Revisiting the extended Svalbard Airport monthly temperature series, and the compiled corresponding daily series 1898–2018

Keywords: Arctic warming, Arctic climate, Svalbard climate, Artic temperature trends, climate threshold statistics, Svalbard climate regimes


The Svalbard Airport composite series spanning the period from 1898 to the present represents one of very few long-term instrumental temperature series from the High Arctic. A homogenized monthly temperature series is available since 2014. Here we increase the resolution from a monthly to daily basis, and further digitization of historical data has reduced the uncertainty of the series. The most pronounced changes in the 120-year record occur during the last three decades. For the 1991–2018 period the number of days warmer than 0 and 5 °C has increased by 25 (21%) and 22 (59%), respectively, per year compared to the 1961–1990 standard normal. Likewise, comparing the same periods, the number of days colder than −10 and −20 °C has decreased by 42 (32%) and 27 (62%), respectively. During the entire time span of the series, the western Spitsbergen climate has gone through stepwise changes, alternating between cold and warm regimes: 1899–1929 was cold, 1930–1961 warm, 1962–1998 cold and 1999–2018 warm. The latest cold regime was 1.0 °C warmer than the first cold one, and the latest warm regime was 1.7 °C warmer than the previous warm one. For the whole series the linear trend for annual means amounts to 0.32°C/decade, which is about 3.5 times the increase of the global mean temperature for the same period. Since 1991, the rate of warming at Svalbard Airport is 1.7 °C/decade, which is more than twice the Arctic average (0.8 °C/decade, north of 66 °N) and about seven times the global average for the same period.


Download data is not yet available.


AMAP (Arctic Monitoring and Assessment Programme) 2017. Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017. Oslo: Arctic Monitoring and Assessment Programme.

Alekseev G., Glok N. & Smirnov A. 2016. An assessment of the relationship between changes of sea ice extent and climate in the Arctic. International Journal of Climatology 36, 3407–3412, doi: 10.1002/joc.4550.

Alexandersson H. 1986. A homogeneity test applied to precipitation data. Journal of Climatology 6, 661–675, doi: 10.1002/joc.3370060607.

BACC (BALTEX Assessment of Climate Change for the Baltic Sea Basin) Author Team 2008. Assessment of climate change for the Baltic Sea basin. Berlin: Springer.

Bindoff N.L., Stott P.A., AchutaRao K.M., Allen M.R., Gillett N., Gutzler D., Hansingo K., Hegerl G., Hu Y., Jain S., Mokhov I.I., Overland J., Perlwitz J., Sebbari R. & Zhang X. 2013. Detection and attribution of climate change: from global to regional. In T.F. Stocker et al. (eds.): Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Pp. 867–952. Cambridge: Cambridge University Press.

Carmack E. 2015. Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic. Bulletin of the American Meteorological Society 96, 2079–2105, doi: 10.1175/BAMS-D-13-00177.1.

Compo G.P., Whitaker J.S., Sardeshmukh P.D., Matsui N., Allan R.J., Yin X., Gleason B.E., Vose R.S., Rutledge G., Bessemoulin P., Brönnimann S., Brunet M., Crouthamel R.I., Grant A.N., Groisman P.Y., Jones P.D., Kruk M.C., Kruger A.C., Marshall G.J., Maugeri M., Mok H.Y., Nordli Ø., Ross T.F., Trigo R.M., Wang X.L., Woodruff S.D. & Worley S.J. 2011. The twentieth century reanalysis project. Quarterly Journal of the Royal Meteorological Society 137, 1–28, doi: 10.1002/qj.776.

Corti S., Molteni F. & Palmer T.N. 1999. Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398, 799–802, doi: 10.1038/19745.

Cottier F.R., Nilsen F., Inall M.E., Gerland S., Tverberg V. & Svendsen H. 2007. Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophysical Research Letters 34, L10607, doi: 10.1029/2007GL029948.

