Ice-out and freshet fluxes of CO2 and CH4 across the air–water interface of the channel network of a great Arctic delta, the Mackenzie

  • Jolie A.L. Gareis Department of Geography, Simon Fraser University, Burnaby, BC, Canada http://orcid.org/0000-0001-6199-6823
  • Lance F.W. Lesack Departments of Geography & Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
Keywords: Carbon dioxide, methane, greenhouse gas, Mackenzie River Delta, circumpolar delta, floodplain

Abstract

Carbon dioxide (CO2) and methane (CH4) were monitored at five sites spanning the upstream–downstream extent of the Mackenzie Delta channel network during May 2010, capturing the historically under-sampled ice-out period that includes the rising freshet, peak water levels and the early falling freshet (flood recession). Unexpectedly, partial pressures of CO2 in the Mackenzie River were undersaturated during the rising freshet before water levels peaked, indicating net CO2 invasion at instantaneous CO2 flux rates (F-CO2) ranging from –112 to –258 mg-C m-2 d-1. Net CO2 invasion was also observed around the time of peak water levels at sites in the middle and outer delta. Following peak water levels, the Mackenzie River switched to saturation and net CO2 evasion (F-CO2 from 74 to 177 mg-C m-2 d-1). Although the Peel River (which flows into the west side of the Mackenzie Delta) was a strong emitter of CO2 (F-CO2 from 373 to 871 mg-C m-2 d-1), overall, the Mackenzie River and Delta were weak emitters of CO2 during the 2010 ice-out period. All sites were strong emitters of CH4 during ice-out, however, with the highest evasive fluxes observed in the outer delta when the extent of flooded delta landscape was greatest. Estimated aerial fluxes from Mackenzie Delta channel surfaces during May 2010 ranged from 2.1 to 4.8 Gg-C as CO2, and 186 to 433 Mg-C as CH4. These results provide critical information that can be used to refine gas flux estimates in high-latitude circumpolar river deltas during the relatively under-studied ice-out period.

Downloads

Download data is not yet available.

References


Abril G., Martinez J.M., Artigas L.F., Moreira-Turcq P., Benedetti M.F., Vidal L., Meziane T., Kim J.H., Bernardes M.C., Savoye N., Deborde J., Souza E.L., Alberic P., de Souza M.F.L. & Roland F. 2014. Amazon river carbon dioxide outgassing fueled by wetlands. Nature 505, 395–398, doi: 10.1038/nature12797.


Alin S.R., Rasera M.F.F.L., Salimon C.I., Richey J.E., Holtgrieve G.W., Krusche A.V. & Snidvongs A. 2011. Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. Journal of Geophysical Research—Biogeosciences 116, G01009, doi: 10.1029/2010JG001398.


Alt D.F. 1993. State water data records: hydrologic records of the United States water years 1990, 1991 and 1992. United States Geological Survey Open File Report 93-626. CD-ROM. Doi: 10.3133/ofr93626. US Geological Survey.


Amon R.M.W., Rinehart A.J., Duan S., Louchouarn P., Prokushkin A., Guggenberger G., Bauch D., Stedmon C., Raymond P.A., Holmes R.M, McClelland J.W., Peterson B.J., Walker S.A. & Zhulidov A.V. 2012. Dissolved organic matter sources in large Arctic rivers. Geochimica et Cosmochimica Acta 94, 217–237, doi: 10.1016/j.gca.2012.07.015.


Bastviken D., Tranvik L.J., Downing J.A., Crill P.M. & Enrich-Prast A. 2011. Freshwater methane emissions offset the continental carbon sink. Science 331, 50, doi: 10.1126/science.1196808.


Beaulieu E., Goddéris Y., Donnadieu Y., Labat D. & Roelandt C. 2012. High sensitivity of the continental-weathering carbon dioxide sink to future climate change. Nature Climate Change 2, 346–349, doi: 10.1038/nclimate1419.


