Reconstructing the Little Ice Age extent of Langfjordjøkelen, Arctic mainland Norway, as a baseline for assessing centennial-scale icefield recession

Keywords: Glacier change, glacier reconstruction, glacial geomorphology, historical maps, plateau icefield


Current warming in the Arctic is occurring at a rate two to three times higher than that of the rest of the world, leading to rapid glacier wastage. In Arctic mainland Norway, the plateau icefield Langfjordjøkelen has experienced the greatest mass loss of all Norwegian glaciers (excluding Svalbard) in recent decades. In this article, we examine this decline in a centennial-scale context through geomorphological mapping and the analysis of historical aerial photographs and maps. This allows Langfjordjøkelen’s maximum Little Ice Age extent (ca. 1925) to be reconstructed, providing an important baseline for a long-term assessment of icefield change. At the LIA maximum, Langfjordjøkelen covered an area of 14.9 km2. A comparison of the LIA dimensions with the icefield extent in 1891/1902, as displayed on a historical map, reveals a substantial overestimation of the map-based glacier outline. The post-LIA evolution of Langfjordjøkelen has been characterized by sustained high rates of glacier recession. By 2018, the icefield had lost 57% (8.5 km2) of its original LIA area, at a decadal rate of 9%, and its outlet glaciers had reduced in average length by 42% (1 km), at an annual rate of 11 m. Langfjordjøkelen’s percentage area decline has been greater than that of Norwegian ice masses at lower latitudes where comparable long-term glacier change data are available. This indicates that there is a significant latitudinal variation in Norwegian glacier response to 20th century warming, likely influenced by an enhanced warming signal in Arctic Norway compared to the rest of the Norwegian mainland.


Download data is not yet available.


Allen M.R., Dube O.P., Solecki W., Aragón-Durand F., Cramer W., Humphreys S., Kainuma M., Kala J., Mahowald N., Mulugetta Y., Perez R., Wairiu M. & Zickfeld K. 2018. Framing and context. In V. Masson-Delmotte et al. (eds.): Global warming of 1.5°C. Pp. 49–91. Geneva: IPCC.

Andersen J.L. & Sollid J.L. 1971. Glacial chronology and glacial geomorphology in the marginal zones of the glaciers, Midtdalsbreen and Nigardsbreen, south Norway. Norwegian Journal of Geography 25, 1–38, doi: 10.1080/00291957108551908.

Andreassen L.M., Elvehøy H., Kjøllmoen B. & Belart J.M.C. 2020. Glacier change in Norway since the 1960s—an overview of mass balance, area, length and surface elevation changes. Journal of Glaciology 66, 313–328, doi: 10.1017/jog.2020.10.

Andreassen L.M., Elvehøy H., Kjøllmoen B. & Engeset R.V. 2005. Glacier mass-balance and length variation in Norway. Annals of Glaciology 42, 317–325, doi: 10.3189/172756405781812826.

Andreassen L.M., Elvehøy H., Kjøllmoen B. & Engeset R.V. 2016. Reanalysis of long-term series of glaciological and geodetic mass balance for 10 Norwegian glaciers. The Cryosphere 10, 535–552, doi: 10.5194/tc-10-535-2016.

Andreassen L.M., Kjøllmoen B., Rasmussen A., Melvold K. & Nordli Ø. 2012. Langfjordjøkelen, a rapidly shrinking glacier in northern Norway. Journal of Glaciology 58, 581–593, doi: 10.3189/2012JoG11J014.

Andreassen L.M., Paul F., Kääb A. & Hausberg J.E. 2008. Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s. The Cryosphere 2, 131–145, doi: 10.5194/tc-2-131-2008.

Andreassen L.M., Winsvold S.H., Paul F. & Hausberg J.E. 2012. Inventory of Norwegian glaciers. NVE Rapport 2012:38. Oslo: NVE.

Bakke J., Dahl S.O., Paasche Ø., Løvlie R. & Nesje A. 2005. Glacier fluctuations, equilibrium-line altitudes and palaeoclimate in Lyngen, northern Norway, during the Lateglacial and Holocene. The Holocene 15, 518–540, doi: 10.1191/0959683605hl815rp.

Ballantyne C.K. 1990. The Holocene glacial history of Lyngshalvöya, northern Norway: chronology and climatic implications. Boreas 19, 93–117, doi: 10.1111/j.1502-3885.​1990.tb00570.x.

