, 14433–14455, doi: 10.1002/2016JD024769.

Cohen J.L., Furtado J.C., Barlow M.A., Alexeev V.A. & Cherry J.E. 2012a. Arctic warming, increasing snow cover and widespread boreal winter cooling. Environmental Research Letters 7, article no. 014007, doi: 10.1088/1748-9326/7/1/014007.

Cohen J.L., Furtado J.C., Barlow M., Alexeev V.A. & Cherry J.E. 2012b. Asymmetric seasonal temperature trends. Geophysical Research Letters 39, L04705, doi: 10.1029/2011GL050582.

Cohen J.L., Screen J.A., Furtado J.C., Barlow M., Whittleston D., Coumou D., Francis J., Dethloff K., Entekhabi D., Overland J. & Jones J. 2014. Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience 7, 627–637, doi: 10.1038/ngeo2234.

Czaja A. & Frankignoul C. 2002. Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. Journal of Climate 15, 606–623, doi: 10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2.

Estrada F., Perron P. & Martínez-López B. 2013. Statistically derived contributions of diverse human influences to twentieth-century temperature changes. Nature Geoscience 6, 1050–1055, doi: 10.1038/ngeo1999.

Francis J.A. & Vavrus S.J. 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophysical Research Letters 39, L06801, doi: 10.1029/2012GL051000.

Fuller W.A. 1976. Introduction to statistical time series. New York: John Wiley and Sons.

García-Serrano J., Frankignoul C., Gastineau G. & Cámara A. 2015. On the predictability of the winter Euro-Atlantic climate: lagged influence of autumn Arctic sea ice. Journal of Climate 28, 5195–5216, doi: 10.1175/JCLI-D-14-00472.1.

Hansen J., Ruedy R., Sato M. & Lo K. 2010. Global surface temperature change. Reviews of Geophysics 48, RG4004, doi: 10.1029/2010RG000345.

Honda M., Inoue J. & Yamane S. 2009, Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophysical Research Letters 36, L08707, doi: 10.1029/2008GL037079.

Inoue J., Hori M.E. & Takaya K. 2012. The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. Journal of Climate 25, 2561–2568, doi: 10.1175/JCLI-D-11-00449.1.

Jaiser R., Dethloff K. & Handorf D. 2013. Stratospheric response to Arctic sea ice retreat and associated planetary wave propagation changes. Tellus Series A 65, article no. 19375, doi: 10.3402/tellusa.v65i0.19375.

Kaufmann R.K., Kauppi H., Mann M.L. & Stock J.H. 2011. Reconciling anthropogenic climate change with observed temperature 1998–2008. Proceedings of the National Academy of Sciences of the United States of America 108, 11790–11793, doi: 10.1073/pnas.1102467108.

Kim D. & Perron P. 2009. Assessing the relative power of structural break tests using a framework based on the approximate Bahadur slope. Journal of Econometrics 149, 26–51, doi: 10.1016/j.jeconom.2008.10.010.

Kim K.Y. & Son S.W. 2016. Physical characteristics of Eurasian winter temperature variability. Environmental Research Letters 11, article no. 044009, doi: 10.1088/1748-9326/11/4/044009.

Kim B.M., Son S.W., Min S.K., Jeong J.H., Kim S.J., Zhang X., Shim T. & Yoon J.H. 2014. Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nature Communications 5, article no. 4646, doi: 10.1038/ncomms5646.

King M.P., Hell M. & Keenlyside N. 2016. Investigation of the atmospheric mechanisms related to the autumn sea ice and winter circulation link in the Northern Hemisphere. Climate Dynamics 46, 1185–1195, doi: 10.1007/s00382-015-2639-5.

Kosaka Y. & Xie S.P. 2013. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407, doi: 10.1038/nature12534.

Kug J.S., Jeong J.H., Jang Y.S., Kim B.M., Folland C.K., Min S.K. & Son S.W. 2015. Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nature Geoscience 8, 759–763, doi: 10.1038/NGEO2517.

Li C., Stevens B. & Marotzke J. 2015. Eurasian winter cooling in the warming hiatus of 1998–2012. Geophysical Research Letters 42, 8131–8139, doi: 10.1002/2015GL065327.

Liu J., Curry J.A., Wang H., Song M. & Horton R.M. 2012. Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences of the United States of America 109, 4074–4079, doi: 10.1073/pnas.1114910109.

McCusker K.E., Fyfe J.C. & Sigmond M. 2016. Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss. Nature Geoscience 9, 838–842, doi: 10.1038/ngeo2820.

Meehl G.A., Arblaster J.M., Fasullo J.T., Hu A. & Trenberth K.E. 2011. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Climate Change 1, 360–364, doi: 10.1038/NCLIMATE1229.

Meehl G.A., Hu A., Arblaster J.M., Fasullo J. & Trenberth K.E. 2013. Externally forced and internally generated decadal climate variability associated with the interdecadal Pacific oscillation. Journal of Climate 26, 7298–7310, doi: 10.1175/JCLI-D-12-00548.1.

Meehl G.A., Teng H. & Arblaster J.M. 2014. Climate model simulations of the observed early-2000s hiatus of global warming. Nature Climate Change 4, 898–902, doi: 10.1038/nclimate2357.

