Monitoring glacier flow in Ny-Ålesund with a high temporal resolution ground-based interferometric-phased array radar

  • Rune Gundersen Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway; ISPAS AS, Moss, Norway
  • Richard Norland ISPAS AS, Moss, Norway
  • Cecilie Rolstad Denby Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
Keywords: Terrestrial radar interferometry, phased array, Svalbard, remote sensing, atmosphere, glacier surface velocity


Monitoring glacier flow speed and calving rates is of interest for climate research, global sea-level studies and Arctic ship traffic. The research station in Ny-Ålesund, Svalbard, offers a unique location close to multiple glacier fronts. In this study, we explore the possibilities of permanent monitoring of glaciers in the Ny-Ålesund area using a ground-based interferometric radar with a significantly higher temporal resolution than what is achievable from satellites or mechanical scanning ground-based radars. Measurements were made from two different locations—Pynten and the Ny-Ålesund research station—located 5 and 15 km from Kronebreen glacier, respectively. The temporal resolution of the radar is flexible, and in this experiment is limited to five images per minute, providing data with high temporal resolution of glacier flow. We calculated a geo-located two-dimensional flow map of the glacier from the radar data, extracted glacier speed profiles and identified major calving onsets. This type of near real-time data may well be used with machine-learning techniques for more advanced monitoring systems. The radar measurements agree well with previous satellite measurements at lower temporal resolution. The observed mean flow of the Kronebreen glacier front varies across the glacier from around 0.4 m/day at the edges to 3 m/day in the central part. We identify and discuss possible improvements to the radar system and conclude that Ny-Ålesund is a well-suited location for radar monitoring of glacier flow velocities.


Download data is not yet available.


Baker C. & Trimmer B. 2000. Short-range surveillance radar systems. Electronics and Communication Engineering Journal 12, 181–191, doi: 10.1049/ecej:20000406.

Bamber J.L., Westaway R.M., Marzeion B. & Wouters B. 2018. The land ice contribution to sea level during the satellite era. Environmental Research Letters 13, article no. 063008, doi: 10.1088/1748-9326/aac2f0.

Berardino P., Fornaro G., Lanari R. & Sansosti E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing 40, 2375–2383, doi: 10.1109/TGRS.2002.803792.

Box J.E., Colgan T.C., Wouters B., Burgess D.O., O'Neel S., Thomson L.I. & Haugaard Mernild J.S. 2018. Global sea-level contribution from Arctic land ice: 1971 to 2017. Environmental Research Letters 13, article no. 125012, doi: 10.1088/1748-9326/aaf2ed.

Chapuis A., Rolstad C. & Norland R. 2010. Interpretation of amplitude data from a ground-based radar in combination with terrestrial photogrammetry and visual observations for calving monitoring of Kronebreen, Svalbard. Annals of Glaciology 51, 34–40, doi: 10.3189/172756410791392781.

Chen C. & Zebker H.A. 2002. Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models. IEEE Transactions of Geoscience and RemoteSensing 40, 1709–1719, doi: 10.1109/TGRS.2002.802453.

Dematteis N., Luzi G., Giordan D., Zucca F. & Allasia P. 2017. Monitoring alpine glacier surface deformations. Remote Sensing Letters 8, 947–956, doi: 10.1080/2150704X.2017.1335905.

Gundersen R., Norland R. & Denby C.R. 2018a. Ground-based differential interferometric radar monitoring of unstable mountain blocks in a coastal environment. Remote Sensing 16, article no. 914, doi: 10.3390/rs10060914.

Gundersen R., Norland R. & Denby C.R. 2018b. Geometric, environmental and hardware error sources of a ground-based interferometric real-aperture FMCW radar system. Remote Sensing 10, article no. 20170, doi: 10.3390/rs10122070.

Hanssen R. 2002. Radar interferometry: data interpretation and error analysis. Dordrecht: Kluwer Academic Publishers.

Heinselman P.L. & Torres S.M. 2011. High-temporal-resolution capabilities of the national weather radar testbed phased-array radar. Journal of Applied Meteorology and Climatology 50, 579–593, doi: 10.1175/2010JAMC2588.1.

Kääb A., Lefauconnier B. & Melvold K. 2005. Flow field of Kronebreen, Svalbard, using repeated Landsat 7 and ASTER data. Annals of Glaciology 42, 7–13, doi: 10.3189/172756405781812916.

Karamakar P. 2011. Microwave propagation and remote sensing, atmospheric influences with models and applications. Boca Raton, FL: CRC Press.

Kotlyakov V. & Grosswald M. (eds.) 2008. Effect on individual glaciers on climate. Polar Geography and Geology 14, 217–240, doi: 10.1080/10889379009377433.

Lefauconnier B., Hagen J.O. & Rudant J.P. 1994. Flow speed and calving rate of Kongsbreen glacier, Svalbard, using SPOT images. Polar Research 13, 59–65, doi: 10.3402/polar.v13i1.6681.

Levanon N. 1988. Radar principles. Tel Aviv: John Wiley & Sons.