Baumann S., Winkler S. & Andreassen L.M. 2009. Mapping glaciers in Jotunheimen, South-Norway, during the “Little Ice Age” maximum. The Cryosphere 3, 231–243, doi: 10.5194/tc-3-231-2009.

Bickerton R.W. & Matthews J.A. 1993. “Little Ice Age” variations of outlet glaciers from the Jostedalsbreen ice-cap, southern Norway: a regional lichenometric--dating study of ice-marginal moraine sequences and their climatic significance. Journal of Quaternary Science 8, 45–66, doi: 10.1002/jqs.3390080105.

Box J.E., Colgan W.T., Christensen T.R., Schmidt N.M., Lund M., Parmentier F.-J.W., Brown R., Bhatt U.S., Euskirchen E.S., Romanovsky V.E., Walsh J.E., Overland J.E., Wang M., Corell R.W., Meier W.N., Wouters B., Mernild S., Mård J., Pawlak J. & Skovgård Olsen M. 2019. Key indicators of Arctic climate change: 1971–2017. Environmental Research Letters 14, article no. 045010, doi: 10.1088/1748-9326/aafc1b.

Box J.E., Colgan W.T., Wouters B., Burgess D.O., O’Neel S., Thomson L.I. & Mernild S.H. 2018. Global sea-level contribution from Arctic land ice: 1971–2017. Environmental Research Letters 13, article no. 125012, doi: 10.1088/1748-9326/aaf2ed.

Bush E. & Lemmen D.S. (eds.) 2019. Canada’s changing climate report. Ottawa: Government of Canada.

Chandler B.M.P., Lovell H., Boston C.M., Lukas S., Barr I.D., Benediktsson Í.Ö., Benn D.I., Clark C.D., Darvill C.M., Evans D.J.A., Ewertowski M.W., Loibl D., Margold M., Otto J.-C., Roberts D.H., Stokes C.R., Storrar R.D. & Stroeven A.P. 2018. Glacial geomorphological mapping: a review of approaches and frameworks for best practice. Earth-Science Reviews 185, 806–846, doi: 10.1016/j.earscirev.2018.07.015.

Erikstad L. & Sollid J.L. 1986. Neoglaciation in south Norway using lichenometric methods. Norwegian Journal of Geography 40, 85–105, doi: 10.1080/00291958608552159.

Evans D.J., Rea B.R., Hansom J.D. & Whalley W.B. 2002. Geomorphology and style of plateau icefield deglaciation in fjord terrains: the example of Troms-Finnmark, north Norway. Journal of Quaternary Science 17, 221–239, doi: 10.1002/jqs.675.

Evans I.S. 2006. Local aspect asymmetry of mountain glaciation: a global survey of consistency of favoured directions for glacier numbers and altitudes. Geomorphology 73, 166–184, doi: 10.1016/j.geomorph.2005.07.009.

Forbes J.D. 1853. Norway and its glaciers. Visited in 1851. Edinburgh: A. and C. Black.

Geikie A. 1892. Geological sketches. At home and abroad. New York: Macmillan and Co.

Grove J.M. 2004. Little ice ages: ancient and modern. London: Routledge.

Hanssen-Bauer I. 2005. Regional temperature and precipitation series for Norway: analyses of time-series updated to 2004. MET Report 15/2005. Oslo: Meteorological Institute.

Hanssen-Bauer I., Førland E.J., Haddeland I., Hisdal H., Mayer S., Nesje A., Nilsen J.E.Ø., Sandven S., Sandø A.B., Sorteberg A. & Ådlandsvik B. (eds.) 2015. Klima i Norge 2100. (Climate in Norway 2100.) NCCS report 2/2015. Oslo: Norwegian Environment Agency.

Hanssen-Bauer I., Førland E.J., Hisdal H., Mayer S., Sandø A.B. & Sorteberg A. 2019. Climate in Svalbard 2100. NCCS Report 1/2019. Oslo: Norwegian Environment Agency.

Hardy J.F. 1862. The Jökuls glacier. In E.S. Kennedy (ed.): Peaks, passes, and glaciers: being excursions by members of the Alpine club. Second series. Pp. 429-441. London: Longman, Green, Longman, and Roberts.