Descamps S., Aars J., Fuglei E., Kovacs K.M., Lydersen C., Pavlova O., Pedersen Å.Ø., Ravolainen V. & Strøm H. 2017. Climate change impacts on wildlife in a High Arctic archipelago—Svalbard, Norway. Global Change Biology 23, 490–502, doi: 10.1111/gcb.13381.

Dmitrenko I.A., Kirillov S.A., Serra N., Koldunov N.V., Ivanov V.V., Scauer U., Polyakov I.V., Barber D., Janout M., Lien V.S., Makhotin M. & Aksenov Y. 2014. Heat loss from the Atlantic Water layer in the northern Kara Sea: causes and consequences. Ocean Science 10, 719–730, doi: 10.5194/os-10-719-2014.

Ewertowski M.W., Evans D.J.A., Roberts D.H., Tomczyk A.M., Ewertowski W. & Pleksot K. 2019. Quantification of historical landscape change on the foreland of a receding polythermal glacier, Hørbyebreen, Svalbard. Geomorphology 325, 40–54, doi: 10.1016/j.geomorph.2018.09.027.

Fyfe J.C., von Salzen K, Gillett N.P., Arora V.K., Flato G.M. & McConnell J.R. 2013. One hundred years of Arctic surface temperature variation due to anthropogenic influence. Scientific Reports 3, article no. 2645, doi: 10.1038/srep02645.

GISTEMP Team 2019. GISS Surface Temperature Analysis (GISTEMP). NASA Goddard Institute for Space Studies. Data set accessed on the internet at on 18 November 2019.

Gjelten H.M., Nordli Ø., Isaksen K., Førland E.J., Sviashchennikov P.N., Wyszynski P., Prokhorova U.V., Przybylak R., Ivanov B.V. & Urazgildeeva A.V. 2016. Air temperature variations and gradients along the coast and fjords of western Spitsbergen. Polar Research 35, article no. 29878, doi: 10.3402/polar.v35.29878.

Graversen R.G., Langen P.L. & Mauritsen T. 2014. Polar amplification in CCSM4: contributions from the lapse rate and surface albedo feedbacks. Journal of Climate 27, 4433–4450, doi: 10.1175/JCLI-D-13-00551.1.

Hamilton C.D., Kovacs K.M. & Lydersen C. 2018. Individual variability in diving, movement and activity patterns of adult bearded seals in Svalbard, Norway. Scientific Reports 8, article no. 16988, doi: 10.1038/s41598-018-35306-6.

Hansen B.B., Isaksen K., Benestad R., Kohler J., Pedersen Å.Ø., Loe L.E., Coulson S.J., Larsen J.O. & Varpe Ø. 2014. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic. Environmental Research Letters 9, article no. 114021, doi: 10.1088/1748-9326/9/11/114021.

Hanssen-Bauer I., Førland E.J., Hisdal H., Mayer S., Sandø A.B. & Sorteberg B. 2019. Climate in Svalbard 2100—a knowledge base for climate adaptation. NCCS Report 1. Oslo: Norwegian Centre for Climate Services.

Hegerl G.C., Brönnimann S., Schurer A. & Cowan T. 2018. The Early 20th Century Warming: anomalies, causes, and consequences. Wiley Interdisciplinary Reviews Climate Change 9, e522, doi: 10.1002/wcc.522.

Huber P.J. 1981. Robust statistics. New York: John Wiley.

Instanes A. 2016. Incorporating climate warming scenarios in coastal permafrost engineering design—case studies from Svalbard and northwest Russia. Cold Regions Science and Technology 131, 76–87, doi: 10.1016/j.coldregions.2016.09.004.

IPCC (Intergovernmental Panel on Climate Change) 2019. Summary for policymakers. In H.-O. Pörtner et al. (eds.): IPCC special report on the ocean and cryosphere in a changing climate. Accessed on the internet at on 25 March 2020

Isaksen K., Nordli Ø., Førland E.J., Lupikasza E., Eastwood S. & Niedzwiedz T. 2016. Recent warming on Spitsbergen—influence of atmospheric circulation and sea ice cover. Journal of Geophysical Research—Atmospheres 121, 11913–11931, doi: 10.1002/2016JD025606.

