Indication of Holocene sea-level stability in the southern Laptev Sea recorded by beach ridges in north-east Siberia, Russia

  • Lasse Sander Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Wadden Sea Research Station, List/Sylt, Germany
  • Rune Michaelis Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Wadden Sea Research Station, List/Sylt, Germany
  • Svenja Papenmeier Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Wadden Sea Research Station, List/Sylt, Germany; Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
  • Sergey Pravkin Arctic and Antarctic Research Institute, St. Petersburg, Russia
  • Gesine Mollenhauer Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Marine Geochemistry, MICADAS Dating Laboratory, Bremerhaven, Germany
  • Hendrik Grotheer Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Marine Geochemistry, MICADAS Dating Laboratory, Bremerhaven, Germany
  • Torben Gentz Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Marine Geochemistry, MICADAS Dating Laboratory, Bremerhaven, Germany
  • Karen Helen Wiltshire Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Wadden Sea Research Station, List/Sylt, Germany
Keywords: Arctic coastal change, gravel beaches, coastal geomorphology, wave climate, Lena Delta, Buor Khaya Bay


The rapid warming of the Arctic may affect the stability of coastal geomorphological systems. Prograded sequences of wave-built deposits, so-called beach-ridge systems, preserve a proxy record of the long-term variability in the drivers of coastal evolution. Information on relative sea level (RSL), climate forcing and sediment supply can be reconstructed from these archives. Buor Khaya Bay is one of the few places along the Siberian Arctic coast where wide beach-ridge systems exist. A previously undescribed field site was surveyed in order to obtain information on the geomorphological processes along the modern shoreline under the current environmental conditions, and the characteristics of the Holocene beach-ridge deposits (e.g., elevation, sediment and age). Our data show that the system formed under storm wave/surge conditions. The beach ridges prograded ca. 1100 m between 6200 and 2600 cal yr BP, with only minor variations in surface elevation. This suggests a continuous and high sediment supply and similar storm wave run-up heights during that time. This relationship is interpreted as indicating RSL stability at a similar-to-present elevation during the period of beach-ridge formation. The hiatus in coastal progradation is concurrent with a deteriorating climate (cooling) in the Laptev Sea area and our data hence suggest increased rates of coastal change during periods of warmer climate conditions. Our study illustrates the potential of coastal sedimentary archives to provide a more complete view of the forcing, resilience and long-term evolution of unconsolidated Arctic coasts in a changing environment.


Download data is not yet available.


Allard J., Bertin X., Chaumillon E. & Pouget F. 2008. Sand spit rhythmic development: a potential record of wave climate variations? Arçay Spit, western coast of France. Marine Geology 253, 107–131, doi: 10.1016/j.margeo.2008.05.009.

Andreev A., Grosse G., Schirrmeister L., Kuznetsova T.V., Kuzmina S.A., Bobrov A.A., Tarasov P.E., Novenko E.Y., Meyer H., Derevyagin A.Y., Kienast F., Bryantseva A. & Kunitsky V.V. 2007. Weichselian and Holocene palaeoenvironmental history of the Bol’shoy Lyakhovsky Island, New Siberian Archipelago, Arctic Siberia. Boreas 38, 72–110, doi: 10.1111/j.1502-3885.2008.00039.x.

Andreev A., Schirrmeister L, Tarasov P.E., Ganopolski A., Brovkin V., Siegert C., Wetterich S. & Hubberten H.-W. 2011. Vegetation and climate history in the Laptev Sea region (Arctic Siberia) during Late Quaternary inferred from pollen records. Quaternary Science Reviews 30, 2182–2199, doi: 10.1016/j.quascirev.2010.12.026.

Andreev A., Tarasov P., Schwamborn G., Ilyashuk B., Ilyashuk E., Bobrov A., Klimanov V., Rachold V. & Hubberten H.-W. 2004. Holocene paleoenvironmental records from Nikolay Lake, Lena River Delta, Arctic Russia. Palaeogeography, Palaeoclimatology, Palaeoecology 209, 197–217, doi: 10.1016/j.palaeo.2004.02.010.

Are F. & Reimnitz E. 2000. An overview of the Lena River Delta setting: geology, tectonics, geomorphology, and hydrology. Journal of Coastal Research 16, 1083–1093.

Ashik I.M. & Vanda Y.A. 1995. Catastrophic storm surges in the southern part of the Laptev Sea. Berichte zur Polarforschung 176, 43–46.