Hegerl G.C., Brönnimann S., Schurer A. & Cowan T. 2018. The Early 20th Century Warming: anomalies, causes, and consequences. WIREs Climate Change 9, e522, doi: 10.1002/wcc.522.

Hoel A. & Werenskiold W. 1962. Glaciers and snowfields in Norway. Norsk Polarinstitutt Skrifter 114. Oslo: Norwegian Polar Institute.

IPCC 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Core Writing Team, R.K. Pachauri & L.A. Meyer (eds.). Geneva: IPCC.

Kjøllmoen B. 1999. Breundersøkelser på Langfjordjøkelen 1998. (Glacier investigations at Langfjordjøkelen 1998.) NVE Dokument 1999:2. Oslo: NVE.

Kjøllmoen B. 2019. Reanalysing a glacier mass balance measurement series—Langfjordjøkelen 2008–2018. NVE Rapport 2019:48. Oslo: NVE.

Kjøllmoen B., Andreassen L.M., Elvehøy H. & Jackson M. 2019. Glaciological investigations in Norway 2018. NVE Rapport 2019:46. Oslo: NVE.

Małecki J. 2016. Accelerating retreat and high-elevation thinning of glaciers in central Spitsbergen. The Cryosphere 10, 1317–1329, doi: 10.5194/tc-10-1317-2016.

Marzeion B. & Nesje A. 2012. Spatial patterns of North Atlantic Oscillation influence on mass balance variability of European glaciers. The Cryosphere 6, 661–673, doi: 10.5194/tc-6-661-2012.

Matthews J.A. 2005. “Little Ice Age” glacier variations in Jotunheimen, southern Norway: a study in regionally controlled lichenometric dating of recessional moraines with implications for climate and lichen growth rates. The Holocene 15, 1–19, doi: 10.1191/0959683605hl779rp.

Meredith M., Sommerkorn M., Cassotta S., Derksen C., Ekaykin A., Hollowed A., Kofinas G., Mackintosh A., Melbourne-Thomas J., Muelbert M.M.C., Ottersen G., Pritchard H. & Schuur E.A.G. 2019. Polar regions. In H.-O. Pörtner et al. (eds.): The ocean and cryosphere in a changing climate. A special report of the Intergovernmental Panel on Climate Change. Pp. 203–320. Geneva: IPCC.

Nesje A., Bakke J., Dahl S.O., Lie Ø. & Matthews J.A. 2008. Norwegian mountain glaciers in the past, present and future. Global and Planetary Change 60, 10–27, doi: 10.1016/j.gloplacha.2006.08.004.

Nesje A., Lie Ø. & Dahl S.O. 2000. Is the North Atlantic Oscillation reflected in Scandinavian glacier mass balance records? Journal of Quaternary Science 15, 587–601, doi: 10.1002/1099-1417(200009)15:6<587::AID-JQS533>3.0.CO;2-2.

NVE 2019. Climate indicator products. Accessed on the internet at on 31 December 2019

Paul F. & Andreassen L.M. 2009. A new glacier inventory for the Svartisen region, Norway, from Landsat ETM+ data: challenges and change assessment. Journal of Glaciology 55, 607–618, doi: 10.3189/002214309789471003.

Paul F., Barrand N.E., Baumann S., Berthier E., Bolch T., Casey K., Frey H., Joshi S.P., Konovalov V., Le Bris R., Mölg N., Nosenko G., Nuth C., Pope A., Racoviteanu A.E., Rastner P., Raup B., Scharrer K., Steffen S. & Winsvold S.H. 2013. Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Annals of Glaciology 54, 171–182, doi: 10.3189/2013AoG63A296.

Racoviteanu A.E., Paul F., Raup B., Khalsa S.J.S. & Armstrong R. 2009. Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Annals of Glaciology 50, 53–69, doi: 10.3189/172756410790595804.

Rasmussen L.A. 2007. Spatial extent of influence on glacier mass balance of North Atlantic circulation indices. Terra Glacialis 10, 43–58.

Serreze M.C., Barrett A.P., Stroeve J.C., Kindig D.N. & Holland M.M. 2009. The emergence of surface-based Arctic amplification. The Cryosphere 3, 11–19, doi: 10.5194/tc-3-11-2009.

Stokes C.R., Andreassen L.M., Champion M.R. & Corner G.D. 2018. Widespread and accelerating glacier retreat on the Lyngen Peninsula, northern Norway, since their “Little Ice Age” maximum. Journal of Glaciology 64, 100–118, doi: 10.1017/jog.2018.3.

