Distribution and source of glycerol dialkyl glycerol tetraethers (GDGTs) and the applicability of GDGT-based temperature proxies in surface sediments of Prydz Bay, East Antarctica

  • Ruijuan Liu College of Marine Science and Technology, China University of Geosciences, Wuhan, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Zhejiang Ocean Monitoring and Forecasting Center, Hangzhou, China
  • Zhengbing Han Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
  • Jun Zhao Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
  • Haifeng Zhang Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
  • Dong Li Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
  • Jianye Ren College of Marine Science and Technology, China University of Geosciences, Wuhan, China
  • Jianming Pan Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
  • Haisheng Zhang Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
Keywords: Biomarkers, archaea, seawater temperature, palaeotemperature indices, Antarctic marginal seas


Reliable records of Southern Ocean seawater palaeotemperatures are important because this region plays a significant role in regulating global climate change. Biomarkers such as GDGT-based indices have been effectively used to reconstruct seawater temperatures. We analysed the composition and distribution of iGDGTs, OH-GDGTs and brGDGTs and calculated GDGT-based temperature indices in surface sediments from Prydz Bay, East Antarctica. Our results showed that iGDGTs, OH-GDGTs and brGDGTs are all produced in situ, with iGDGTs and OH-GDGTs mostly synthesized by Thaumarchaeota. Concentrations of iGDGTs, OH-GDGTs and brGDGTs showed similar spatial distributions and decreased from the continental shelf towards the deep ocean. The highest concentrations were in the inner bay, which is attributed to a combination of (1) bathymetry that reduces water exchange, (2) the Prydz Bay Gyre stabilizing the upper water column and (3) sea ice that releases archaea and bacteria. Among the temperature indices based on iGDGTs, OH-GDGTs and combinations therein, those based on OH-GDGTs showed the strongest correlation with seawater temperature. Some OH-GDGT-based indices (e.g., OH-0/OHs, OH-1/OHs, OH-2/OHs and RI-OH′) exhibited a stronger correlation with annual subsurface ocean temperature (100–200 m), which may be related to archaeal habitats and production mechanisms. Our study suggests that RI-OH′ and OH-0/OHs could be used as indicators of annual subsurface ocean temperature in Antarctic marginal seas.


Download data is not yet available.


Blaga C.I., Reichart G.J., Heiri O. & Sinninghe Damsté J.S. 2009. Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north-south transect. Journal of Paleolimnology 41, 523–540, doi: 10.1007/s10933-008-9242-2.

Brinkmeyer R., Knittel K., Jurgens J., Weyland H., Amann R. & Helmke E. 2003. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Applied and Environmental Microbiology 69, 6610–6619, doi: 10.1128/AEM.69.11.6610.

Church M.J., DeLong E.F., Ducklow H.W., Karner M.B., Preston C.M. & Karl D.M. 2003. Abundance and distribution of planktonic Archaea and Bacteria in the waters west of the Antarctic Peninsula. Limnology and Oceanography 48, 1893–1902, doi: 10.4319/lo.2003.48.5.1893.

Cooper A.K. & O’Brien P.E. 2004. Leg 188 synthesis: transitions in the glacial history of the Prydz Bay region, East Antarctica, from ODP drilling. Proceedings of the Ocean Drilling Program: Scientific Results 188, 1–42, doi: 10.2973/odp.proc.sr.188.001.2004.

Cowie R.O.M., Maas E.W. & Ryan K.G. 2011. Archaeal diversity revealed in Antarctic sea ice. Antarctic Science 23, 531–536, doi: 10.1017/S0954102011000368.

Doney S.C., Ruckelshaus M., Emmett Duffy J., Barry J.P., Chan F., English C.A., Galindo H.M., Grebmeier J.M., Hollowed A.B., Knowlton N., Polovina J., Rabalais N.N., Sydeman W.J. & Talley L.D. 2012. Climate change impacts on marine ecosystems. Annual Review of Marine Science 4, 11–37, doi: 10.1146/annurev-marine-041911-111611.

