The effect of an experimental decrease in salinity on the viability of the Subarctic planktonic foraminifera Neogloboquadrina incompta

  • Mattia Greco MARUM—Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
  • Ju­lie Meil­land MARUM—Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
  • Kasia Zamelczyk CAGE—Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT—The Arctic University of Norway, Tromsø, Norway
  • Tine L. Rasmussen CAGE—Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT—The Arctic University of Norway, Tromsø, Norway
  • Michal Kucera MARUM—Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Keywords: Planktonic foraminifera, meltwater events, salinity, laboratory observations


Chemical signatures in the calcite of shells of polar and subpolar planktonic foraminifera have been frequently used to trace and quantify past meltwater discharge events. This approach assumes that the foraminifera can tolerate low salinity under extended periods. To obtain a first experimental constraint on salinity tolerance of Subarctic foraminifera, we carried out a culturing experiment with specimens of the subpolar species Neogloboquadrina incompta collected in the northern Norwegian Sea off Tromsø in October 2018. The foraminifera were exposed to a gradient of salinities between 35 and 25 PSU. Survival was monitored over 26 days by measuring the extent of the rhizopodial network. Although chamber growth only occurred in one of the observed specimens, likely due to the largely unknown dietary preference of the species, we observed a strong differential rhizopodial activity pattern along the gradient. The highest rhizopodial activity occurred at salinity between 35 and 31 PSU. The species is clearly able to survive long-term exposure to salinities as low as 28, but no rhizopodial activity and signs of cytoplasm degradation were observed in all specimens exposed to 25 PSU. These preliminary observations provide the first direct evidence for the salinity tolerance of N. incompta, indicating a range of salinity that could be plausibly expected to be recorded in the chemistry of fossil shells of the species.


Download data is not yet available.


Bé A.W.H., Hemleben C., Anderson O.R., Spindler M., Hacunda J. & Tuntivate-Choy S. 1977. Laboratory and field observations of living planktonic foraminifera. Micropaleontology 23, 155–179, doi: 10.2307/1485330.

Bertlich J., Nürnberg D., Hathorne E.C., de Nooijer L.J., Mezger E.M., Kienast M., Nordhausen S., Reichart G., Schönfeld J. & Bijma J. 2018. Salinity control on Na incorporation into calcite tests of the planktonic foraminifera Trilobatus sacculifer—evidence from culture experiments and surface sediments. Biogeosciences 15, 5991–6018, doi: 10.5194/bg-15-5991-2018.

Bijma J., Faber W.W. & Hemleben C. 1990. Temperature and salinity limits for growth and survival of some planktonic foraminifers in laboratory cultures. Journal of Foraminiferal Research 20, 95–116, doi: 10.2113/gsjfr.20.2.95.

Bird C., Darling K.F., Russell A.D., Fehrenbacher J.S., Davis C.V., Free A. & Ngwenya B.T. 2018. 16S rRNA gene metabarcoding and TEM reveals different ecological strategies within the genus Neogloboquadrina (planktonic foraminifer). PLoS One 13, 83–95, doi: 10.1371/journal.pone.0191653.

Came R.E., Oppo D.W. & McManus J.F. 2007. Amplitude and timing of temperature and salinity variability in the subpolar North Atlantic over the past 10 k.y. Geology 35, 315–318, doi: 10.1130/G23455A.1.

Darling K.F., Kucera M., Kroon D. & Wade C.M. 2006. A resolution for the coiling direction paradox in Neogloboquadrina pachyderma. Paleoceanography 21, PA2011, doi: 10.1029/2005PA001189.

Davis C.V., Fehrenbacher J.S., Hill T.M., Russell A.D. & Spero H.J. 2017. Relationships between temperature, pH, and crusting on Mg/Ca ratios in laboratory‐grown Neogloboquadrina foraminifera. Paleoceanography 32, 1137–1152, doi: 10.1002/2017PA003111.

De Vernal A. & Hillaire-Marcel C. 2000. Sea-ice cover, sea-surface salinity and halo-/thermocline structure of the northwest North Atlantic: modern versus full glacial conditions. Quaternary Science Reviews 19, 65–85, doi: 10.1016/S0277-3791(99)00055-4.

Dickson A.J., Austin W.E.N., Hall I.R., Maslin M.A. & Kucera M. 2008. Centennial‐scale evolution of Dansgaard‐Oeschger events in the northeast Atlantic Ocean between 39.5 and 56.5 ka B.P. Paleoceanography 23, PA3206, doi: 10.1029/2008PA001595.

Fehrenbacher J.S., Russell A.D., Davis C.V., Spero H.J., Chu E. & Hönisch B. 2018. Ba/Ca ratios in the non-spinose planktic foraminifer Neogloboquadrina dutertrei: evidence for an organic aggregate microhabitat. Geochimica et Cosmochimica Acta 236, 361–372, doi: 10.1016/j.gca.2018.03.008.

Greco M., Jonkers L., Kretschmer K., Bijma J. & Kucera M. 2019. Depth habitat of the planktonic foraminifera Neogloboquadrina pachyderma in the northern high latitudes explained by sea-ice and chlorophyll concentrations. Biogeosciences 16, 3425–3437, doi: 10.5194/bg-16-3425-2019.

Heinz P., Geslin E. & Hemleben C. 2005. Laboratory observations of benthic foraminiferal cysts. Marine Biology Research 1, 149–159, doi: 10.1080/17451000510019114.

