Groundwater discharge to the western Antarctic coastal ocean

  • Kimberly A. Null Institute for Coastal Science and Policy, East Carolina University
  • D. Reide Corbett Institute for Coastal Science and Policy; Department of Geological Sciences, East Carolina University
  • Jared Crenshaw Department of Geological Sciences, East Carolina University
  • Richard N. Peterson Department of Coastal and Marine Systems Science, Coastal Carolina University
  • Leigha E. Peterson Department of Coastal and Marine Systems Science, Coastal Carolina University
  • W. Berry Lyons Byrd Polar and Climate Research Center, Ohio State University
Keywords: Groundwater, subglacial meltwater, western Antarctic Peninsula, radium


Submarine groundwater discharge (SGD) measurements have been limited along the Antarctic coast, although groundwater discharge is becoming recognized as an important process in the Antarctic. Quantifying this meltwater pathway is important for hydrologic budgets, ice mass balances and solute delivery to the coastal ocean. Here, we estimate the combined discharge of subglacial and submarine groundwater to the Antarctic coastal ocean. SGD, including subglacial and submarine groundwater, is quantified along the WAP at the Marr Glacier terminus using the activities of naturally occurring radium isotopes (223Ra, 224Ra). Estimated SGD fluxes from a 224Ra mass balance ranged from (0.41 ± 0.14)×104 and (8.2 ± 2.3)×104m3 d−1. Using a salinity mass balance, we estimate SGD contributes up to 32% of the total freshwater to the coastal environment near Palmer Station. This study suggests that a large portion of the melting glacier may be infiltrating into the bedrock and being discharged to coastal waters along the WAP. Meltwater infiltrating as groundwater at glacier termini is an important solute delivery mechanism to the nearshore environment that can influence biological productivity. More importantly, quantifying this meltwater pathway may be worthy of attention when predicting future impacts of climate change on retreat of tidewater glaciers.


Download data is not yet available.


Annett A.L., Henley S.F., Van Beek P., Souhaut M., Ganeshram R., Venables H.J., Meredith M.P. & Geibert W. 2013. Use of radium isotopes to estimate mixing rates and trace sediment inputs to surface waters in northern Marguerite Bay, Antarctic Peninsula. Antarctic Science 25, 445–456,

Bartholomaus T.C., Amundson J.M., Walter J.I., O’Neel S., West M.E. & Larsen C.F. 2015. Subglacial discharge at tidewater glaciers revealed by seismic tremor. Geophysical Research Letters 42, 6391–6398,

Beck A.J., Rapaglia J.P., Cochran J.K. & Bokuniewicz H.J. 2007. Radium mass-balance in Jamaica Bay, NY: evidence for a substantial flux of submarine groundwater. Marine Chemistry, 106, 419–441,

Beusen A.H.W., Slomp C.P. & Bouwman A.F. 2013. Global land–ocean linkage: direct inputs of nitrogen to coastal waters via submarine groundwater discharge. Environmental Research Letters 8(3), article no. 034035,

Brown G.H., Sharp M. & Tranter M. 1996. Subglacial chemical erosion: seasonal variations in solute provenance, Haut Glacier d’Arolla, Valais, Switzerland. Annals of Glaciology 22, 25–31,

Burnett W.C., Aggarwal P.K., Aureli A., Bokuniewicz H., Cable J.E., Charette M.A., Kontar E., Krupa S., Kulkarni K.M., Loveless A. & Moore W.S. 2006. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Science of the Total Environment 367, 498–543,

Burnett W.C., Bokuniewicz H., Huettel M., Moore W.S. & Taniguchi M. 2003. Groundwater and porewater inputs to the coastal zone. Biogeochemistry 66, 3–33.

Burnett W.C. & Dulaiova H. 2003. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. Journal of Environmental Radioactivity 69, 21–35,

Charette M.A., Buesseler K.O. & Andrews J.E. 2001. Utility of radium isotopes for evaluating the input and transport of groundwater-derived nitrogen to a Cape Cod estuary. Limnology and Oceanography 46, 465–470,

Charette M.A., Gonneea M.E., Morris P.J., Statham P., Fones G., PlanquetteH., Salter I. & Garabato A.N. 2007. Radium isotopes as tracers of iron sources fueling a Southern Ocean phytoplankton bloom. Deep-Sea Research Part II 54, 1989–1998,

Charette M.A., Moore W.S. & Burnett W.C. 2008. Uranium-and thorium-series nuclides as tracers of submarine groundwater discharge. Radioactivity in the Environment 13, 155–191.

Christoffersen P., Bougamont M., Carter S.P., Fricker H.A. & Tulaczyk S. 2014. Significant groundwater contribution to Antarctic ice streams hydrologic budget. Geophysical Research Letters 41, 2003–2010,

Cook A.J., Fox A.J., Vaughan D.G. & Ferrigno J.G. 2005. Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308, 541–544,

Cook A.J., Holland P.R., Meredith M.P., Murray T., Luckman A. & Vaughan D.G. 2016. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353, 283–286,

Corbett D.R., Chanton J., Burnett W., Dillon K., Rutkowski C. & Fourqurean J.W. 1999. Patterns of groundwater discharge into Florida Bay. Limnology and Oceanography 44, 1045–1055,

Corbett D.R., Crenshaw J., Null K., Peterson R.N., Peterson L.E. & Lyons W.B. 2017. Nearshore mixing and nutrient delivery along the western Antarctic Peninsula. Antarctic Science 29, 397–409,

Currie L.A. 1968. Limits for qualitative detection and quantitative determination. Analytical Chemistry 40, 586–593.