Etourneau J., Collins L.G., Willmott V., Kim J.H., Barbara L., Leventer A., Schouten S., Sinninghe Damsté J.S., Bianchini A., Klein V., Crosta X. & Massé G. 2013. Holocene climate variations in the western Antarctic Peninsula: evidence for sea ice extent predominantly controlled by changes in insolation and ENSO variability. Climate of the Past 9, 1431–1446, doi: 10.5194/cp-9-1431-2013.

Etourneau J., Sgubin G., Crosta X., Swingedouw D., Willmott V., Barbara L., Houssais M.N., Schouten S., Sinninghe Damsté J.S., Goosse H., Escutia C., Crespin J., Massé G. & Kim J.H. 2019. Ocean temperature impact on ice shelf extent in the eastern Antarctic Peninsula. Nature Communications 10, article no. 304, doi: 10.1038/s41467-018-08195-6.

Fietz S., Ho S.L., Huguet C., Rosell-Melé A. & Martínez-García A. 2016. Appraising GDGT-based seawater temperature indices in the Southern Ocean. Organic Geochemistry 102, 93–105, doi: 10.1016/j.orggeochem.2016.10.003.

Fietz S., Huguet C., Bendle J., Escala M., Gallacher C., Herfort L., Jamieson R., Martínez-Garcia A., McClymont E.L., Peck V.L., Prahl F.G., Rossi S., Rueda G., Sanson-Barrera A. & Rosell-Melé A. 2012. Co-variation of crenarchaeol and branched GDGTs in globally-distributed marine and freshwater sedimentary archives. Global and Planetary Change 92–93, 275–285, doi: 10.1016/j.gloplacha.2012.05.020.

Fietz S., Huguet C., Rueda G., Hambach B. & Rosell-Melé A. 2013. Hydroxylated isoprenoidal GDGTs in the Nordic seas. Marine Chemistry 152, 1–10, doi: 10.1016/j.marchem.2013.02.007.

Frölicher T.L., Sarmiento J.L., Paynter D.J., Dunne J.P., Krasting J.P. & Winton M. 2015. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. Journal of Climate 28, 862–886, doi: 10.1175/JCLI-D-14-00117.1.

Gasparon M. & Matschullat J. 2006. Geogenic sources and sinks of trace metals in the Larsemann Hills, East Antarctica: natural processes and human impact. Applied Geochemistry 21, 318–334, doi: 10.1016/j.apgeochem.2005.09.013.

Gruber N., Gloor M., Fletcher S.E.M., Doney S.C., Dutkiewicz S., Follows M.J., Gerber M., Jacobson A.R., Joos F., Lindsay K., Menemenlis D. & Mouchet A. 2009. Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochemical Cycles 23, GB1005, doi: 10.1029/2008GB003349.

Harris P.T., Taylor F., Pushina Z., Leitchenkov G. & OBrien P.E., Smirnov V. 1998. Lithofacies distribution in relation to the geomorphic provinces of Prydz Bay, East Antarctica. Antarctic Science 10, 227–235, doi: 10.1017/S0954102098000327.

Herraiz-Borreguero L., Coleman R., Allison I., Rintoul S.R., Craven M. & Williams G.D. 2015. Circulation of modified circumpolar deep water and basal melt beneath the Amery Ice Shelf, East Antarctica. Journal of Geophysical Research—Oceans 120, 3098–3112, doi: 10.1002/2015JC010697.

Ho S.L., Mollenhauer G., Fietz S., Martínez-Garcia A., Lamy F., Rueda G., Schipper K., Méheust M., Rosell-Melé A., Stein R. & Tiedemann R. 2014. Appraisal of TEX86 and TEXL86 thermometries in subpolar and polar regions. Geochimica et Cosmochimica Acta 131, 213–226, doi: 10.1016/j.gca.2014.01.001.

Huguet C., de Lange G.J., Gustafsson Ö., Middelburg J.J., Sinninghe Damsté J.S. & Schouten S. 2008. Selective preservation of soil organic matter in oxidized marine sediments (Madeira Abyssal Plain). Geochimica et Cosmochimica Acta 72, 6061–6068, doi: 10.1016/j.gca.2008.09.021.

