Holocene environmental changes in Dicksonfjorden, west Spitsbergen, Svalbard

  • Young Ji Joo Division of Polar Palaeoenvironment, Korea Polar Research Institute, Incheon, Republic of Korea
  • Matthias Forwick Department of Geosciences, UiT—The Arctic University of Norway, Tromsø, Norway
  • Kwangkyu Park Division of Polar Palaeoenvironment, Korea Polar Research Institute, Incheon, Republic of Korea
  • Youngjin Joe Division of Polar Palaeoenvironment, Korea Polar Research Institute, Incheon, Republic of Korea
  • Yeong Ju Son Division of Polar Palaeoenvironment, Korea Polar Research Institute, Incheon, Republic of Korea
  • Seung-Il Nam Division of Polar Palaeoenvironment, Korea Polar Research Institute, Incheon, Republic of Korea
Keywords: Svalbard, fjord, ice rafting, geochemistry, granulometry, sea ice


Multi-proxy analyses of two sediment cores from Dicksonfjorden were performed to reconstruct Holocene environmental conditions in this northern branch of Isfjorden, the largest fjord system in Svalbard. Factors affecting the depositional processes include shifts in sources of sediments, ice rafting and regional glacio-isostatic rebound. Sediments were derived from Palaeozoic siliciclastics and carbonates occurring at the fjord head and sides, respectively. Their relative contributions were controlled by falling relative sea level and the resulting progradation of the major stream and delta systems closer to the core sites. Deposition of clasts from sea-ice rafting persisted throughout most of the Holocene. Following a period of low, but continuous, clast fluxes (ca. 11 000–7000 calibrated years before the present), ice rafting was most intensive between ca. 7000 and 3000 calibrated years before the present. It can be related to extensive seasonal sea-ice formation caused by regional cooling. The prograding deltas also provided coarse sediments. Reduced ice rafting from ca. 3000 calibrated years before the present suggests enhanced formation of shorefast and/or permanent sea ice, suppressing sea-ice rafting in the fjord, in response to the cool climate and reduced heat flux from Atlantic Water. Episodic inflow of Atlantic Water and low turbidity of surface water can, however, account for a larger amount of marine organic matter produced in the outer fjord. The sedimentary record in Dicksonfjorden, where tidewater glaciers are absent, reflects similar climate and oceanographic variations as reconstructed in fjords on western Spitsbergen that are influenced by tidewater glaciers.


Download data is not yet available.


Baeten N.J., Forwick M., Vogt C. & Vorren T.O. 2010. Late Weichselian and Holocene sedimentary environments and glacial activity in Billefjorden, Svalbard. In J. Howe et al. (eds.): Fjord systems and archives. Pp. 207–223. London: The Geological Society.

Beierlein L., Salvigsen O., Schöne B.R., Mackensen A. & Brey T. 2015. The seasonal water temperature cycle in the Arctic Dicksonfjord (Svalbard) during the Holocene Climate Optimum derived from subfossil Arctica islandica shells. The Holocene 25, 1197–1207, https://doi.org/10.1177/0959683615580861.

Berger A. & Loutre M.-F. 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297–317, https://doi.org/10.1016/0277-3791(91)90033-Q.

Clare M.A., Hughes Clarke J.E., Talling P.J., Cartigny M.J.B. & Pratomo D.G. 2016. Preconditioning and triggering of offshore slope failures and turbidity currents revealed by most detailed monitoring yet at a fjord-head delta. Earth and Planetary Science Letters 450, 208–220, https://doi.org/10.1016/j.epsl.2016.06.021.

Cottier F.R., Nilsen F., Inall M.E., Gerland S., Tverberg V. & Svendsen H. 2007. Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophysical Research Letters 34, L10607, https://doi.org/10.1029/2007GL029948.

Cowan E.A., Seramur K.C., Cai J. & Powell R.D. 1999. Cyclic sedimentation produced by fluctuations in meltwater discharge, tides and marine productivity in an Alaskan fjord. Sedimentology 46, 1109–1126, https://doi.org/10.1046/j.1365-3091.1999.00267.x.

Dallmann W. & Elvevold S. 2015. Bedrock geology. In W. Dallmann (ed.): Geoscience atlas of Svalbard. Norwegian Polar Institute Report Series 148. Pp. 133–173. Tromsø: Norwegian Polar Institute.

Ekart D.D., Cerling T.E., Montanez I.P. & Tabor N.J. 1999. A 400 million year carbon isotope record of pedogenic carbonate: implications for paleoatmospheric carbon dioxide. American Journal of Science 299, 805–827, https://doi.org/10.2475/ajs.299.10.805.