Beaulieu J.J., Shuster W.D. & Rebholz J.A. 2012. Controls on gas transfer velocities in a large river. Journal of Geophysical Research—Biogeosciences 117, G02007, doi: 10.1029/2011jg001794.


Beltaos S. 2012. Mackenzie Delta flow during spring breakup: uncertainties and potential improvements. Canadian Journal of Civil Engineering 39, 579–588, doi: 10.1139/I2012-033.


Blackburn J., She Y., Hicks F. & Nafziger J. 2015. Ice effects on flow distributions in the Mackenzie Delta. Proceedings of the 18th Workshop on the Hydraulics of Ice Covered Rivers. Quebec City: Committee on River Ice Processes and the Environment.


Borges A.V., Abril G. & Bouillon S. 2018. Carbon dynamics and CO2 and CH4 outgassing in the Mekong delta. Biogeosciences 15, 1093–1114, doi: 10.5194/bg-15-1093-2018.


Borges A.V., Abril G., Darchambeau F., Teodoru C.R., Deborde J., Vidal L.O., Lambert T. & Bouillon S. 2015. Divergent biophysical controls of aquatic CO2 and CH4 in the world’s two largest rivers. Scientific Reports 5, article no. 15614, doi: 10.1038/srep15614.


Borges A.V., Darchambeau F., Teodoru C.R., Marwick T.R., Tamooh F., Geeraert N., Omengo F.O., Guerin F., Lambert T., Morana C., Okuku K. & Bouillon S. 2015. Globally significant greenhouse-gas emissions from African inland waters. Nature Geoscience 8, 637–642, doi: 10.1038/ngeo2486.


Brunskill G.J. 1986. Environmental features of the Mackenzie System. In B.R. Davies & K.F. Walker (eds.): The ecology of river systems. Pp. 435–471. Dordrecht: Dr. W. Junk Publishers.


Bussmann I. 2013. Distribution of methane in the Lena Delta and Buor-Khaya Bay, Russia. Biogeosciences 10, 4641–4652, doi: 10.5194/bg-10-4641-2013.


Bussmann, I., Hackbusch S., Schaal P. & Wichels A. 2017. Methane distribution and oxidation around the Lena Delta in summer 2013. Biogeosciences 14, 4985–5002, doi: 10.5194/bg-14-4985-2017.


Butman D. & Raymond P.A. 2011. Significant efflux of carbon dioxide from streams and rivers in the United States. Nature Geoscience 4, 839–842, doi: 10.1038/ngeo1294.


Campeau A. & Del Giorgio P.A. 2014. Patterns in CH4 and CO2 concentrations across boreal rivers: major drivers and implications for fluvial greenhouse gas emissions under climate change scenarios. Global Change Biology 20, 1075–1088, doi: 10.1111/gcb.12479.


Campeau A., Wallin M.B., Giesler R., Löfgren S., Mörth C.-M., Schiff S., Venkiteswaran J.J. & Bishop K. 2017. Multiple sources and sinks of dissolved inorganic carbon across Swedish streams, refocusing the lens of stable C isotopes. Scientific Reports 7, article no. 9158, doi: 10.1038/s41598-017-09049-9.


Cole J.J. & Caraco N.F. 2001. Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Freshwater and Marine Research 52, 101–110, doi: 10.1071/MF00084.


Coplen T.B., Hopple J.A., Böhlke J.K., Peiser H.S., Rieder S.E., Krouse H.R., Rosman K.J.R., Ding T., Vocke R.D. Jr. Révész K.M., Lamberty A., Taylor P. & De Bièvre P. 2002. Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents. Water-Resources Investigations Report 01-4222. Reston, VA: US Department of the Interior and US Geological Survey.


Cory R.M., Crump B.C., Dobkowski J.A. & Kling G.W. 2013. Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the Arctic. Proceedings of the National Academy of Sciences of the United States of America 110, 3429–3434, doi: 10.1073/pnas.1214104110.