Bauch H.A., Kassens H., Erlenkeuser H., Grootes P.M. & Thiede J. 1999. Depositional environment of the Laptev Sea (Arctic Siberia) during the Holocene. Boreas 28, 194–204, doi: 10.1111/j.1502-3885.1999.tb00214.x.

Bauch H.A., Kassens H., Naidina O.D. Kunz-Pirrung M. & Thiede J. 2001. Composition and flux of Holocene sediments on the eastern Laptev Sea Shelf, Arctic Siberia. Quaternary Research 55, 344–351, doi: 10.1006/qres.2000.2223.

Baranskaya A.V., Khan N.S., Romanenko F.A., Roy K., Peltier W.R. & Horton B.P. 2018. A postglacial relative sea-level database for the Russian Arctic coast. Quaternary Science Reviews 199, 188–205, doi: 10.1016/j.quascirev.2018.07.033.

Bauch H.A., Müller-Lupp T., Taldenkova E., Spielhagen R.F., Kassens H., Grootes P.M., Thiede J., Heinemeier J. & Petryashov V.V. 2001. Chronology of the Holocene transgression at the North Siberian margin. Global and Planetary Change 31, 125–139, doi: 10.1016/S0921-8181(01)00116-3.

Billy J., Robin N., Hein C.J., Certain R. & FitzGerald D.M. 2015. Insight into the late Holocene sea-level changes in the NW Atlantic from a paraglacial beach–ridge plain south of Newfoundland. Geomorphology 248, 134–146, doi: 10.1016/j.geomorph.2015.07.033.

Biskaborn B.K., Subetto D.A., Savelieva L.A., Vakhrameeva P.S., Hansche A., Herzschuh U., Klemm J., Heinecke L., Pestryakova L.A., Meyer H., Kuhn G. & Diekmann B. 2016. Late Quaternary vegetation and lake system dynamics in northeastern Siberia: implications for seasonal climate variability. Quaternary Science Reviews 147, 406–421, doi: 10.1016/j.quascirev.2015.08.014.

Bogorodski P.V., Makshtas A.P. & Kustov V.Y. 2015. Rapid melting of fast-ice in the Buor-Khaya Bay. Polarforschung 85, 117–118, doi: 10.2312/polfor.2016.008.

Bolshiyanov D., Makarov A. & Savelieva L. 2015. Lena River delta formation during the Holocene. Biogeosciences 12, 579–593, doi: 10.5194/bg-12-579-2015.

Bronk Ramsey C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360, doi: 10.1017/S0033822200033865.

Brückner H. & Schellmann G. 2003. Late Pleistocene and Holocene shorelines of Andréeland, Spitsbergen (Svalbard): geomorphological evidence and palaeo-oceanographic significance. Journal of Coastal Research 19, 971–982.

Carter R.W.G. & Orford J.D. 1993. The morphodynamics of coarse clastic beaches and barriers: a short-and long-term perspective. Journal of Coastal Research Special Issue 15, 158–179.

Charkin A.N., Dudarev O.V., Semiletov I.P., Kruhmalev A.V., Vonk J.E., Sánchez-García L., Karlsson E. & Gustafsson Ö. 2011. Seasonal and interannual variability of sedimentation and organic matter distribution in the Buor-Khaya Gulf: the primary recipient of input from Lena River and coastal erosion in the southeast Laptev Sea. Biogeosciences 8, 2581–2594, doi: 10.5194/bg-8-2581-2011.

Degtjarenko Ju.P., Puminov A.P. & Blagoveščenskij M.G. 1982. Beregovye linii vostočno-arktičeskih morej v pozdnem plejstocene i golocene. (Coastlines of east Arctic seas in the late Pleistocene and Holocene.) In P.A. Kaplin et al. (eds.): Kolebanija urovnja morej i okeanov za 15000 let. (Sea and ocean level fluctuations over 15000 years.) Pp. 179–185. Moscow: Nauka.

Drachev S.S., Savostin L.A., Groshev V.G. & Bruni I.E. 1998. Structure and geology of the continental shelf of the Laptev Sea, eastern Russian Arctic. Tectonophysics 298, 357–393, doi: 10.1016/S0040-1951(98)00159-0.

Fleming K., Johnston P., Zwartz D., Yokoyama Y., Lambeck K. & Chappell J. 1998. Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites. Earth and Planetary Science Letters 163, 327–342, doi: 10.1016/S0012-821X(98)00198-8.