Lenssen N., Schmidt G., Hansen J., Menne M., Persin A., Ruedy R. & Zyss D. 2019. Improvements in the GISTEMP uncertainty model. Journal of Geophysical Research—Atmospheres 124, 6307–6326, doi: 10.1029/2018JD029522.

Lind S., Ingvaldsen R.B. & Furevik T. 2018. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nature Climate Change 8, 634–639, doi: 10.1038/s41558-018-0205-y.

Łupikasza E.B. & Niedźwiedź T. 2019. The influence of mesoscale atmospheric circulation on Spitsbergen air temperature in periods of Arctic warming and cooling. Journal of Geophysical Research—Atmospheres 124, 5233–5250, doi: 10.1029/2018JD029443.

Muckenhuber S., Nilsen F., Korosov A. & Sandven S. 2016. Sea ice cover in Isfjorden and Hornsund, Svalbard (2000–2014) from remote sensing data. The Cryosphere 10, 149–158, doi: 10.5194/tc-10-149-2016.

Navarro J.C., Varma V., Riipinen I., Seland Ø., Kirkevåg A., Struthers H., Iversen T., Hansson H.-C. & Ekman A.M.L. 2016. Amplification of Arctic warming by past air pollution reductions in Europe. Nature Geoscience 9, 277–281, doi: 10.1038/ngeo2673.

Nilsen F., Cottier R., Skogseth R. & Mattsson S. 2008. Fjord–shelf exchanges controlled by ice and brine production: the interannual variation of Atlantic Water in Isfjorden, Svalbard. Continental Shelf Research 28, 1838–1853, doi: 10.1016/j.csr.2008.04.015.

NOAA-ESRL (National Oceanic and Atmospheric Administration Earth System Research Laboratory) 2019. NCEP/NCAR Reanalysis. Physical Sciences Division, Boulder Colorado. Data set accessed on the internet at​Fdecade​%2C+north+of+66%C2%B0N+(NOAA-ESRL+2019&rlz=1C1GCEA_enNO835NO835&oq=0.8%C2%B0C%2Fdecade%2C+north+of+66%C2%B0N+(NOAA​-ESRL+2019&aqs=chrome..69i57j69i58.​5381j0j7​&sourceid=chrome&ie=UTF-8 on 4 April 2020

Nordli Ø., Hestmark G., Benestad R.E. & Isaksen K. 2015. The Oslo temperature series 1837–2012: homogeneity testing and temperature analysis. International Journal of Climatology 35, 3486–3504, doi: 10.1002/joc.4223.

Nordli Ø., Przybylak R., Ogilvie A.E.J. & Isaksen K. 2014. Long-term temperature trends and variability on Spitsbergen: the extended Svalbard Airport temperature series, 1898–2012. Polar Research 33, article no. 21349, doi: 10.3402/polar.v33.21349.

Osmont D., Wendl I.A., Schmidely L., Sigl M., Vega C.P., Isaksson E. & Schwikowski M. 2018. An 800-year high-resolution black carbon ice core record from Lomonosovfonna, Svalbard. Atmospheric Chemistry and Physics 18, 12777–12795, doi: 10.5194/acp-18-12777-2018.

Overland J.E., Hanna E., Hanssen-Bauer I., Kim S.-J., Walsh J.E., Wang M., Bhatt U.S. & Thoman R.L. 2018. Arctic report card 2018. Accessed on the internet at on 25 March 2020.

Overland J.E. & Wang M. 2010. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A 62, 1–9, doi: 10.1111/j.1600-0870.2009.00421.x.

Overland J.E., Wood K. & Wang M. 2011. Warm Arctic-cold continents: climate impacts of the newly open Arctic Sea. Polar Research 30, article no. 15787, doi: 10.3402/polar.v30i0.15787.