Mori M., Kosaka Y., Watanabe M., Nakamura H. & Kimoto M. 2019. A reconciled estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling. Nature Climate Change 9, 123–129, doi: 10.1038/s41558-018-0379-3.

Mori M., Watanabe M., Shiogama H., Inoue J. & Kimoto M. 2014. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nature Geoscience 7, 869–873, doi: 10.1038/ngeo2277.

Nakamura T., Yamazaki K., Iwamoto K., Honda M., Miyoshi Y., Ogawa Y., Tomikawa Y. & Ukita J. 2016. The stratospheric pathway for Arctic impacts on midlatitude climate. Geophysical Research Letters 43, 3494–3501, doi: 10.1002/2016GL068330.

Ogawa F., Keenlyside N., Gao Y., Koenigk T., Yang S., Suo L., Wang T., Gastineau G., Nakamura T., Cheung H.N., Omrani N.-E., Ukita J. & Semenov V. 2018. Evaluating impacts of recent Arctic sea ice loss on the Northern Hemisphere winter climate change. Geophysical Research Letters 45, 3255–3263, doi: 10.1002/2017GL076502.

Outten S.D. & Esau I. 2012. A link between Arctic sea ice and recent cooling trends over Eurasia. Climatic Change 110, 1069–1075, doi: 10.1007/s10584-011-0334-z.

Overland J., Francis J.A., Hall R., Hanna E., Kim S.J. & Vihma T. 2015. The melting Arctic and midlatitude weather patterns: are they connected? Journal of Climate 28, 7917–7932, doi: 10.1175/JCLI-D-14-00822.1.

Peings Y. & Magnusdottir G. 2014. Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: a numerical study with CAM5. Journal of Climate 27, 244–264, doi: 10.1175/JCLI-D-13-00272.1.

Perron P. & Yabu T. 2009. Testing for shifts in trend with an integrated or stationary noise component. Journal of Business & Economic Statistics 27, 369–396, doi: 10.1198/jbes.2009.07268.

Petoukhov V. & Semenov V.A. 2010. A link between reduced Barents–Kara sea ice and cold winter extremes over northern continents. Journal of Geophysical Research—Atmospheres 115, article no. D21111, doi: 10.1029/2009JD013568.

Screen J.A. 2017. Simulated atmospheric response to regional and pan-Arctic sea ice loss. Journal of Climate 30, 3945–3962, doi: 10.1175/JCLI-D-16-0197.1.

Screen J.A., Deser C., Smith D.M., Zhang X., Blackport R., Kushner P.J., Oudar T., McCusker K.E. & Sun L. 2018. Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models. Nature Geoscience 11, 155–163, doi: 10.1038/s41561-018-0059-y.

Sun L., Deser C. & Tomas R.A. 2015. Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. Journal of Climate 28, 7824–7845, doi: 10.1175/JCLI-D-15-0169.1.

Sun L., Perlwitz J. & Hoerling M. 2016. What caused the recent “warm Arctic, cold continents” trend pattern in winter temperatures? Geophysical Research Letters 43, 5345–5352, doi: 10.1002/2016GL069024.

Tang Q., Zhang X., Yang X. & Francis J.A. 2013. Cold winter extremes in northern continents linked to Arctic sea ice loss. Environmental Research Letters 8, article no. 014036, doi: 10.1088/1748-9326/8/1/014036.

Thompson D.W., Wallace J.M. & Hegerl G.C. 2000. Annular modes in the extratropical circulation. Part II: trends. Journal of Climate 13, 1018–1036, doi: 10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.

Wallace J.M., Smith C. & Bretherton C.S. 1992. Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. Journal of Climate 5, 561–576, doi: 10.1175/1520-0442(1992)005<0561:SVDOWS>2.0.CO;2.

Walsh J.E. 2014. Intensified warming of the Arctic: causes and impacts on middle latitudes. Global and Planetary Change 117, 52–63, doi: 10.1016/j.gloplacha.2014.03.003.

Wu Y. & Smith K.L. 2016. Response of Northern Hemisphere midlatitude circulation to Arctic amplification in a simple atmospheric general circulation model. Journal of Climate 29, 2041–2058, doi: 10.1175/JCLI-D-15-0602.1.

Xu X., Li F., He S. & Wang H. 2018. Subseasonal reversal of East Asian surface temperature variability in winter 2014/15. Advanced in Atmospheric Sciences 35, 737–752, doi: 10.1007/s00376-017-7059-5.

Zhang P., Wu Y. & Smith K.L. 2018. Prolonged effect of the stratospheric pathway in linking Barents–Kara sea ice variability to the midlatitude circulation in a simplified model. Climate Dynamics 50, 527–539, doi: 10.1007/s00382-017-3624-y.

Zhang X., Sorteberg A., Zhang J., Gerdes R. & Comiso J.C. 2008. Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophysical Research Letters 35, L22701, doi: 10.1029/2008GL035607.
How to Cite
Kim, H.-J., & Son, S.-W. (2020). Eurasian winter temperature change in recent decades and its association with Arctic sea ice loss. Polar Research, 39.
Research Articles