Fofonova V., Androsov A., Danilov S., Janout M., Sofina E. & Wiltshire K. 2014. Semidiurnal tides in the Laptev Sea Shelf zone in the summer season. Continental Shelf Research 73, 119–132, doi: 10.1016/j.csr.2013.11.010.

Fritz M., Vonk J.E. & Lantuit H. 2017. Collapsing Arctic coastlines. Nature Climate Change 7, 6–7, doi: 10.1038/nclimate3188.

Fruergaard M., Møller I., Johannessen P.N., Nielsen L.H., Andersen T.J., Nielsen L., Sander L. & Pejrup M. 2015. Stratigraphy, evolution, and controls of a Holocene transgressive–regressive barrier island under changing sea level: Danish North Sea coast. Journal of Sedimentary Research 85, 820–844, doi: 10.2110/jsr.2015.53.

Funder S., Goosse H., Jepsen H., Kaas E., Kjær K.H., Korsgaard N.J., Larsen N.K., Linderson H., Lyså A., Möller P., Olsen J. & Willerslev E. 2011. A 10,000-year record of Arctic Ocean sea-ice variability—view from the beach. Science 333, 747–750, doi: 10.1126/science.1202760.

Goodwin I.D., Stables M.A. & Olley J.M. 2006. Wave climate, sand budget and shoreline alignment evolution of the Iluka–Woody Bay sand barrier, northern New South Wales, Australia, since 3000 yr BP. Marine Geology 226, 127–144, doi: 10.1016/j.margeo.2005.09.013.

Goslin J. & Clemmensen L.B. 2017. Proxy records of Holocene storm events in coastal barrier systems: storm-wave induced markers. Quaternary Science Reviews 174, 80–119, doi: 10.1016/j.quascirev.2017.08.026.

Grosse G., Schirrmeister L., Siegert C., Kunitsky V.V., Slagoda E.A., Andreev A.A. & Dereviagyn A.Y. 2007. Geological and geomorphological evolution of a sedimentary periglacial landscape in north-east Siberia during the Late Quaternary. Geomorphology 86, 25–51, doi: 10.1016/j.geomorph.2006.08.005.

Günther F., Overduin P.P., Sandakov A.V., Grosse G. & Grigoriev M.N. 2013. Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region. Biogeosciences 10, 4297–4318, doi: 10.5194/bg-10-4297-2013.

Hede M.U., Sander L., Clemmensen L.B., Kroon A., Pejrup M. & Nielsen L. 2015. Changes in Holocene relative sea-level and coastal morphology: a study of a raised beach ridge system on Samsø, southwest Scandinavia. The Holocene 25, 1402–1414, doi: 10.1177/0959683615585834.

Irrgang A.M., Lantuit H., Mason G.K., Günther F., Grosse G. & Overduin P.P. 2018. Variability in rates of coastal change along the Yukon coast, 1951 to 2015. Journal of Geophysical Research—Earth Surface 123, 779–800, doi: 10.1002/2017JF004326.

Jones B.M., Arp C.D., Jorgenson M.T., Hinkel K.M., Schmutz J.A. & Flint P.L. 2009. Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophysical Research Letters 36, L03503, doi: 10.1029/2008GL036205.

Klemann V., Heim B., Bauch H.A., Wetterich S. & Opel T. 2015. Sea-level evolution of the Laptev Sea and the East Siberian Sea since the last glacial maximum. Arktos 1, article no. 1, doi: 10.1007/s41063-015-0004-x.

Lantuit H., Atkinson D., Overduin P.P., Grigoriev M., Rachold V., Grosse G. & Hubberten H.-W. 2011. Coastal erosion dynamics on the permafrost-dominated Bykovsky Peninsula, north Siberia, 1951–2006. Polar Research 30, article no. 7341, doi: 10.3402/polar.v30i0.7341.

Lantuit H., Overduin P.P., Couture N., Wetterich S., Aré F., Atkinson D., Brown J., Cherkashov G., Drozdov D., Forbes D.L., Graves-Gaylord A., Grigoriev M., Hubberten H.-W., Jordan J., Jorgenson T., Ødegård R.S., Ogorodov S., Pollard W.H., Rachold V., Sedenko S., Solomon S., Steenhuisen F., Streletskaya I. & Vasiliev A. 2012. The Arctic Coastal Dynamics Database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuaries and Coasts 35, 383–400, doi: 10.1007/s12237-010-9362-6.

Lindhorst S. & Schutter I. 2014. Polar gravel beach-ridge systems: sedimentary architecture, genesis, and implications for climate reconstructions (South Shetland Islands/Western Antarctic Peninsula). Geomorphology 221, 187–203, doi: 10.1016/j.geomorph.2014.06.013.