Elverhøi A., Andersen E.S., Dokken T., Hebbeln D., Spielhagen R., Svendsen J.I., Sørflaten M., Rørnes A., Hald M. & Forsberg C.F. 1995. The growth and decay of the Late Weichselian ice sheet in western Svalbard and adjacent areas based on provenance studies of marine sediments. Quaternary Research 44, 303–316, https://doi.org/10.1006/qres.1995.1076.

Farnsworth W.R., Ingólfsson Ó., Noormets R., Allaart L., Alexanderson H., Henriksen M. & Schomacker A. 2017. Dynamic Holocene glacial history of St. Jonsfjorden, Svalbard. Boreas 46, 585–603, https://doi.org/10.1111/bor.12269.

Forman S.L., Lubinski D.J., Ingólfsson Ó., Zeeberg J.J., Snyder J.A., Siegert M.J. & Matishov G.G. 2004. A review of postglacial emergence on Svalbard, Franz Josef Land and Novaya Zemlya, northern Eurasia. Quaternary Science Reviews 23, 1391–1434, https://doi.org/10.1016/j.quascirev.2003.12.007.

Fortier M., Fortier L., Michel C. & Legendre L. 2002. Climatic and biological forcing of the vertical flux of biogenic particles under seasonal Arctic sea ice. Marine Ecology Progress Series 225, 1–16, https://doi.org/10.3354/meps225001.

Forwick M. & Vorren T.O. 2007. Holocene mass-transport activity and climate in outer Isfjorden, Spitsbergen: marine and subsurface evidence. The Holocene 17, 707–716, https://doi.org/10.1177/0959683607080510.

Forwick M. & Vorren T.O. 2009. Late Weichselian and Holocene sedimentary environments and ice rafting in Isfjorden, Spitsbergen. Palaeogeography, Palaeoclimatology, Palaeoecology 280, 258–274, https://doi.org/10.1016/j.palaeo.2009.06.026.

Forwick M., Vorren T.O., Hald M., Korsun S., Roh Y., Vogt C. & Yoo K.-C. 2010. Spatial and temporal influence of glaciers and rivers on the sedimentary environment in Sassenfjorden and Tempelfjorden, Spitsbergen. In J. Howe et al. (eds.): Fjord systems and archives. Pp. 163–193. London: The Geological Society.

Galfetti T., Hochuli P.A., Brayard A., Bucher H., Weissert H. & Vigran J.O. 2007. Smithian–Spathian boundary event: evidence for global climatic change in the wake of the end-Permian biotic crisis. Geology 35, 291–294, https://doi.org/10.1130/G23117A.1.

Grasby S.E., Beauchamp B., Bond D.P.G., Wignall P., Talavera C., Galloway J.M., Piepjohn K., Reinhardt L. & Blomeier D. 2015. Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction. Geological Society of America Bulletin 127, 1331–1347, https://doi.org/10.1130/B31197.1.

Grobe H. 1987. A simple method for the determination of ice-rafted debris in sediment cores. Polarforschung 57, 123–126.

Hagen J.O., Liestøl O., Roland E. & Jørgensen T. 1993. Glacier atlas of Svalbard and Jan Mayen. Norway: Norwegian Polar Institute.

Hald M., Andersson C., Ebbesen H., Jansen E., Klitgaard-Kristensen D., Risebrobakken B., Salomonsen G.R., Sarnthein M., Sejrup H.P. & Telford R.J. 2007. Variations in temperature and extent of Atlantic Water in the northern North Atlantic during the Holocene. Quaternary Science Reviews 26, 3423–3440, https://doi.org/10.1016/j.quascirev.2007.10.005.

Hald M., Ebbesen H., Forwick M., Godtliebsen F., Khomenko L., Korsun S., Olsen L.R. & Vorren T.O. 2004. Holocene paleoceanography and glacial history of the west Spitsbergen area, Euro-Arctic margin. Quaternary Science Reviews 23, 2075–2088, https://doi.org/10.1016/j.quascirev.2004.08.006.

Holthuis M. 2018. Sedimentation processes in a non-glaciated fjord setting: Dicksonfjorden, Svalbard. Amsterdam: Vrije Universiteit.

Jernas P., Klitgaard Kristensen D., Husum K., Wilson L. & Koç N. 2013. Palaeoenvironmental changes of the last two millennia on the western and northern Svalbard shelf. Boreas 42, 236–255, https://doi.org/10.1111/j.1502-3885.2012.00293.x.

Keck A., Wiktor J., Hapter R. & Nilsen R. 1999. Phytoplankton assemblages related to physical gradients in an Arctic, glacier-fed fjord in summer. ICES Journal of Marine Science 56, 203–214, https://doi.org/10.1006/jmsc.1999.0631.