Crawford J.T., Striegl R.G., Wickland K.P., Dornblaser M.M. & Stanley E.H. 2013. Emissions of carbon dioxide and methane from a headwater stream network of interior Alaska. Journal of Geophysical Research—Biogeosciences 118, 482–494, doi: 10.1002/jgrg.20034.


Cunada C.L. 2016. Seasonal methane dynamics in lakes of the Mackenzie river delta, western Canadian Arctic. MSc thesis, Simon Fraser University.


Dalmagro H.J., Lathuilliere M.J., Hawthorne I., Morais D.D., Pinto O.B., Couto E.G. & Johnson M.S. 2018. Carbon biogeochemistry of a flooded Pantanal forest over three annual flood cycles. Biogeochemistry 139, 1–18, doi: 10.1007/s10533-018-0450-1.


Denfeld B.A., Frey K.E., Sobczak W.V., Mann P.J. & Holmes R.M. 2013. Summer CO2 evasion from streams and rivers in the Kolyma river basin, north-east Siberia. Polar Research 32, article no. 19704, doi: 10.3402/polar.v32i0.19704.


Denfeld B.A., Wallin M.B., Sahlée E., Sobek S., Kokic J., Chmiel H.E. & Weyhenmeyer G.A. 2015. Temporal and spatial carbon dioxide concentration patterns in a small boreal lake in relation to ice-cover dynamics. Boreal Environment Research 20, 679–692.


Dlugokencky E.J., Crotwell A.M. & Mund J.W. 2019. Atmospheric methane dry air mole fractions from quasi-continuous measurements at Barrow, Alaska and Mauna Loa, Hawaii, 1986-2018. Version 2019-03-04. Accessed on the internet at ftp://aftp.cmdl.noaa.gov/data/trace_gases/ch4/in-situ/surface/ on 20 January 2020.


Emmerton C.A., Lesack L.F.W. & Marsh P. 2007. Lake abundance, potential water storage, and habitat distribution in the Mackenzie river delta, western Canadian Arctic. Water Resources Research 43, W05419, doi: 10.1029/2006WR005139.


EPA (Environmental Protection Agency) 2004. Standard operating procedure. Sample preparation and calculations for dissolved gas analysis in water samples using a gc headspace equilibration technique. RSKSOP-175. 2004. Revision 2. Accessed on the internet at https://archive.epa.gov/region1/info/testmethods/web/pdf/rsksop175v2.pdf on 16 January 2020.


Frankignoulle M. 1988. Field measurements of air–sea CO2 exchange. Limnology and Oceanography 33, 313–322, doi: 10.4319/lo.1988.33.3.0313.


Gan W.B., Chen H.M. & Hart Y.F. 1983. Carbon transport by the Yangtze (at Nanjing) and Huanghe (at Jinan) rivers, People’s Republic of China. In E.T. Degens et al. (eds.): Transport of carbon and minerals in major world rivers. Part 2. Pp. 459–470. Hamburg: Scientific Committee on Problems of the Environment, United Nations Environment Programme.


Gareis J.A.L. 2018. Arctic deltas as biogeochemical hotspots affecting the delivery of nutrients and dissolved organic matter to the Arctic Ocean. PhD thesis, Simon Fraser University.


Gareis J.A.L. & Lesack L.F.W. 2017. Fluxes of particulates and nutrients during hydrologically defined seasonal periods in an ice-affected great Arctic river, the Mackenzie. Water Resources Research 53, 6109–6132, doi: 10.1002/2017WR020623.


Gran G. 1952. Determination of the equivalence point in potentiometric titrations, part II. Analyst 77, 661–671, doi: 10.1039/AN9527700661.


Hamilton J.D., Kelly C.A., Rudd J.W.M., Hesslein R.H. & Roulet N.T. 1994. Flux to the atmosphere of CH4 and CO2 from wetland ponds on the Hudson Bay Lowlands (HBLs). Journal of Geophysical Research—Atmospheres 99, 1495–1510, doi: 10.1029/93JD03020.