Overland J.E. & Serreze M.C. 2012. Advances in Arctic atmospheric research. In P. Lemke & H.-W. Jacobi (eds.): Arctic climate change. The ACSYS decade and beyond. Pp. 11–26. Dordrecht: Springer.

Park D.-S.R., Lee S. & Feldstein S.B. 2015. Attribution of the recent winter sea ice decline over the Atlantic sector of the Arctic Ocean. Journal of Climate 28, 4027–4033, doi: 10.1175/JCLI-D-15-0042.1.

Peeters B., Pedersen Å.Ø., Loe L.E., Isaksen K., Veiberg V., Stien A., Kohler J., Gallet J.-C., Aanes R. & Hansen B.B. 2019. Spatiotemporal patterns of rain-on-snow and basal ice in High Arctic Svalbard: detection of a climate-cryosphere regime shift. Environmental Research Letters 14, article no. 015002, doi: 10.1088/1748-9326/aaefb3.

Pithan F. & Mauritsen T. 2014. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience 7, 181–184, doi: 10.1038/NGEO2071.

Pramanik A., van Pelt W., Kohler J. & Schuler T.V. 2018. Simulating climatic mass balance, seasonal snow development and associated freshwater runoff in the Kongsfjord basin, Svalbard (1980–2016). Journal of Glaciology 64, 943–956, doi: 10.1017/jog.2018.80.

Przybylak R. 1997. Spatial variation of air temperature in the Arctic in 1951–1990. Polish Polar Research 18, 41–63.

Przybylak R. 2016. The climate of the Arctic. 2nd edn. Dordrecht: Springer, doi: 10.1007/978-3-319-21696-6.

Przybylak R. & Wyszyński P. 2020. Air temperature changes in the Arctic in the period 1951–2015 in the light of observational and reanalysis data. Theoretical and Applied Climatology 139, 75–94, doi: 10.1007/s00704-019-02952-3.

Rodionov S.N. 2004. A sequential algorithm for testing climate regime shifts. Geophysical Research Letters 31, L0924, doi: 10.1029/2004GL019448.

Rodionov S.N. 2006. Use of prewhitening in climate regime shift detection. Geophysical Research Letters 33, L12707, doi: 10.1029/2006GL025904.

Serreze M.C., Barrett A.P. & Cassano J.J. 2011. Circulation and surface controls on the lower tropospheric air temperature field of the Arctic, Journal of Geophysical Research—Atmospheres 116, D07104, doi: 10.1029/2010JD015127.

Stuecker M.F, Bitz C.M., Armour K.C., Proistosescu C., Kang S.M., Xie S.-P., Kim D., McGregor S., Zhang W., Zhao S., Cai W., Dong Y. & Jin F.-F. 2018. Polar amplification dominated by local forcing and feedbacks. Nature Climate Change 8, 1076–1081, doi: 10.1038/s41558-018-0339-y.

Vikhamar-Schuler D., Isaksen K., Haugen J.E., Tømmervik H., Luks B., Schuler T.V. & Bjerke J.W. 2016. Changes in winter warming events in the Nordic Arctic region. Journal of Climate 29, 6223–6244, doi: 10.1175/JCLI-D-15-0763.1.

Wilks D.S. 1995. Statistical methods in the atmospheric science. An introduction. Amsterdam: Academic Press.

Woelders L., Lenaerts J.T.M., Hagemans K., Akkerman K., van Hoof T.B. & Hoek W.Z. 2018. Recent climate warming drives ecological change in a remote High-Arctic lake. Scientific Reports 8, article no. 6858, doi: 10.1038/s41598-018-25148-7.
How to Cite
Nordli Øyvind, Wyszyński P., Gjelten H. M., Isaksen K., Łupikasza E., Niedźwiedź T., & Przybylak R. (2020). Revisiting the extended Svalbard Airport monthly temperature series, and the compiled corresponding daily series 1898–2018. Polar Research, 39.
Research Articles