Thoner J. 1906. Fra Alnas Njarggas fjorde og jøkler. (From Alnas Njargga’s fjords and glaciers.) Den Norske Turistforenings Aarbok 1906, 71–88.

Tvede A.M. 1973. Folgefonni—en glasiologisk avviker. (Folgefonni—a glaciological anomaly.) Naturen 97, 11–16.

Vaughan D.G., Comiso J.C., Allison I., Carrasco J., Kaser G., Kwok R., Mote P., Murray T., Paul F., Ren J., Rignot E., Solomina O., Steffen K. & Zhang T. 2013. Observations: cryosphere. In Stocker et al. (eds.): Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Pp. 317–382. Cambridge: Cambridge University Press.

Whalley W.B. & Kjøllmoen B. 2000. Øksfjord and Seiland. In L.M. Andreassen (ed.): Regional change of glaciers in northern Norway. NVE Report 2000:1. Pp. 96–113. Oslo: NVE.

Weber P., Andreassen L.M., Boston C.M., Lovell H. & Kvarteig S. 2020. An ~1899 glacier inventory for Nordland, northern Norway, produced from historical maps. Journal of Glaciology 66, 259–277, doi: 10.1017/jog.2020.3.

Weber P., Boston C.M., Lovell H. & Andreassen L.M. 2019. Evolution of the Norwegian plateau icefield Hardangerjøkulen since the “Little Ice Age”. The Holocene 29, 1885–1905, doi: 10.1177/0959683619865601.

Winkler S. 2003. A new interpretation of the date of the “Little Ice Age” glacier maximum at Svartisen and Okstindan, northern Norway. The Holocene 13, 83–95, doi: 10.1191/0959683603hl573rp.

Winsvold S.H., Andreassen L.M. & Kienholz C. 2014. Glacier area and length changes in Norway from repeat inventories. The Cryosphere 8, 1885–1903, doi: 10.5194/tc-8-1885-2014.

Wittmeier H.E., Bakke J., Vasskog K. & Trachseld M. 2015. Reconstructing Holocene glacier activity at Langfjordjøkelen, Arctic Norway, using multi-proxy fingerprinting of distal glacier-fed lake sediments. Quaternary Science Reviews 114, 78–99, doi: 10.1016/j.quascirev.2015.02.007.

WMO 2019. WMO Statement on the state of the global climate in 2018. Geneva: WMO.

Zemp M., Armstrong R., Gärtner-Roer I., Haeberli W., Hoelzle M., Kääb A., Kargel J.S., Khalsa S.J.S., Leonard G.J., Paul F. & Raup B.H. 2014. Introduction: global glacier monitoring—a long-term task integrating in situ observations and remote sensing. In J. Kargel et al. (eds.): Global land ice measurements from space. Pp. 1–21. Berlin: Springer, doi: 10.1007/978-3-540-79818-7_1.

Zemp M., Frey H., Gärtner-Roer I., Nussbaumer S.U., Hoelzle M., Paul F., Haeberli W., Denzinger F., Ahlstrøm A.P., Anderson B., Bajracharya S., Baroni C., Braun L.N., Cáceres B.E., Casassa G., Cobos G., Dávila L.R., Granados H.D., Demuth M.N., Espizua L., Fischer A., Fujita K., Gadek B., Ghazanfar A., Hagen J.O., Holmlund P., Karimi N., Li Z., Pelto M., Pitte P., Popovnin V.V., Portocarrero C.A., Prinz R., Sangewar C.V., Severskiy I., Sigurđsson O., Soruco A., Usubaliev R. & Vincent C. 2015. Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology 61, 745–762, doi: 10.3189/2015JoG15J017.

Zemp M., Huss M., Thibert E., Eckert N., McNabb R., Huber J., Barandun M., Machguth H., Nussbaumer S.U., Gärtner-Roer I., Thomson L., Paul F., Maussion F., Kutuzov S. & Cogley J.G. 2019. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382–386, doi: 10.1038/s41586-019-1071-0
How to Cite
Weber P., Lovell H., Andreassen L. M., & Boston C. M. (2020). Reconstructing the Little Ice Age extent of Langfjordjøkelen, Arctic mainland Norway, as a baseline for assessing centennial-scale icefield recession. Polar Research, 39.
Research Articles