Huguet C., Fietz S. & Rosell-Melé A. 2013. Global distribution patterns of hydroxy glycerol dialkyl glycerol tetraethers. Organic Geochemistry 57, 107–118, doi: 10.1016/j.orggeochem.2013.01.010.

Kaiser J. & Arz H.W. 2016. Sources of sedimentary biomarkers and proxies with potential paleoenvironmental significance for the Baltic Sea. Continental Shelf Research 122, 102–119, doi: 10.1016/j.csr.2016.03.020.

Kalanetra K.M., Bano N. & Hollibaugh J.T. 2009. Ammonia-oxidizing archaea in the Arctic Ocean and Antarctic coastal waters. Environmental Microbiology 11, 2434–2445, doi: 10.1111/j.1462-2920.2009.01974.x.

Kim J.H., Crosta X., Willmott V., Renssen H., Bonnin J., Helmke P., Schouten S. & Sinninghe Damsté J.S. 2012. Holocene subsurface temperature variability in the eastern Antarctic continental margin. Geophysical Research Letters 39, 2010–2011, doi: 10.1029/2012GL051157.

Kim J.H., van der Meer J., Schouten S., Helmke P., Willmott V., Sangiorgi F., Koç N., Hopmans E.C. & Sinninghe Damsté J.S. 2010. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for past sea surface temperature reconstructions. Geochimica et Cosmochimica Acta 74, 4639–4654, doi: 10.1016/j.gca.2010.05.027.

Kirchman D.L., Elifantz H., Dittel A.I., Malmstrom R.R. & Cottrell M.T. 2007. Standing stocks and activity of archaea and bacteria in the western Arctic Ocean. Limnology and Oceanography 52, 495–507, doi: 10.4319/lo.2007.52.2.0495.

Kremer A., Stein R., Fahl K., Ji Z., Yang Z., Wiers S., Matthiessen J., Forwick M., Löwemark L., O’Regan M., Chen J. & Snowball I. 2018. Changes in sea ice cover and ice sheet extent at the Yermak Plateau during the last 160 ka—reconstructions from biomarker records. Quaternary Science Reviews 182, 93–108, doi: 10.1016/j.quascirev.2017.12.016.

Lipp J.S. & Hinrichs K.U. 2009. Structural diversity and fate of intact polar lipids in marine sediments. Geochimica et Cosmochimica Acta 73, 6816–6833, doi: 10.1016/j.gca.2009.08.003.

Liu X.L., Lipp J.S., Simpson J.H., Lin Y.S., Summons R.E. & Hinrichs K.U. 2012. Mono- and dihydroxyl glycerol dibiphytanyl glycerol tetraethers in marine sediments: identification of both core and intact polar lipid forms. Geochimica et Cosmochimica Acta 89, 102–115, doi: 10.1016/j.gca.2012.04.053.

Liu X.L., Summons R.E. & Hinrichs K.U. 2012. Extending the known range of glycerol ether lipids in the environment: structural assignments based on tandem mass spectral fragmentation patterns. Rapid Communications in Mass Spectrometry 26, 2295–2302, doi: 10.1002/rcm.6355.

Locarnini R.A., Mishonov A.V., Antonov J.I., Boyer T.P., Garcia H.E., Baranova O.K., Zweng M.H., Paver C.R., Reagan J.R., Johnson D.R., Hamilton M. & Seidov D. 2013. World Ocean atlas 2013. Vol. 1. Temperature. Silver Spring, MD: US Department of Commerce, National Oceanic and Atmospheric Administration.

Lü X., Liu X.L., Elling F.J., Yang H., Xie S., Song J., Li X., Yuan H., Li N. & Hinrichs K.U. 2015. Hydroxylated isoprenoid GDGTs in Chinese coastal seas and their potential as a paleotemperature proxy for mid-to-low latitude marginal seas. Organic Geochemistry 89–90, 31–43, doi: 10.1016/j.orggeochem.2015.10.004.