Knies J. & Martinez P. 2009. Organic matter sedimentation in the western Barents Sea region: terrestrial and marine contribution based on isotopic composition and organic nitrogen content. Norwegian Journal of Geology 89, 79–89.

Kvam M.H. 2018. Deposits and processes on the tide-influenced fjord-head delta in Dicksonfjorden, Svalbard. Tromsø: Dept. of Geosciences, UiT—The Arctic University of Norway.

Lamb A.L., Wilson G.P. & Leng M.J. 2006. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Science Reviews 75, 29–57, https://doi.org/10.1016/j.earscirev.2005.10.003.

Lønne I. & Nemec W. 2004. High-Arctic fan delta recording deglaciation and environment disequilibrium. Sedimentology 51, 553–589, https://doi.org/10.1111/j.1365-3091.2004.00636.x.

Mangerud J., Bolstad M., Elgersma A., Helliksen D., Landvik J.Y., Lønne I., Lycke A.K., Salvigsen O., Sandahl T. & Svendsen J.I. 1992. The last glacial maximum on Spitsbergen, Svalbard. Quaternary Research 38, 1–31, https://doi.org/10.1016/0033-5894(92)90027-G.

Mangerud J. & Svendsen J.I. 2018. The Holocene Thermal Maximum around Svalbard, Arctic North Atlantic; molluscs show early and exceptional warmth. The Holocene 28, 65–83, https://doi.org/10.1177/0959683617715701.

Meyers P.A. 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 114, 289–302, https://doi.org/10.1016/0009-2541(94)90059-0.

Mørk A., Elvebakk G., Forsberg A.W., Hounslow M.W., Nakrem H.A., Vigran J.O. & Weitschat W. 1999. The type section of the Vikinghogda Formation: a new Lower Triassic unit in central and eastern Svalbard. Polar Research 18, 51–82, https://doi.org/10.1111/j.1751-8369.1999.tb00277.x.

Muckenhuber S., Nilsen F., Korosov A. & Sandven S. 2016. Sea ice cover in Isfjorden and Hornsund, Svalbard (2000–2014) from remote sensing data. The Cryosphere 10, 149–158, https://doi.org/10.5194/tc-10-149-2016.

Nilsen F., Cottier F., Skogseth R. & Mattsson S. 2008. Fjord–shelf exchanges controlled by ice and brine production: the interannual variation of Atlantic Water in Isfjorden, Svalbard. Continental Shelf Research 28, 1838–1853, https://doi.org/10.1016/j.csr.2008.04.015.

Prior D.B., Wiseman W.J Jr. & Bryant W.R. 1981. Submarine chutes on the slopes of fjord deltas. Nature 290, 326–328, https://doi.org/10.1038/290326a0.

Rasmussen T.L., Forwick M. & Mackensen A. 2012. Reconstruction of inflow of Atlantic Water to Isfjorden, Svalbard during the Holocene: correlation to climate and seasonality. Marine Micropaleontology 94–95, 80–90, https://doi.org/10.1016/j.marmicro.2012.06.008.

Rasmussen T.L., Thomsen E., Ślubowska M.A., Jessen S., Solheim A. & Koç N. 2007. Paleoceanographic evolution of the SW Svalbard margin (76°N) since 20,000 14C yr BP. Quaternary Research 67, 100–114, https://doi.org/10.1016/j.yqres.2006.07.002.

Reimer P.J., Bard E., Bayliss A., Beck J.W., Blackwell P.G., Ramsey C.B., Buck C.E., Cheng H., Edwards R.L. & Friedrich M. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947.

Røthe T.O., Bakke J., Vasskog K., Gjerde M., D’Andrea W.J. & Bradley R.S. 2015. Arctic Holocene glacier fluctuations reconstructed from lake sediments at Mitrahalvøya, Spitsbergen. Quaternary Science Reviews 109, 111–125, https://doi.org/10.1016/j.quascirev.2014.11.017.

Salvigsen O. 1984. Occurrence of pumice on raised beaches and Holocene shoreline displacement in the inner Isfjorden area, Svalbard. Polar Research 2, 107–113, https://doi.org/10.3402/polar.v2i1.6964.

Shanmugam G. 1997. The Bouma Sequence and the turbidite mind set. Earth-Science Reviews 42, 201–229, https://doi.org/10.1016/S0012-8252(97)81858-2.

Sarnthein M., van Kreveld S., Erlenkeuser H., Grootes P., Kucera M., Pflaumann U. & Schulz M. 2003. Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75°N. Boreas 32, 447–461, https://doi.org/10.1080/03009480310003351.

Silva J.A. & Bremner J.M. 1966. Determination and isotope-ratio analysis of different forms of nitrogen in soils: 5. Fixed ammonium. Soil Science Society of America Journal 30, 587–594, https://doi.org/10.2136/sssaj1966.03615995003000050017x.