Nielsen L., Bendixen M., Kroon A., Hede M.U., Clemmensen L.B., Weβling R. & Elberling B. 2017. Sea-level proxies in Holocene raised beach ridge deposits (Greenland) revealed by ground-penetrating radar. Scientific Reports 7, article no. 46460, doi: 10.1038/srep46460.

Orford J.D., Carter R.W. & Jennings S.C. 1991. Coarse clastic barrier environments: evolution and implications for Quaternary sea level interpretation. Quaternary International 9, 87–104, doi: 10.1016/1040-6182(91)90068-Y.

Otvos E.G. 2000. Beach ridges—definitions and significance. Geomorphology 32, 83–108, doi: 10.1016/S0169-555X(99)00075-6.

Overduin P.P., Strzelecki M.C., Grigoriev M.N., Couture N., Lantuit H., St-Hilaire-Gravel D., Günther F. & Wetterich S. 2014. Coastal changes in the Arctic. London: Geological Society.

Overeem I., Anderson R.S., Wobus C.W., Clow G.D., Urban F.E. & Matell N. 2011. Sea ice loss enhances wave action at the Arctic coast. Geophysical Research Letters 38, L17503, doi: 10.1029/2011GL048681.

Parfenov L.M. 1991. Tectonics of the Verkhoyansk-Kolyma Mesozoides in the context of plate tectonics. Tectonophysics 199, 319–342, doi: 10.1016/0040-1951(91)90177-T.

Pavlov V.K., Timohov L.A., Baskakov G.A., Kulakov M.Y., Kurazhov V.K., Pavlov P.V., Pivovarov S.V. & Stanovoy V.V. 1996. Hydrometeorological regime of the Kara, Laptev and East-Siberian seas. Technical Memorandum APL-UW TM 1-96. Seattle, WA: Applied Physics Laboratory, University of Washington.

Peterson B.J., Holmes R.M., McClelland J.W., Vörösmarty C.J., Lammers R.B., Shiklomanov A.I., Shiklomanov I.A. & Rahmstorf S. 2002. Increasing river discharge to the Arctic Ocean. Science 298, 2171–2173, doi: 10.1126/science.1077445.

Pirazzoli P.A. 1991. World atlas of Holocene sea-level changes. Amsterdam: Elsevier.

Proshutinsky A., Ashik I.M., Dvorkin E.N., Häkkinen S., Krishfield R.A. & Peltier W.R. 2004. Secular sea level change in the Russian sector of the Arctic Ocean. Journal of Geophysical Research—Oceans 109, C03042, doi: 10.1029/2003JC002007.

Rachold V., Grigoriev M.N., Are F.E., Solomon S., Reimnitz E., Kassens H. & Antonow M. 2000. Coastal erosion vs riverine sediment discharge in the Arctic Shelf seas. International Journal of Earth Sciences 89, 450–460, doi: 10.1007/s005310000113.

Reimer P.J., Bard E., Bayliss A., Beck J.W., Blackwell P.G., Ramsey C.B., Buck C.E., Cheng H., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Haflidason H., Hajdas I., Hatté C., Heaton T.J., Hoffmann D.L., Hogg A.G., Hughen K.A., Kaiser K.F., Kromer B., Manning S.W., Niu M., Reimer R.W., Richards D.A., Scott E.M., Southon J.R., Staff R.A., Turney C.S.M. & van der Plicht J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887, doi: 10.2458/azu_js_rc.55.16947.

Sánchez‐García L., Vonk J.E., Charkin A.N., Kosmach D., Dudarev O.V., Semiletov I.P. & Gustafsson Ö. 2014. Characterisation of three regimes of collapsing Arctic ice complex deposits on the SE Laptev Sea coast using biomarkers and dual carbon isotopes. Permafrost and Periglacial Processes 25, 172–183, doi: 10.1002/ppp.1815.

Sander L. 2014. Kite aerial photography (KAP) as a tool for field teaching. Journal of Geography in Higher Education 38, 425–430, doi: 10.1080/03098265.2014.919443.

Sander L., Hede M.U., Fruergaard M., Nielsen L., Clemmensen L.B., Kroon A., Johannessen P.N., Nielsen L.H. & Pejrup M. 2016. Coastal lagoons and beach ridges as complementary sedimentary archives for the reconstruction of Holocene relative sea‐level changes. Terra Nova 28, 43–49, doi: 10.1111/ter.12187.