Ma J., Du Z., Lu, W., Yu Y., Zeng Y., Chen B. & Li H. 2014. Archaeal diversity and abundance within different layers of summer sea-ice and seawater from Prydz Bay, Antarctica. Advances in Polar Science 25, 54–60, doi: 10.13679/j.advps.2014.1.00054.

Massana R., Taylor, L.T., Murray, A.E., Wu, K.Y., Jeffrey, W.H. & Delong, E.F.1998. Vertical distribution and temporal variation of marine planktonic archaea in the Gerlache Strait, Antarctica, during early spring. Limnology and Oceanography 43, 607–617, doi: 10.4319/lo.1998.43.4.0607.

Meijers A.J.S., Klocker A., Bindoff N.L., Williams G.D. & Marsland,S.J. 2010. The circulation and water masses of the Antarctic shelf and continental slope between 30 and 80°E. Deep-Sea Research Part II 57, 723–737, doi: 10.1016/j.dsr2.2009.04.019.

Müller P.J., Kirst G., Ruhland G., von Storch I. & Rosell-Melé A. 1998. Calibration of the alkenone paleotemperature index U37K′ based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S). Geochimica et Cosmochimica Acta 62, 1757–1772, doi: 10.1016/S0016-7037(98)00097-0.

Murray A.E., Preston C.M., Massana R., Taylor L.T., Blakis A. & Wu K. 1998. Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Applied and Environmental Microbiology 6, 2585–2595, doi: 10.1128/AEM.64.7.2585-2595.1998.

Murray A.E., Wul K.Y., Moyer C.L. & Kar D.M. 1999. Evidence for circumpolar distribution of planktonic archaea in the Southern Ocean. Aquatic Microbial Ecology 18, 263–273, doi: 10.3354/ame018263.

Nurnberg D. 2000. Taking the temperature of past ocean surfaces. Science 289, 1698–1699, doi: 10.1126/science.289.5485.1698.

Peterse F., Kim J.H., Schouten S., Kristensen D.K., Koç N. & Sinninghe Damsté J.S. 2009. Constraints on the application of the MBT/CBT palaeothermometer at high latitude environments (Svalbard, Norway). Organic Geochemistry 40, 692–699, doi: 10.1016/j.orggeochem.2009.03.004.

R Core Team. 2018. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Rintoul S.R., Chown S.L., DeConto R.M., England M.H., Fricker H.A., Masson-Delmotte V., Naish T.R., Siegert M.J. & Xavier J.C. 2018. Choosing the future of Antarctica. Nature 558, 233–241, doi: 10.1038/s41586-018-0173-4.

Roquet F., Williams G., Hindell M.A., Harcourt R., McMahon C., Guinet C., Charrassin J.B., Reverdin G., Boehme L., Lovell P. & Fedak M. 2014. A Southern Indian Ocean database of hydrographic profiles obtained with instrumented elephant seals. Scientific Data 1, article no. 140028, doi: 10.1038/sdata.2014.28.

Sachs J., Pahnke K., Smittenberg R. & Zhang Z. 2013. Biomarkers indicators of past climate. The Encyclopedia of Quaternary Science 2, 775–782, doi: 10.1016/B978-0-444-53643-3.00280-6.

Sarmiento J.L., Gruber N., Brzezinski M.A. & Dunne J.P. 2004. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60, doi: 10.1038/Nature02127.

Schlitzer R. 2015. Ocean data view. Version 4.7.3 downloaded from the internet at http://odv.awi.de on 8 August 2015.

Schouten S., Hopmans E.C., Schefuß E. & Sinninghe Damsté J.S. 2002. Distributional variations in marine crenarchaeol membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth and Planetary Science Letters 204, 265–274, doi: 10.1016/S0012-821X(03)00193-6.

Schouten S., Hopmans E.C. & Sinninghe Damsté J.S. 2013. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Organic Geochemistry 54, 19–61, doi: 10.1016/j.orggeochem.2012.09.006.