Hemleben C., Spindler M. & Anderson O.R. 1989. Modern planktonic foraminifera. New York: Springer.

Hemming S.R. 2004. Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics 42, RG1005, doi: 10.1029/2003RG000128.

Kozdon R., Ushikubo T., Kita N.T., Spicuzza M. & Valley J. W. 2009. Intratest oxygen isotope variability in the planktonic foraminifer N. pachyderma: real vs. apparent vital effects by ion microprobe. Chemical Geology 258, 327–337, doi: 10.1016/j.chemgeo.2008.10.032.

Lea D.W., Mashiotta T.A. & Spero H.J. 1999. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochimica et Cosmochimica Acta 63, 2369–2379, doi: 10.1016/S0016-7037(99)00197-0.

LeKieffre C., Spero H.J., Russell A.D., Fehrenbacher J.S., Geslin E. & Meibom A. 2018. Assimilation, translocation, and utilization of carbon between photosynthetic symbiotic dinoflagellates and their planktic foraminifera host. Marine Biology 165, 104, doi: 10.1007/s00227-018-3362-7.

Manno C., Morata N. & Bellerby R. 2012. Effect of ocean acidification and temperature increase on the planktonic foraminifer Neogloboquadrina pachyderma (sinistral). Polar Biology 35, 1311–1319, doi: 10.1007/s00300-012-1174-7.

Maslin M.A., Shackleton N.J. & Pflaumann U. 1995. Surface water temperature, salinity, and density changes in the northeast Atlantic during the last 45,000 years: Heinrich events, deep water formation, and climatic rebounds. Paleoceanography 10, 527–544, doi: 10.1029/94PA03040.

McCrea J.M. 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. The Journal of Chemical Physics 18, 849–857, doi: 10.1063/1.1747785.

McManus J.F., Oppo D.W. & Cullen J. L. 1999. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283, 971–975, doi: 10.1126/science.283.5404.971.

Pearson P.N. 2012. Oxygen isotopes in foraminifera: overview and historical review. The Paleontological Society Papers 18, 1–38, doi: 10.1017/S1089332600002539.

Rashid H. & Boyle E.A. 2007. Mixed-layer deepening during Heinrich events: a multi-planktonic foraminiferal δ18O approach. Science 318, 439–441, doi: 10.1126/science.1146138.

Ravelo A.C. & Hillaire-Marcel C. 2007. The use of oxygen and carbon isotopes of foraminifera in paleoceanography. In C. Hillaire-Marcel & A. De Vernal (eds): Proxies in Late Cenozoic paleoceanography. Vol. 1. Pp. 735–764. Amsterdam: Elsevier.

Rebotim A., Voelker A.H.L., Jonkers L., Waniek J.J., Meggers H., Schiebel R., Fraile I., Schulz M. & Kucera M. 2017. Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic. Biogeosciences 14, 827–859, doi: 10.5194/bg-14-827-2017.

Schiebel R., Smart S.M., Jentzen A., Jonkers L., Morard R., Meilland J., Michel E., Coxall H.K., Hull P.M., de Garibdel-Thoron T., Aze T., Quillévéré F., Ren H., Sigman D.M., Vonhof H.B., Martínez-García A., Kucera M., Bijma J., Spero H.J. & Haug G.H. 2018. Advances in planktonic foraminifer research: new perspectives for paleoceanography. Revue de Micropaléontologie 61, 113–138, doi: 10.1016/j.revmic.2018.10.00.

Schmidt C., Morard R., Almogi-Labin A., Weinmann A.E., Titelboim D., Abramovich S. & Kucera M. 2015. Recent invasion of the symbiont-bearing foraminifera pararotalia into the eastern mediterranean facilitated by the ongoing warming trend. PLoS One 10, e0132917, doi: 10.1371/journal.pone.0132917.

Schneider C.A., Rasband W.S. & Eliceiri K.W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671–675, doi: 10.1038/nmeth.2089.

Spindler M., Hemleben C., Salomons J.B. & Smit L.P. 1984. Feeding behavior of some planktonic foraminifers in laboratory cultures. Journal of Foraminiferal Research 14, 237–249, doi: 10.2113/gsjfr.14.4.237.

Voelker A.H.L., De Abreu L., Schönfeld J., Erlenkeuser H. & Abrantes F. 2009. Hydrographic conditions along the western Iberian margin during marine isotope stage 2. Geochemistry, Geophysics, Geosystems 10, Q12U08, doi: 10.1029/2009GC002605.

von Langen P.J., Pak D.K., Spero H.J. & Lea D.W. 2005. Effects of temperature on Mg/Ca in neogloboquadrinid shells determined by live culturing. Geochemistry, Geophysics Geosystems 6, Q10P03, doi: 10.1029/2005GC000989.

Zweng M.M., Reagan J.R., Seidov D., Boyer T.P., Locarnini R.A., Garcia H.E., Mishonov A.V., Baranova O.K., Weathers K.W., Paver C.R. & Smolyar I.V. 2019. World Ocean Atlas 2018. Vol. 2. Salinity. NOAA Atlas NESDIS 82. A. Mishonov, technical ed. Silver Spring, MD: National Oceanic and Atmospheric Administration, US Dept. of Commerce.
How to Cite
Greco, M., Meil­landJ., Zamelczyk, K., Rasmussen, T. L., & Kucera, M. (2020). The effect of an experimental decrease in salinity on the viability of the Subarctic planktonic foraminifera <em>Neogloboquadrina incompta</em&gt;. Polar Research, 39.
Research Articles