López-Moreno J., Alonso-González E., Monserrat O., Del Río L., Otero J., Lapazaran J., Luzi G., Dematteis N., Serreta A., Rico I., Serrando-Canadas E., Bartolome M., Moreno A., Buian S. & Revuelto J. 2018. Ground-based remote-sensing techniques for diagnosis of the current state and recent evolution of the Monte Perdido Glacier, Spanish Pyrenees. Journal of Glaciolog 65, 85–100, doi: 10.1017/jog.2018.96.

Luckman A., Benn D.I., Cottier F., Bevan S., Nilsen F. & Inall M. 2015. Calving rates at tidewater glaciers vary strongly with ocean temperature. Nature Communications 6, article no. 8566, doi: 10.1038/ncomms9566.

Moon T., Ahlstrøm A., Goelzer H., Lipscomb W. & Nowicki S. 2018. Rising oceans guaranteed: Arctic land ice loss and sea level rise. Current Climate Change Reports 4, 211–222, doi: 10.1007/s40641-018-0107-0.

Noferini L., Mecatti D., Macaluso G., Pieraccini M. & Atzeni C. 2009. Monitoring of Belvedere Glacier using a wide angle GB-SAR interferometer. Journal of Applied Geophysics 68, 289–293, doi: 10.1016/j.jappgeo.2009.02.004.

Notz D. & Stroeve J. 2018. The trajectory towards a seasonally ice-free Arctic Ocean. Current Climate Change Reports 4, 407–416, doi: 10.1007/s40641-018-0113-2.

Rignot E., Hallet B. & Fountain A. 2002. Rock glacier surface motion in Beacon Valley, Antarctica, from synthetic-aperture radar interferometry. Geophysical Research Letters 29, article no. 1607, doi: 10.1029/2001GL013494.

Rolstad C. & Norland R. 2009. Ground-based interferometric radar for velocity and calving-rate measurements of the tidewater glacier at Kronebreen, Svalbard. Annals of Glaciology 50, 47–54, doi: 10.3189/172756409787769771.

Scambos T.A., Bell R.E., Alley R.B., Anandakrishnan S., Bromwich D.H., Brunt K., Christiansen K., Creyts T., Das S.B., DeConto R., Dutrieux P., Fricker H.A., Holland D., MacGregor J., Medley B., Nicolas J.P., Pollard D., Siegfried M.R., Smith A.M., Steig E.J., Trusel L.D., Vaughan D.G. & Yager P.L. 2017. How much, how fast?: a science review and outlook for research on the instability of Antarctica's Thwaites Glacier in the 21st century. Global and Planetary Change 153, 16–34, doi: 10.1016/j.gloplacha.2017.04.008.

Schellenberger T., Dunse A., Kääb A., Kohler J. & Reijmer C. 2015. Surface speed and frontal ablation of Kronebreen and Kongsbreen, NW Svalbard, from SAR offset tracking. The Cryosphere 9, 2339–2355, doi: 10.5194/tc-9-2339-2015.

Strozzi T., Werner C., Wiesmann A. & Wegmüller U. 2012. Topography mapping with a portable real-aperture radar interferometer. IEEE Geoscience and Remote Sensing Letters 9, 277–281, doi: 10.1109/LGRS.2011.2166751.

Vallot D., Adinugroho S., Strand R., How P., Pettersson R., Benn D.I. & Hulton N.R. 2018. Automatic detection of calving events from time-lapse imagery at Tunabreen, Svalbard. Geoscientific Instrumentation, Methods and Data Systems 8, 113–127, doi: 10.5194/gi-2018-5.

Voytenko D., Dixon T.H., Holland D.M., Cassotto R., Howat I., Fahnestock M.A., Truffer M. & De la Peña S. 2017. Acquisition of a 3 min, two-dimensional glacier velocity field with terrestrial radar interferometry. Journal of Glaciology 63, 629–636, doi: 10.1017/jog.2017.28

Voytenko D., Dixon T., Werner C., Gourmelen N., Howat I., Tinder P. & Hooper A. 2012. Monitoring a glacier in southeastern Iceland with the portable terrestrial radar interferometer. In: 2012 IEEE International Geoscience & Remote Sensing Symposium proceedings. Pp. 3230–3232. Piscataway, NJ: Institute of Electrical and Electronics Engineers, doi: 10.1109/IGARSS.2012.6350736.

Werner C., Strozzi T., Wiesmann A. & Wegmüller U. 2008. A real-aperture radar for ground-based differential interferometry. In: 2008 IEEE International Geoscience & Remote Sensing Symposium proceedings. Pp. 210–213. Piscataway, NJ: Institute of Electrical and Electronics Engineers, doi: 10.1109/IGARSS.2008.4779320.

Xie S., Dixon T., Voytenko D., Deng F. & Holland D. 2018. Grounding line migration through the calving season at Jakobshavn Isbræ, Greenland, observed with terrestrial radar interferometry. The Cryosphere 12, 1387–1400, doi: 10.5194/tc-12-1387-2018.

Zebker H., Rosen P. & Hensley S. 1997. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. Journal of Geophysical Research—Solid Earth 102, 7547–7563, doi: 10.1029/96JB03804.

How to Cite
Gundersen R., Norland R., & Rolstad Denby C. (2019). Monitoring glacier flow in Ny-Ålesund with a high temporal resolution ground-based interferometric-phased array radar. Polar Research, 38.
Research Articles