The ice flux to the Lambert Glacier and Amery Ice Shelf along the Chinese inland traverse and implications for mass balance of the drainage basins, East Antarctica

  • Xiangbin Cui Polar Research Institute of China, Shanghai, China
  • Wenjia Du Center for Spatial Information Science and Sustainable Development and College of Surveying and Geo-Informatics, Tongji University, Shanghai, China
  • Huan Xie Center for Spatial Information Science and Sustainable Development and College of Surveying and Geo-Informatics, Tongji University, Shanghai, China
  • Bo Sun Polar Research Institute of China, Shanghai, China
Keywords: Surface mass balance, ice-penetrating radar, ice thickness, drainage system, Dome A, Antarctic Ice Sheet

Abstract

Study of the mass balance of the Antarctic Ice Sheet is critical to estimate its potential contribution to global sea-level rise in the future. As the largest drainage system, the Lambert Glacier–Amery Ice Shelf drainage system plays an important role in the mass balance of the Antarctic Ice Sheet. In this study, the ice thickness measured by airborne ice-penetrating radar with high spatial resolution and accuracy and accurate ice velocity measured by in situ GPS stations along the route of the Chinese National Antarctic Research Expedition inland traverse were used to calculate the ice flux with unprecedented accuracy. This transverse is from Zhongshan Station to Dome A, passing through the east side of the Lambert Glacier and the smaller coastal glacier in the C-Cp basin. The results show that the ice flux across the entire traverse is 24.7 ± 2.8 Gt a−1, along which the section in drainage basin B–C (Lambert Glacier) has an ice flux of 20.9 ± 1.9 Gt a−1 and the section in drainage basin C–Cp (basin adjacent to Lambert Glacier) contributed 3.8 ± 0.4 Gt a−1. The ice flux values in both regions are coincident with the mass balance calculated from the Ice, Cloud, and Land Elevation Satellite, Earth Observing System. Meanwhile, the C–Cp basin shows an ice flux value of 6.6 ± 0.8 Gt a−1 across the grounding line.

Downloads

Download data is not yet available.

References


Aitken A.R., Roberts J.L., van Ommen T.D., Young D.A., Golledge N.R., Greenbaum J.S., Blankenship D.D. & Siegert M.J. 2016. Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion. Nature 533, 385–389, doi: 10.1038/nature17447.


Bamber J., Gomez-Dans J.L. & Griggs J.A. 2009. A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data. Part 1: data and methods. The Cryosphere 3, 101–111, doi: 10.5194/tc-3-101-2009.


Budd W. 1966. The dynamics of the Amery Ice Shelf. Journal of Glaciology 6, 335–358, doi: 10.3189/S0022143000019456.


Cuffey K. & Paterson W. 2010. The physics of glaciers. 4th edn. Burlington, MA: Butterworth-Heinemann.


Cui X., Greenbaum J.S., Beem L.H., Guo J., Gregory N.G., Lin L., Blankenship D. & Sun B. 2018. The first fixed-wing aircraft for Chinese Antarctic expeditions: airframe, modifications, scientific instrumentation and applications. Journal of Environmental and Engineering Geophysics 23, Special Issue S1, 1–13, doi: 10.2113/JEEG23.1.1.


Cui X., Sun B., Tian G., Tang X., Zhang X., Jiang Y., Guo J. & Li X. 2010. Ice radar investigation at Dome A, East Antarctica: ice thickness and subglacial topography. Chinese Science Bulletin 55, 425–431, doi: 10.1007/s11434-009-0546-z.


Damm V. 2007. A subglacial topographic model of the southern drainage area of the Lambert Glacier/Amery Ice Shelf system. Results of an airborne ice thickness survey south of the Prince Charles Mountains. Terra Antarctica 14, 85–94.


DiMarzio J.P. 2007. GLAS/ICESat 500 m laser altimetry digital elevation model of Antarctica. Version 1. Boulder, CO: National Snow and Ice Data Center.


Ding M., Xiao C., Li Y., Ren J., Hou S., Jin B. & Sun B. 2011. Spatial variability of surface mass balance along a traverse route from Zhongshan Station to Dome A, Antarctica. Journal of Glaciology 57, 658–666, doi: 10.3189/002214311797409820.


Ferraccioli F., Finn C.A., Jordan T.A., Bell R.E., Anderson L.M. & Damaske D. 2011. East Antarctic rifting triggers uplift of the Gamburtsev mountains. Nature 479, 388–392, doi: 10.1038/nature10566.