DeFoor W., Person M., Larsen H.C., Lizarralde D., Cohen D. & Dugan B. 2011. Ice sheet–derived submarine groundwater discharge on Greenland’s continental shelf. Water Resources Research 47, W07549,

de Sieyes N.R, Yamahara K.M., Layton B.A., Joyce E.H. & Boehm A.B. 2008. Submarine discharge of nutrient-enriched fresh groundwater at Stinson Beach, California is enhanced during neap tides. Limnology and Oceanography 53, 1434–1445,

Dierssen H.M., Smith R.C. & Vernet M. 2002. Glacial meltwater dynamics in coastal waters west of the Antarctic peninsula. Proceedings of the National Academy of Sciences 99, 1790–1795,

Dold B., Gonzalez-Toril E., Aguilera A., Lopez-Pamo E., Cisternas M.E., Bucchi F. & Amils R. 2013. Acid rock drainage and rock weathering in Antarctica: important sources for iron cycling in the Southern Ocean. Environmental Science &Technology 47, 6129–6136,

Dulaiova H., Ardelan M.V., Henderson P. B. & Charette M.A. 2009. Shelf-derived iron inputs drive biological productivity in the southern Drake Passage. Global Biogeochemical Cycles 23, GB4014,

Garcia-Solsona E., Garcia-Orellana J., Masqué P. & Dulaiova H. 2008. Uncertainties associated with 223Ra and 224Ra measurements in water via a delayed coincidence counter (RaDeCC). Marine Chemistry 109, 198–219,

Garibotti I.A., Vernet M., Ferrario M.E., Smith R.C., Ross R.M. & Quetin L.B. 2003. Phytoplankton spatial distribution patterns along the western Antarctic Peninsula (Southern Ocean). Marine Ecology Progress Series 261, 21–39,

Gilbert R.O. 1987. Statistical methods for environmental pollution monitoring. New York: Van Nostrand Rheinhold Co.

Gonneea M.E., Morris P.J., Dulaiova H. & Charette M.A. 2008. New perspectives on radium behavior within a subterranean estuary. Marine Chemistry 109, 250–267,

Helsel D.R. 1990. Less than obvious; statistical treatment of data below the detection limit. Environmental Science and Technology 24, 1767–1774,

Hodson A., Heath T., Langford H. & Newsham K. 2010. Chemical weathering and solute export by meltwater in a maritime Antarctic glacier basin. Biogeochemistry 98, 9–27,

Hodgkins R., Tranter M. & Dowdeswell J.A. 1997. Solute provenance, transport and denudation in a High Arctic glacierized catchment. Hydrological Processes 11, 1813–1832,<1813::AID-HYP498>3.0.CO;2-C.

Hwang D.W., Kim G., Lee Y.W. & Yang H.S. 2005. Estimating submarine inputs of groundwater and nutrients to a coastal bay using radium isotopes. Marine Chemistry 96, 61–71,

Knee K.L., Layton B.A., Street J.H., Boehm A.B. & Paytan A. 2008. Sources of nutrients and fecal indicator bacteria to nearshore waters on the north shore of Kauai (Hawaii, USA). Estuaries and Coasts 31, 607–622,

Knoll G.F. 2010. Radiation detection and measurement. New York: John Wiley & Sons.

Kohut J., Miles T., Bernard K., Fraser W., Patterson-Fraser D., Oliver M., Cimino M., Winsor P., Statscewich H. & Fredj E. 2016. Project CONVERGE: impacts of local oceanographic processes on Adélie penguin foraging ecology. In: Oceans 2016 MTS/IEEE Monterey. Piscataway, NJ: Institute of Electrical and Electronic Engineers.

Krest J.M., Moore W.S., Gardner L.R. & Morris J.T. 2000. Marsh nutrient export supplied by groundwater discharge: evidence from radium measurements. Global Biogeochemical Cycles 14, 167–176,

Lauria D.C., Almeida R.M.R. & Sracek O. 2004. Behavior of radium, thorium and uranium in groundwater near the Buena Lagoon in the coastal zone of the state of Rio de Janeiro, Brazil. Environmental Geology 47, 11–19,

Li L., Barry D.A., Stagnitti F. & Parlange J. 1999. Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resources Research 35, 3253–3259,

Longuet-Higgins M.S. 1983. Wave set-up, percolation and undertow in the surf zone. Proceedings of the Royal Society of London Series A 390, 283–291,

Lyons W.B., Welch K.A., Carey A.E., Doran P.T., Wall D.H., Virginia R.A., Fountain A.G., Csathó B.M. & Tremper C.M. 2005. Groundwater seeps in Taylor Valley Antarctica: an example of a subsurface melt event. Annals of Glaciology 40, 200–206,