Shevenell A.E., Ingalls A.E., Domack E.W. & Kelly C. 2011. Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula. Nature 470, 250–254, doi: 10.1038/nature09751.

Sinninghe Damsté J.S., Hopmans E.C., Pancost R.D., Schouten S. & Geenevasen J.A.J. 2000. Newly discovered non-isoprenoid glycerol dialkyl glycerol tetraether lipids in sediments. Chemical Communications 31, 1683–1684, doi: 10.1039/b004517i.

Sinninghe Damsté J.S., Ossebaar J., Abbas B., Schouten S. & Verschuren D. 2009. Fluxes and distribution of tetraether lipids in an equatorial African lake: constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings. Geochimica et Cosmochimica Acta 73, 4232–4249, doi: 10.1016/j.gca.2009.04.022.

Sinninghe Damsté J.S., Rijpstra W.I.C., Hopmans E.C., Weijers J.W.H., Foesel B.U., Overmann J. & Dedysh S.N. 2011. 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. Applied and Environmental Microbiology 77, 4147–4154, doi: 10.1128/AEM.00466-11.

Sinninghe Damsté J.S., Schouten S., Hopmans E.C., van Duin A.C.T. & Geenevasen J.A.J. 2002. Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. Journal of Lipid Research 43, 1641–1651, doi: 10.1194/jlr.M200148-JLR200.

Smith N.R. & Treguer P. 1994. Physical and chemical oceanography in the vicinity of Prydz Bay, Antarctica. Cambridge: Cambridge University Press.

Smith N.R., Zhaoqian D., Kerry K.R. & Wright S. 1984. Water masses and circulation in the region of Prydz Bay, Antarctica. Deep-Sea Research Part A 31, 1121–1147, doi: 10.1016/0198-0149(84)90016-5.

Sun W., Hu C., Han Z., Pan J. & Weng H. 2012. Distribution of nutrients and Chla in Prydz Bay during the austral summer of 2011. Chinese Journal of Polar Research 24, 178–186.

Takahashi T., Sutherland S.C., Sweeney C., Poisson A., Metzl N., Tilbrook B., Bates N., Wanninkhof R., Feely R.A., Sabine C., Olafsson J. & Nojiri Y. 2002. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research Part II 49, 1601–1622, doi: 10.1016/S0967-0645(02)00003-6.

Taylor F. & McMinn A. 2002. Late Quaternary diatom assemblages from Prydz Bay, Eastern Antarctica. Quaternary Research 57, 151–161, doi: 10.1006/qres.2001.2279.

Teske A. & Sørensen K.B. 2008. Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME Journal 2, 3–18, doi: 10.1038/ismej.2007.90.

Tierney J.E. & Russell J.M. 2009. Distributions of branched GDGTs in a tropical lake system: implications for lacustrine application of the MBT/CBT paleoproxy. Organic Geochemistry 40, 1032–1036, doi: 10.1016/j.orggeochem.2009.04.014.

Tierney J.E., Russell J.M., Eggermont H., Hopmans E.C., Verschuren D. & Sinninghe Damsté J.S. 2010. Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments. Geochimica et Cosmochimica Acta 74, 4902–4918, doi: 10.1016/j.gca.2010.06.002.

Turner J., Barrand N.E., Bracegirdle T.J., Convey P., Hodgson D.A., Jarvis M., Jenkins A., Marshall G., Meredith M.P., Roscoe H., Shanklin J., French J., Goosse H., Guglielmin M., Gutt J., Jacobs S., Kennicutt M.C., Masson-Delmotte V., Mayewski P., Navarro F., Robinson S., Scambos T., Sparrow M., Summerhayes C., Speer K. & Klepikov A. 2014. Antarctic climate change and the environment: an update. Polar Record 50, 237–259, doi: 10.1017/S0032247413000296.

Vaz R.A.N. & Lennon G.W. 1996. Physical oceanography of the Prydz Bay region of Antarctic waters. Deep-Sea Research Part I 43, 603–641, doi: 10.1016/0967-0637(96)00028-3.