Fretwell L.O., Pritchard H.D., Vaughan D.G., Bamber J.L., Barrand N.E., Bell R., Bianchi C., Bingham R.G., Blankenship D.D., Casassa G., Catania G., Callens D., Conway H., Cook A.J., Corr H.F.J., Damaske D., Damm V., Ferraccioli F., Forsberg R., Fujita S., Gogineni P., Griggs J.A., Hindmarsh R.C.A., Holmlund P., Holt J.W., Jacobel R.W., Jenkins A., Jokat W., Jordan T., King E.C., Kohler J., Krabill W., Riger-Kusk M., Langley K.A., Leitchenkov G., Leuschen C., Luyendyk B.P., Matsuoka K., Nogi Y., Nost O.A., Popov S.V., Rignot E., Rippin D.M., Riviera A., Roberts J., Ross N., Siegert M.J., Smith A.M., Steinhage D., Studinger M., Sun B., Tinto B.K., Welch B.C., Young D.A., Cui X. & Zirizzotti A. 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere 7, 375–393, doi: 10.5194/tc-7-375-2013.


Fricker H.A., Hyland G., Coleman R. & Young N.W. 2000. Digital elevation models for the Lambert Glacier–Amery Ice Shelf system, East Antarctica, from ERS-1 satellite radar altimetry. Journal of Glaciology 46, 553–560, doi: 10.3189/172756500781832639.


Fricker H.A., Warner R.C. & Allison I. 2000. Mass balance of the Lambert Glacier–Amery Ice Shelf system, East Antarctica: a comparison of computed balance fluxes and measured fluxes. Journal of Glaciology 46, 561–570, doi: 10.3189/172756500781832765.


Golledge N.R., Levy R.H., Mckay R.M. & Naish T.R. 2017. East Antarctic Ice Sheet most vulnerable to Weddell Sea warming. Geophysical Research Letters 44, 2343–2351, doi: 10.1002/2016GL072422.


Gong Y., Cornford S.L. & Payne A.J. 2014. Modelling the response of the Lambert Glacier–Amery Ice Shelf system, East Antarctica, to uncertain climate forcing over the 21st and 22nd centuries. The Cryosphere 8, 1057–1068, doi: 10.5194/tc-8-1057-2014.


Greenbaum J.S., Blankenship D.D., Young D.A., Richter T.G., Roberts J.L., Aitken A.R.A., Legresy B., Schroeder D.M., Warner R.C. & van Ommen T.D. 2015. Ocean access to a cavity beneath Totten Glacier in East Antarctica. Nature Geoscience 8, 294–298, doi: 10.1038/ngeo2388.


Haran T., Bohlander J., Scambos T., Painter T. & Fahnestock M. 2014. MODIS Mosaic of Antarctica 2008–2009 (MOA2009) image map. Version 1. Boulder, CO: National Snow and Ice Data Center.


Harig C. & Simons F.J. 2015. Accelerated West Antarctic ice mass loss continues to outpace East Antarctic gains. Earth and Planetary Science Letters 415, 134–141, doi: 10.1016/j.epsl.2015.01.029.


Higham M., Craven M., Ruddell A. & Allison I. 1997. Snow-accumulation distribution in the interior of the Lambert Glacier basin, Antarctica. Annals of Glaciology 25, 412–417, doi: 10.3189/S0260305500014373.


IMBIE Team 2018. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219–222, doi: 10.1038/s41586-018-0179-y.


Kingslake J., Ely J.C., Das I. & Bell R.E. 2017. Widespread movement of meltwater onto and across Antarctic ice shelves. Nature 544, 349–352, doi: 10.1038/nature22049.


Lythe M.B. & Vaughan D.G. 2001. BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. Journal of Geophysical Research—Solid Earth 106, 11335-11351, doi: 10.1029/2000JB900449.


Manson R., Coleman R., Morgan P.J. & King M.A. 2000. Ice velocities of the Lambert Glacier from static GPS observations. Earth, Planet, and Space 52, 1031–1036, doi: 10.1186/BF03352326.


Mouginot J., Scheuchl B. & Rignot E. 2017. MEaSUREs Antarctic boundaries for IPY 2007–2009 from satellite radar. Version 2. Boulder, CO: National Snow and Ice Data Center.


Nitsche F.O., Porter D., Williams G., Cougnon E.A., Fraser A.D., Correia R. & Guerrero R. 2017. Bathymetric control of warm ocean water access along the East Antarctic margin. Geophysical Research Letters 44, 8936–8944, doi: 10.1002/2017GL074433.