Michael H.A., Mulligan A.E. & Harvey C.F. 2005. Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature 436, 1145–1148,

Moore W.S. 1996. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 380, 612–614,

Moore W.S. 2000. Ages of continental shelf water determined from 223Ra and 224Ra. Journal of Geophysical Research—Oceans 105, 22117–22122,

Moore W.S. 2010. The effect of submarine groundwater discharge on the ocean. Annual Review of Marine Science 2, 59–88,

Moore W.S. & Arnold R. 1996. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. Journal of Geophysical Research—Oceans 101, 1321–1329,

Moore W.S. & Reid D.F. 1973. Extraction of radium from natural waters using manganese-impregnated acrylic fibers. Journal of Geophysical Research 78, 8880–8886,

Null K.A., Knee K.L., Crook E.D., de Sieyes N.R., Rebolledo-Vieyra M., Hernández-Terrones L. & Paytan A. 2014. Composition and fluxes of submarine groundwater along the Caribbean coast of the Yucatan Peninsula. Continental Shelf Research 77, 38–50,

Paytan A., Shellenbarger G.G., Street J.H., Gonneea M.E., Davis K., Young M.B. & Moore W.S. 2006. Submarine groundwater discharge: an important source of new inorganic nitrogen to coral reef ecosystems. Limnology and Oceanography 51, 343–348,

Peterson R.N., Burnett W.C., Dimova N. & Santos I.R. 2009. Comparison of measurement methods for radium-226 on manganese-fiber. Limnology and Oceanography: Methods 7, 196–205,

Rama M.W.S. & Moore W.S. 1996. Using the radium quartet for evaluating groundwater input and water exchange in salt marshes. Geochimica et Cosmochimica Acta 60, 4645–4652,

Rejcek P. 2014. Island time: latest glacier calving near Palmer Station reveals another separate land area. The Antarctic Sun. Accessed on the internet at /science/content handler.cfm?id=3003 on 15 February.

Rignot E., Casassa G., Gogineni S., Kanagaratnam P., Krabill W., Pritchard H., Rivera A., Thomas R., Turner J. & Vaughan D. 2005. Recent ice loss from the Fleming and other glaciers, Wordie Bay, West Antarctic Peninsula. Geophysical Research Letters 32,

Rignot E., Koppes M., & Velicogna I. 2010. Rapid submarine melting of the calving faces of west Greenland glaciers. Nature Geoscience 3, 187–191,

Robinson C., Li L. & Barry D.A. 2007. Effect of tidal forcing on a subterranean estuary. Advances in Water Resources 30, 851–865,

Robinson C., Li L. & Prommer H. 2007. Tide-induced recirculation across the aquifer–ocean interface. Water Resources Research 43, W07428,

Shaw T.J., Raiswell R., Hexel C.R., Vu H.P., Moore W.S., Dudgeon R. & Smith K.L. 2011. Input, composition, and potential impact of terrigenous material from free-drifting icebergs in the Weddell Sea. Deep-Sea Research Part II 58,1376–1383,

Shibuo Y., Jarsjö J. & Destouni G. 2006. Bathymetry-topography effects on saltwater–fresh groundwater interactions around the shrinking Aral Sea. Water Resources Research 42, W11410,

Slomp C.P. & Van Cappellen P. 2004. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. Journal of Hydrology 295, 64–86,

Smith A.J. 2004. Mixed convection and density-dependent seawater circulation in coastal aquifers. Water Resources Research 40, W08309,

Taniguchi M., Burnett W.C., Cable J.E. & Turner J.V. 2002. Investigation of submarine groundwater discharge. Hydrological Processes 16, 2115–2129,

Taniguchi M., Ishitobi T. & Shimada J. 2006. Dynamics of submarine groundwater discharge and freshwater–seawater interface. Journal of Geophysical Research—Oceans 111, C01008,

Taylor B.N. & Kuyatt C.E. 1994. Guidelines for evaluating and expressing the uncertainty of NIST measurement results. NIST Technical Note 1297. Gaithersburg, MD: Physics Laboratory, National Institute of Standards and Technology.

Todoroff K., Kohut J., Winsor P. & Statscewich H. 2015. Spatial circulation patterns over Palmer Deep Canyon and the effects on Adélie penguin foraging. In: Oceans 2015 MTS/IEEE Washington. Piscataway, NJ: Institute of Electrical and Electronic Engineers.

Uemura T., Taniguchi M. & Shibuya K. 2011. Submarine groundwater discharge in Lützow-Holm Bay, Antarctica. Geophysical Research Letters 38, L08402,

US EPA 2000. Guidance for data quality assessment. Practical methods for data analysis. EPA QA/G-9. QA00. Washington, DC: US Environmental Protection Agency, Office of Environmental Information.
How to Cite
Null K. A., Corbett D. R., Crenshaw J., Peterson R. N., Peterson L. E., & Lyons W. B. (2019). Groundwater discharge to the western Antarctic coastal ocean. Polar Research, 38.
Research Articles