Sander L., Michaelis R., Papenmeier S., Pravkin S. & Wiltshire K.H. 2018. Characteristics of wave-built sedimentary archives in Buor Khaya Bay. Reports on Polar and Marine Research 725, 108–110.

Sander L., Pejrup M., Murray A.S., Perillo G.M., Raniolo L.A. & Fruergaard M. 2018. Chronology and late-Holocene evolution of Caleta de los Loros, NE Patagonia, Argentina. The Holocene 28, 1276–1287, doi: 10.1177/0959683618771477.

Scheffers A., Engel M., Scheffers S., Squire P. & Kelletat D. 2012. Beach ridge systems—archives for Holocene coastal events? Progress in Physical Geography 36, 5–37, doi: 10.1177/0309133311419549.

Schwamborn J.G. 2004. Late Quaternary sedimentation history of the Lena Delta. Reports on Polar and Marine Research 471. Bremerhaven: Alfred Wegener Institute.

Serreze M.C. & Barry R.G. 2011. Processes and impacts of Arctic amplification: a research synthesis. Global and Planetary Change 77, 85–96, doi: 10.1016/j.gloplacha.2011.03.004.

Shahgedanova M. 2002. Climate at present and in the historical past. New York: Oxford University Press.

St-Hilaire-Gravel D., Bell T.J. & Forbes D.L. 2010. Raised gravel beaches as proxy indicators of past sea-ice and wave conditions, Lowther Island, Canadian Arctic Archipelago. Arctic 63, 213–226, doi: 10.14430/arctic976.

Strauss J., Schirrmeister L., Grosse G., Wetterich S., Ulrich M., Herzschuh U. & Hubberten H.-W. 2013. The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska. Geophysical Research Letters 40, 6165–6170, doi: 10.1002/2013GL058088.

Synal H.-A., Stocker M. & Suter M. 2007. MICADAS: a new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research, Section B 259, 7–13, doi: 10.1016/j.nimb.2007.01.138.

Tamura T. 2012. Beach ridges and prograded beach deposits as palaeoenvironment records. Earth-Science Reviews 114, 279–297, doi: 10.1016/j.earscirev.2012.06.004.

Taylor M. & Stone G.W. 1996. Beach–ridges: a review. Journal of Coastal Research 12, 612–621.

Trešnikov A.F. 1985. Atlas Arktiki. (Arctic atlas.) Moscow: General Directorate of Geodesy and Cartography.

Wacker L., Bonani G., Friedrich M., Hajdas I., Kromer B., Nemec M., Ruff M., Suter M., Synal H.-A. & Vockenhuber C. 2010. MICADAS: routine and high-precision radiocarbon dating. Radiocarbon 52, 252–262, doi: 10.1017/S0033822200045288.

Wacker L., Christl M. & Synal H.A. 2010. Bats: a new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research, Section B 268, 976–979, doi: 10.1016/j.nimb.2009.10.078.

Wacker L., Němec M. & Bourquin J. 2010. A revolutionary graphitisation system: fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research, Section B 268, 931–934, doi: 10.1016/j.nimb.2009.10.067.

Wegner C., Bennett K.E., de Vernal A., Forwick M., Fritz M., Heikkilä M., Łącka M., Lantuit H., Laska M., Moskalik M., O'Regan M., Pawłowska J., Promińska A., Rachold V., Vonk J.E. & Werner K. 2015. Variability in transport of terrigenous material on the shelves and the deep Arctic Ocean during the Holocene. Polar Research 34, article no. 24964, doi: 10.3402/polar.v34.24964.

Whitehouse P.L., Allen M.B. & Milne G.A. 2007. Glacial isostatic adjustment as a control on coastal processes: an example from the Siberian Arctic. Geology 35, 747–750, doi: 10.1130/G23437A.1.

Yang D., Kane D.L., Hinzman L., Zhang X., Zhang T. & Ye H. 2002. Siberian Lena River hydrologic regime and recent change. Journal of Geophysical Research—Atmospheres 107, article no. 4694, doi: 10.1029/2002JD002542.
How to Cite
Sander, L., Michaelis, R., Papenmeier, S., Pravkin, S., Mollenhauer, G., Grotheer, H., Gentz, T., & Wiltshire, K. H. (2019). Indication of Holocene sea-level stability in the southern Laptev Sea recorded by beach ridges in north-east Siberia, Russia. Polar Research, 38.
Research Articles