Pattyn F. & Morlighem M. 2020. The uncertain future of the Antarctic Ice Sheet. Science 367, 1331–1335, doi: 10.1126/science.aaz5487.


Pittard M.L., Galton-Fenzi B.K., Watson C.S. & Roberts J.L. 2017. Future sea level change from Antarctica’s Lambert–Amery glacial system. Geophysical Research Letters 44, 7347–7355, doi: 10.1002/2017GL073486.


Pritchard H.D., Ligtenberg S.R.M., Fricker H., van den Broeke M.R., Vaughan D.G. & Padman L., 2012. Antarctic Ice Sheet loss driven by basal melting of ice shelves. Nature 484, 502–505, doi: 10.1038/nature10968.


Ren J., Allison I., Xiao C. & Qin D. 2002. Mass balance of the Lambert Glacier basin, East Antarctica. Science China Earth Sciences 45, 842–850.


Ren J., Qin D. & Allison I. 1999. Variations of snow accumulation and temperature over past decades in the Lambert Glacier basin, East Antarctica. Annals of Glaciology 29, 29–32, doi: 10.3189/172756499781821058.


Rignot E., Mouginot J. & Scheuchl B. 2011. Ice flow of the Antarctic Ice Sheet. Science 333, 1427–1430, doi: 10.1126/science.1208336.


Rignot E., Mouginot J., Scheuchl B., van den Broeke M.R., van Wessem M. & Morlighem M. 2019. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proceedings of the National Academy of Sciences of the United States of America 116, 1095–1103, doi: 10.1073/pnas.1812883116.


Rignot E. & Thomas R.H. 2002. Mass balance of polar ice sheets. Science 297, 1502–1506, doi: 10.1126/science.1073888.


Rignot E., Velicogna I., van den Broeke M.R., Monaghan A. & Lenaerts J. 2011. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters 38, L05503–L05508, doi: 10.1029/2011GL046583.


Scambos T., Haran T., Fahnestock M., Painter T. & Bohlander J. 2007. MODIS-based Mosaic of Antarctica (MOA) data sets: continent-wide surface morphology and snow grain size. Remote Sensing of Environment 111, 242–257, doi: 10.1016/j.rse.2006.12.020.


Shen Q., Wang H., Shum C.K., Jiang L., Hsu H.T. & Dong J. 2018. Recent high-resolution Antarctic ice velocity maps reveal increased mass loss in Wilkes Land, East Antarctica. Scientific Reports 8, article no. 4477, doi: 10.1038/s41598-018-22765-0.


Silvano A., Rintoul S.R. & Herraiz-Borreguero L. 2016. Ocean–ice shelf interaction in East Antarctica. Oceanography 29, 130–143, doi: 10.5670/oceanog.2016.105.


Smith I.N., Budd W.F. & Reid P. 1998. Model estimates of Antarctic accumulation rates and their relationship to temperature changes. Annals of Glaciology 27, 246–250, doi: 10.3189/1998AoG27-1-246-250.


Stocker T.F., Qin D., Plattner G.K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex B. & Midgley B. (eds.) 2013. Climate change 2013. The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.


Taylor J. 1997. Introduction to error analysis: the study of uncertainties in physical measurements. New York: University Science Books.


Thompson S.L. & Pollard D. 1997. Greenland and Antarctic mass balances for present and doubled atmospheric CO2 from the GENESIS version-2 global climate model. Journal of Climate 10, 871–900, doi: 10.1175/1520-0442(1997)010<0871:GAAMBF>2.0.CO;2.


van de Berg W.J., van den Broeke M.R, Reijmer C.H. & van Meijgaard E. 2005. Characteristics of the Antarctic surface mass balance (1958–2002) using a regional atmospheric climate model. Annals of Glaciology 41, 97–104, doi: 10.3189/172756405781813302.


van Wessem J.M., Reijmer C.H., Morlighem M., Mouginot J., Rignot E., Medley B., Joughin I., Wouters B., Depoorter M.A., Bamber J.L., Lenaerts J.T.M., van de Berg W.J., van den Broeke M.R. & van Meijgarrd E. 2014. Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. Journal of Glaciology 60, 761–770, doi: 10.3189/2014JoG14J051.


van Wessem J.M., van de Berg W.J., Noël B.P.Y, van Meijgaard E., Amory C., Birnbaum G., Jakobs C.L., Krüger K., Lenaerts J.T.M., Lhermitte S., Ligtenberg S.R.M, Medley B., Reijmer C.H., van Tricht K., Trusel L.D., van Ulft L.H., Wouters B., Wuite J., van den Broeke M.R. 2018. Modelling the climate and surface mass balance of polar ice sheets using RACMO2. Part 2: Antarctica (1979–2016). The Cryosphere 12, 1479–1498, doi: 10.5194/tc-2017-202.