Hesslein R.H., Rudd J.W.M., Kelly C., Ramlal P. & Hallard K.A. 1991. Carbon dioxide pressure in surface waters of Canadian lakes. In S.C. Wilhelms & J.S. Gulliver (eds.): Air–water mahss transfer: selected papers from the second international symposium on gas transfer at water surfaces. Pp 413–431. New York, NY: American Society of Civil Engineers.


HYDAT 2019. Water Survey of Canada real time hydrometric data. Accessed on the internet https://wateroffice.ec.gc.ca/search/historical_e.html on 16 January 2020.


Jammet M., Dengel S., Kettner E., Parmentier F.J.W., Wik M., Crill P. & Friborg T. 2017. Year-round CH4 and CO2 flux dynamics in two contrasting freshwater ecosystems of the Subarctic. Biogeosciences 14, 5189–5216, doi: 10.5194/bg-14-5189-2017.


Kling G.W., Kipphut G.W. & Miller M.C. 1992. The flux of CO2 and CH4 from lakes and rivers in Arctic Alaska. Hydrobiologia 240, 23–36, doi: 10.1007/BF00013449.


Lauerwald R., Laruelle G.G., Hartmann J., Ciais P. & Regnier P.A. 2015. Spatial patterns in CO2 evasion from the global river network. Global Biogeochemical Cycles 29, 534–554, doi: 10.1002/2014GB004941.


Lesack L.F.W. & Marsh P. 2010. River‐to‐lake connectivities, water renewal, and aquatic habitat diversity in the Mackenzie River Delta. Water Resources Research 46, W12504, doi: 10.1029/2010WR009607.


Lesack L.F.W., Marsh P., Hicks F.E. & Forbes D.L. 2013. Timing, duration, and magnitude of peak annual water levels during ice breakup in the Mackenzie Delta and the role of river discharge. Water Resources Research 49, 8234–8249, doi: 10.1002/2012WR013198.


MacIntyre S., Wanninkhof R. & Chanton J.P. 1995. Trace gas exchange across the air–water interface in freshwater and coastal marine environments. In P.A. Matson & R.C. Harriss (eds.): Biogenic trace gases: measuring emissions from soil and water. Pp. 52–97. Oxford: John Wiley and Sons Ltd.


Marani L. & Alvalá P.C. 2007. Methane emissions from lakes and floodplains in Pantanal, Brazil. Atmospheric Environment 41, 1627–1633, doi: 10.1016/j.atmosenv.2006.10.046.


Michmerhuizen C.M., Striegl R.G. & McDonald M.E. 1996. Potential methane emission from north-temperate lakes following ice melt. Limnology and Oceanography 41, 985–991, doi: 10.4319/lo.1996.41.5.0985.


Millot R., Gaillardet J., Dupré B. & Allègre C.J. 2003. Northern latitude chemical weathering rates: clues from the Mackenzie river Basin, Canada. Geochimica et Cosmochimica Acta 67, 1305–1329, doi: 10.1016/S0016-7037(02)01207-3.


Morley J.K.A. 2012. Observations of flow distributions and river breakup in the Mackenzie Delta, NWT. MSc thesis, University of Alberta.


NOAA ESRL Global Monitoring Division 2016, updated annually. Atmospheric carbon dioxide dry air mole fractions from quasi-continuous measurements at Barrow, Alaska. Version 2017-8. Compiled by K.W. Thoning et al. Doi: 10.7298/V5RR1W6B. Boulder, CO: National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Global Monitoring Division.


Osburn C.L. & St-Jean G. 2007. The use of wet chemical oxidation with high-amplification isotope mass spectrometry (WCO-IRMS) to measure stable isotope values of dissolved organic carbon in seawater. Limnology and Oceanography—Methods 5, 296–308, doi: 10.4319/lom.2007.5.296.


Pelletier B.R. 1975. Sediment dispersal in the southern Beaufort Sea (Beaufort Sea Technical Report 25a). Victoria, Canada: Beaufort Sea Project.