Wang H., Chen Z., Wang K., Liu H., Tang Z. & Huang Y. 2015. Characteristics of heavy minerals and grain size of surface sediments on the continental shelf of Prydz Bay: implications for sediment provenance. Antarctic Science 28, 103–114, doi: 10.1017/s0954102015000498.

Wang S., Wang R., Chen J., Chen Z., Cheng Z., Wang W. & Huang Y. 2013. Spatial distribution patterns of GDGTs in the surface sediments from the Bering Sea and Arctic Ocean and their environmental significances. Advances in Earth Science 28, 282–296, doi: 10.11867/j.issn.1001-8166.2013.02.0282.

Weijers J.W.H., Panoto E., van Bleijswijk J., Schouten S., Rijpstra W.I.C., Balk M., Stams A.J.M. & Sinninghe Damsté J.S. 2009. Constraints on the biological source(s) of the orphan branched tetraether membrane lipids. Geomicrobiology Journal 26, 402–414, doi: 10.1080/01490450902937293.

Weijers J.W.H., Schouten S., Spaargaren O.C. & Sinninghe Damsté J.S. 2006. Occurrence and distribution of tetraether membrane lipids in soils: implications for the use of the TEX86 proxy and the BIT index. Organic Geochemistry 37, 1680–1693, doi: 10.1016/j.orggeochem.2006.07.018.

Williams G.D., Herraiz-Borreguero L., Roquet F., Tamura T., Ohshima K.I., Fukamachi Y., Fraser A.D., Gao L., Chen H., McMahon C.R., Harcourt R. & Hindell M. 2016. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay. Nature Communications 7, 1–9, doi: 10.1038/ncomms12577.

Worby A.P., Massom R.A., Allison I., Lytle V.I. & Heil P. 1998. East Antarctic sea ice: a review of its structure, properties and drift. Antarctic Sea Ice Properties, Processes and Variability 74, 41–67, doi: 10.1029/AR074p0041.

Wu L., Wang R., Xiao W., Ge S., Chen Z. & Krijgsman W. 2017. Productivity-climate coupling recorded in Pleistocene sediments off Prydz Bay (East Antarctica). Palaeogeography, Palaeoclimatology, Palaeoecology 485, 260–270, doi: 10.1016/j.palaeo.2017.06.018.

Wu Y., Han Z., Zhang X., Zhou Y., Wu M. & Xu X. 2014. Community composition of Antarctic bacterioplankton isolated from the Prydz Bay, Antarctica. Chinese Journal of Polar Research 26, 222–229.

Xiao W., Wang Y., Zhou S., Hu L., Yang H. & Xu Y. 2016. Ubiquitous production of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in global marine environments: a new source indicator for brGDGTs. Biogeosciences 13, 5883–5894, doi: 10.5194/bg-13-5883-2016.

Yabuki T., Suga T., Hanawa K., Matsuoka K., Kiwada H. & Watanabe T. 2006. Possible source of the Antarctic Bottom Water in the Prydz Bay region. Journal of Oceanography 62, 649–655, doi: 10.1007/s10872-006-0083-1.

Yang Y., Gao C., Dang X., Ruan X., Lü X., Xie S., Li X., Yao Y. & Yang H. 2018. Assessing hydroxylated isoprenoid GDGTs as a paleothermometer for the tropical South China Sea. Organic Geochemistry 115, 156–165, doi: 10.1016/j.orggeochem.2017.10.014.

Yu P., Hu C., Liu X., Pan J. & Zhang H. 2009. Modern sedimentation rates in Prydz Bay, Antarctic. Acta Sedmentologica Sinica 27, 1172–1177.
How to Cite
Liu, R., Han, Z., Zhao, J., Zhang, H., Li, D., Ren, J., Pan, J., & Zhang, H. (2020). Distribution and source of glycerol dialkyl glycerol tetraethers (GDGTs) and the applicability of GDGT-based temperature proxies in surface sediments of Prydz Bay, East Antarctica. Polar Research, 39. https://doi.org/10.33265/polar.v39.3557
Research Articles