Ślubowska M.A., Koç N., Rasmussen T.L. & Klitgaard-Kristensen D. 2005. Changes in the flow of Atlantic Water into the Arctic Ocean since the last deglaciation: evidence from the northern Svalbard continental margin, 80°N. Paleoceanography 20, PA4014, https://doi.org/10.1029/2005PA001141.

Ślubowska-Woldengen M., Rasmussen T.L., Koç N., Klitgaard-Kristensen D., Nilsen F. & Solheim A. 2007. Advection of Atlantic Water to the western and northern Svalbard shelf since 17,500 cal yr BP. Quaternary Science Reviews 26, 463–478, https://doi.org/10.1016/j.quascirev.2006.09.009.

Stuiver M. & Reimer P.J. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215–230, https://doi.org/10.1017/S0033822200013904.

Svendsen H., Beszczynska-Møller A., Hagen J.O., Lefauconnier B., Tverberg V., Gerland S., Ørbæk J.B., Bischof K., Papucci C., Zajaczkowski M., Azzolini R., Bruland O. & Wiencke C. 2002. The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard. Polar Research 21, 133–166, https://doi.org/10.1111/j.1751-8369.2002.tb00072.x.

Svendsen J.I., Elverhøi A. & Mangerud J. 1996. The retreat of the Barents Sea Ice Sheet on the western Svalbard margin. Boreas 25, 244–256, https://doi.org/10.1111/j.1502-3885.1996.tb00640.x.

Svendsen J.I. & Mangerud J. 1997. Holocene glacial and climatic variations on Spitsbergen, Svalbard. The Holocene 7, 45–57, https://doi.org/10.1177/095968369700700105.

Tjallingii R., Röhl U., Kölling M. & Bickert T. 2007. Influence of the water content on x-ray fluorescence core-scanning measurements in soft marine sediments. Geochemistry, Geophysics, Geosystems 8, Q02004, https://doi.org/10.1029/2006GC001393.

van der Bilt W.G.M., D’Andrea W.J., Bakke J., Balascio N.L., Werner J.P., Gjerde M. & Bradley R.S. 2018. Alkenone-based reconstructions reveal four-phase Holocene temperature evolution for High Arctic Svalbard. Quaternary Science Reviews 183, 204–213, https://doi.org/10.1016/j.quascirev.2016.10.006.

Weltje G.J. & Tjallingii R. 2008. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theory and application. Earth and Planetary Science Letters 274, 423–438, https://doi.org/10.1016/j.epsl.2008.07.054

Werner K., Müller J., Husum K., Spielhagen R.F., Kandiano E.S. & Polyak L. 2016. Holocene sea subsurface and surface water masses in the Fram Strait—comparisons of temperature and sea-ice reconstructions. Quaternary Science Reviews 147, 194–209, https://doi.org/10.1016/j.quascirev.2015.09.007.

Weslawski J., Koszteyn J., Zajączkowski M., Wiktor J. & Kwasniewski S. 1995. Fresh water in Svalbard fjord ecosystem. In H.R. Skjoldal et al. (eds.): Ecology of fjords and coastal waters. Pp. 229–241. Amsterdam: Elsevier Science.

Winkelmann D. & Knies J. 2005. Recent distribution and accumulation of organic carbon on the continental margin west off Spitsbergen. Geochemistry, Geophysics, Geosystems 6, Q09012, https://doi.org/10.1029/2005GC000916.

Zajączkowski M. 2008. Sediment supply and fluxes in glacial and outwash fjords, Kongsfjorden and Adventfjorden, Svalbard. Polish Polar Research 29, 59–72.

Zajączkowski M., Nygård H., Hegseth E.N. & Berge J. 2010. Vertical flux of particulate matter in an Arctic fjord: the case of lack of the sea-ice cover in Adventfjorden 2006–2007. Polar Biology 33, 223–239, https://doi.org/10.1007/s00300-009-0699-x.

Zajączkowski M. & Włodarska-Kowalczuk M. 2007. Dynamic sedimentary environments of an Arctic glacier-fed river estuary (Adventfjorden, Svalbard). I. Flux, deposition, and sediment dynamics. Estuarine, Coastal and Shelf Science 74, 285–296, https://doi.org/10.1016/j.ecss.2007.04.015
How to Cite
Joo Y. J., Forwick M., Park K., Joe Y., Son Y. J., & Nam S.-I. (2019). Holocene environmental changes in Dicksonfjorden, west Spitsbergen, Svalbard. Polar Research, 38. https://doi.org/10.33265/polar.v38.3426
Research Articles