Phelps A.R., Peterson K.M. & Jeffries M.O. 1998. Methane efflux from high-latitude lakes during spring ice melt. Journal of Geophysical Research—Atmospheres 103, 29029–29036, doi: 10.1029/98JD00044.


Pulliam W.M. 1993. Carbon dioxide and methane exports from a southeastern floodplain swamp. Ecological Monographs 63, 29–53, doi: 10.2307/2937122.


Rasera M.F.F.L., Krusche A.V., Richey J.E., Ballester M.V.R. & Victória R.L. 2013. Spatial and temporal variability of pCO2 and CO2 efflux in seven Amazonian rivers. Biogeochemistry 116, 241–259, doi: 10.1007/s10533-013-9854-0.


Raymond P.A., Caraco N.F. & Cole J.J. 1997. Carbon dioxide concentration and atmospheric flux in the Hudson river. Estuaries 20, 381–390, doi: 10.2307/1352351.


Raymond P.A. & Cole J.J. 2001. Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries 24, 312–317, doi: 10.2307/1352954.


Raymond P.A., Hartmann J., Lauerwald R., Sobek S., McDonald C., Hoover M., Butman D., Striegl R., Mayorga E., Humborg C., Kortelainen P., Dürr H., Meybeck M., Ciais P. & Guth P. 2013. Global carbon dioxide emissions from inland waters. Nature 503, 355–359, doi: 10.1038/nature12760.


Raymond P.A., Zappa C.J., Butman D., Bott T.L., Potter J., Mulholland P., Laursen A.E., McDowell W.H. & Newbold D. 2012. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnology and Oceanography: Fluids and Environments 2, 41–53, doi: 10.1215/21573689-1597669.


Richey J.E., Melack J.M., Aufdenkampe A.K., Ballester V.M. & Hess L.L. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416, 617–620, doi: 10.1038/416617a.


Sander R. 2014. Compilation of Henry’s Law constants, version 3.99. Atmospheric Chemistry and Physics Discussions 14, 29615–30521, doi: 10.5194/acpd-14-29615-2014.


Sawakuchi H.O., Neu V., Ward N.D., Barros M.dL.C, Valerio A.M., Gagne-Maynard W., Cunha A.C., Less D.F.S., Diniz J.E.M., Brito D.C., Krusche A.V. & Richey J.E. 2017. Carbon dioxide emissions along the lower Amazon river. Frontiers in Marine Science 4, UNSP 76, doi: 10.3389/fmars.2017.00076.


Schulte P., van Geldern R., Freitag H., Karim A., Négrel P., Petelet-Giraud E., Probst A., Probst J.-L., Telmer K., Veizer J. & Barth J.A.C. 2011. Applications of stable water and carbon isotopes in watershed research: weathering, carbon cycling, and water balances. Earth-Science Reviews 109, 20–31, doi: 10.1016/j.earscirev.2011.07.003.


Semiletov I.P. 1999. Aquatic sources and sinks of CO2 and CH4 in the polar regions. Journal of the Atmospheric Sciences 56, 286–306, doi: 10.1175/1520-0469(1999)056<0286:ASASOC>​2.0.CO;2.


Spencer R.G.M., Mann P.J., Dittmar T., Eglinton T.I., Mcintyre C., Holmes R.M., Zimov N. & Stubbins A. 2015. Detecting the signature of permafrost thaw in Arctic rivers. Geophysical Research Letters 42, 2830–2835, doi: 10.1002/2015GL063498.


Stanley E.H., Casson N.J., Christel S.T., Crawford J.T., Loken L.C. & Oliver S.K. 2016. The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecological Monographs 86, 146–171, doi: 10.1890/15-1027.


Stets E.G.D., Butman D., McDonald C.P., Stackpoole S.M., DeGrandpre M.D. & Striegl R.G. 2017. Carbonate buffering and metabolic controls on carbon dioxide in rivers. Global Biogeochemical Cycles 31, 663–677, doi: 10.1002/2016GB005578.