Wang Y., Ding M., van Wessem J., Schlosser E., Altnau S., van den Broeke M.R., Lenaerts J.T.M., Thomas E.R., Isaksson E., Wang J. & Sun W. 2016. A comparison of Antarctic Ice Sheet surface mass balance from atmospheric climate models and in situ observations. Journal of Climate 29, 5317–5337, doi: 10.1175/JCLI-D-15-0642.1.


Wen J., Jezek K.C., Csatho B., Herzfeld U.C., Farness K.L. & Huybrechts P. 2007. Mass budgets of the Lambert, Mellor and Fisher glaciers and basal fluxes beneath their flowbands on Amery Ice Shelf. Science in China Series D—Earth Sciences 50, 1693–1706, doi: 10.1007/s11430-007-0120-y.


Wen J., Jezek K.C., Monaghan A.J., Sun B., Ren J. & Huybrechts P. 2006. Accumulation variability and mass budgets of the Lambert Glacier–Amery Ice Shelf system, East Antarctica, at high elevations. Annals of Glaciology 43, 351–360, doi: 10.3189/172756406781812249.


Wen J., Huang L., Wang W., Jacka T.H., Damm V. & Liu Y. 2014. Ice thickness over the southern limit of the Amery Ice Shelf, East Antarctica, and reassessment of the mass balance of the central portion of the Lambert Glacier–Amery Ice Shelf system. Annals of Glaciology 55, 81–86, doi: 10.3189/2014AoG66A154.


Wen J., Wang Y., Liu J., Jezek K.C., Huybrechts P., Csathó B.M., Farness K.L. & Sun B. 2008. Mass budget of the grounded ice in the Lambert Glacier–Amery Ice Shelf system. Annals of Glaciology 48, 193–197, doi: 10.3189/172756408784700644.


Wouters B., Martinespañol A., Helm V., Flament T., van Wessem J.M., Ligtenberg S.R.M., van den Broeke M.R. & Bamber J.L. 2015. Dynamic thinning of glaciers on the southern Antarctic Peninsula. Science 348, 899–903, doi: 10.1126/science.aaa5727.


Xie H., Li R., Tong X., Ju X., Liu J., Tian Y., Shen Y., Liu S., Sun B., Cui X., Ye W. & Chen L. 2016. A comparative study of changes in the Lambert Glacier–Amery Ice Shelf System, East Antarctica, during 2004–2008 using gravity and surface elevation observations. Journal of Glaciology 62, 888–904, doi: 10.1017/jog.2016.76.


Young D.A., Wright A.P., Roberts J.L., Warner R.C., Young N.W., Greenbaum J.S., Schroeder D.M., Holt J.W., Sugden D.E., Blankenship D.D., van Ommen T.D. & Siegert M.J. 2011. A dynamic early East Antarctic ice sheet suggested by ice-covered fjord landscapes. Nature 474, 72–75, doi: 10.1038/nature10114.


Yu J., Liu H., Jezek K.C., Warner R.C. & Wen J. 2010. Analysis of velocity field, mass balance, and basal melt of the Lambert Glacier–Amery Ice Shelf system by incorporating Radarsat SAR interferometry and ICESat laser altimetry measurements. Journal of Geophysical Research—Solid Earth 115, B11102, doi: 10.1029/2010jb007456.


Zhang S., Dongchen E., Wang Z., Li Y., Jin B. & Zhou C. 2008. Ice velocity from static GPS observations along the transect from Zhongshan Station to Dome A, East Antarctica. Annals of Glaciology 48, 113–118, doi: 10.3189/172756408784700716.


Zwally H.J., Giovinetto M.B., Beckley M.A. & Saba J.L. 2012. Antarctic and Greenland drainage systems. GSFC Cryospheric Sciences Laboratory. Accessed on the internet at http://icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.php on 22 June 2018.
Published
2020-11-02
How to Cite
Cui X., Du W., Xie H., & Sun B. (2020). The ice flux to the Lambert Glacier and Amery Ice Shelf along the Chinese inland traverse and implications for mass balance of the drainage basins, East Antarctica. Polar Research, 39. https://doi.org/10.33265/polar.v39.3582
Section
Research Articles