Striegl R.G., Dornblaser M.M., McDonald C.P., Rover J.R. & Stets E.G. 2012. Carbon dioxide and methane emissions from the Yukon river system. Global Biogeochemical Cycles 26, GB0E05, doi: 10.1029/2012GB004306.


Tank S.E., Lesack L.F.W. & Hesslein R.H. 2009. Northern delta lakes as summertime CO2 absorbers within the Arctic landscape. Ecosystems 12, 144–157, doi: 10.1007/s10021-008-9213-5.


Tank S.E., Raymond P.A., Striegl R.G., McClelland J.W., Holmes R.M., Fiske G.J. & Peterson B.J. 2012. A land-to-ocean perspective on the magnitude, source and implication of DIC flux from major Arctic rivers to the Arctic Ocean. Global Biogeochemical Cycles 26, GB4018, doi: 10.1029/2011GB004192.


Tank S.E., Striegl R.G., McClelland J.W. & Kokelj S.V. 2016. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean. Environmental Research Letters 11, 054015, doi: 10.1088/1748-9326/11/5/054015.


Telang S.A. 1985. Transport of carbon and minerals in the Mackenzie river. In E.T. Degens et al. (eds.): Transport of carbon and minerals in major world rivers. Part 3. Pp. 337–344. Hamburg: Scientific Committee on Problems of the Environment, United Nations Environment Programme.


Vallières C., Retamal L., Ramlal P., Osburn C.L. & Vincent W.F. 2008. Bacterial production and microbial food web structure in a large Arctic river and the coastal Arctic Ocean. Journal of Marine Systems 74, 756–773, doi: 10.1016/j.jmarsys.2007.12.002.


Vonk J.E., Mann P.J., Davydov S., Davydova A., Spencer R.G.M., Schade J., Sobczak W.V., Zimov N., Zimov S., Bulygina E., Eglinton T.I. & Holmes R.M. 2013. High biolability of ancient permafrost carbon upon thaw. Geophysical Research Letters 40, 2689–2693, doi: 10.1002/grl.50348.


Wallin M., Buffam I., Öquist M., Laudon H. & Bishop K. 2010. Temporal and spatial variability of dissolved inorganic carbon in a boreal stream network, concentration and downstream evasion. Journal of Geophysical Research—Biogeosciences 115, GO2014, doi: 10.1029/2900JG001100.


Wallin M., Öquist M., Buffam I., Billett M., Nisell J. & Bishop K. 2011. Spatiotemporal variability of the gas transfer coefficient (KCO2) in boreal streams: implications for large scale estimates of CO2 evasion. Global Biogeochemical Cycles 25, GB3025, doi: 10.1029/2010GB003975.


Wanninkhof R. 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research—Oceans 97, 7373–7382, doi: 10.1029/92JC00188.


Wanninkhof R. & Knox M. 1996. Chemical enhancement of CO2 exchange in natural waters. Limnology and Oceanography 41, 689–697, doi: 10.4319/lo.1996.41.4.0689.


Weiss R.F. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry 2, 203–215, doi: 10.1016/0304-4203(74)90015-2.


Yamamoto S., Alcauskas J.B. & Crozier T.E. 1976. Solubility of methane in distilled water and seawater. Journal of Chemical and Engineering Data 21, 78–80, doi: 10.1021/je60068a029.


Zappa C.J., McGillis W.R., Raymond P.A., Edson J.B., Hintsa E.J., Zemmelink H.J., Dacey J.W.H. & Ho D.T. 2007. Environmental turbulent mixing controls on air–water gas exchange in marine and aquatic systems. Geophysical Research Letters 34, L10601, doi: 10.1029/2006GL028790.
Published
2020-06-26
How to Cite
Gareis, J. A., & Lesack, L. F. (2020). Ice-out and freshet fluxes of CO<sub>2</sub> and CH<sub>4</sub&gt; across the air–water interface of the channel network of a great Arctic delta, the Mackenzie. Polar Research, 39. https://doi.org/10.33265/polar.v39.3528
Section
Research Articles