Post-depositional loss of nitrate and chloride in Antarctic snow by photolysis and sublimation: a field investigation

Keywords: Antarctica, geochemical cycle, nitrogen cycle, nitrogen oxides, ozone

Abstract

Nitrate in snow is subject to post-depositional processing, which leads to a net loss and redistribution within the snowpack. The relative importance of post-depositional loss processes such as the volatilization of nitric acid (HNO3) and photolysis of nitrate has long been debated. Changes in nitrate and chloride concentrations in the snowpack were investigated at H128 (69°23.584’S, 41°33.712’E), an Antarctic coastal site approximately 100 km from Syowa Station in East Antarctica from December 2015 to February 2016. Results indicate that chloride migrated to deeper sites within the snowpack under the influence of water vapour movement. Moreover, 50% of the nitrate on surface snow was lost to photolysis, and approximately 20% of the nitrate was absent at a depth of 40 cm. To enhance our knowledge of the Antarctic geochemical cycle, this study is the first to suggest chloride ion movement in snowpacks or significant nitrate loss for any Antarctic coastal site.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References


Blunier T., Floch G.L., Jacobi H.-W. & Quansah E. 2005. Isotopic view on nitrate loss in Antarctic surface snow. Geophysical Research Letters 32, L13501, doi: 10.1029/2005GL023011.


Dibb J.E., Talbot R.W., Munger J.W., Jacob, D.J. & Fan S.-M. 1998. Air–snow exchange of HNO3 and NOy at Summit, Greenland. Journal of Geophysical Research—Atmospheres 103, 3475–3486, doi: 10.1029/97JD03132.


Erbland J., Savarino J., Morin S., France J.L., Frey M.M. & King M.D. 2015. Air–snow transfer of nitrate on the East Antarctic Plateau—part 2: an isotopic model for the interpretation of deep ice-core records. Atmospheric Chemistry and Physics 15, 12079–12113, doi: 10.5194/acpd-15-6887-2015.


Erbland J., Vicars W.C., Savarino J., Morin S., Frey M.M., Frosini D., Vince E. & Martins J.M.F. 2013. Air–snow transfer of nitrate on the East Antarctic Plateau—part 1: isotopic evidence for a photolytically driven dynamic equilibrium in summer. Atmospheric Chemistry and Physics 13, 6403–6419, doi: 10.5194/acp-13-6403-2013.


France J.L., King M.D., Frey M.M., Erbland J., Picard G., Preunkert S., MacArthur A. & Savarino J. 2011. Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen. Atmospheric Chemistry and Physics 11, 9787–9801, doi: 10.5194/acp-11-9787-2011.


Frey M.M., Savarino J., Morin S., Erbland J. & Martins J.M.F. 2009. Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling. Atmospheric Chemistry and Physics 9, 8681–8696, doi: 10.5194/acp-9-8681-2009.


Grannas A.M., Jones A.E., Dibb J., Ammann M., Anastasio C., Beine H.J., Bergin M., Bottenheim J., Boxe C.S., Carver G., Chen G., Crawford J.H., Dominé F., Frey M.M., Guzmán M.I., Heard D.E., Helmig D., Hoffmann M.R., Honrath R.E., Huey L.G., Hutterli M., Jacobi H.W., Klán P., Lefer B., McConnell J., Plane J., Sander R., Savarino J., Shepson P.B., Simpson W.R., Sodeau J.R., von Glasow R., Weller R., Wolff E.W. & Zhu T. 2007. An overview of snow photochemistry: evidence, mechanisms and impacts. Atmospheric Chemistry and Physics 7, 4329–4373, doi: 10.5194/acp-7-4329-2007.


Honrath R.E., Peterson M.C., Guo S., Dibb J.E., Shepson P.B. & Campbell B. 1999. Evidence of NOx production within or upon ice particles in the Greenland snowpack, Geophysical Research Letters 26, 695–698, doi: 10.1029/1999GL900077.


Jacobi H.-W. & Hilker B. 2007. A mechanism for the photochemical transformation of nitrate in snow. Journal of Photochemistry and Photobiology A: Chemistry 185, 371–382, doi: 10.1016/j.jphotochem.2006.06.039.


Jones A.E., Weller R., Anderson P.S., Jacobi H.W., Wolff E.W., Schrems O. & Miller H. 2001. Measurements of NOx emissions from the Antarctic snowpack. Geophysical Research Letters 28, 1499–1502, doi: 10.1029/2000GL011956.


Mack J. & Bolton J.R. 1999. Photochemistry of nitrite and nitrate in aqueous solution: a review. Journal of Photochemistry and Photobiology A: Chemistry 128, 1–13, doi: 10.1016/S1010-6030(99)00155-0.


Meusinger C., Berhanu T.A., Erbland J., Savarino J. & Johnson M.S. 2014. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry. The Journal of Chemical Physics 140, 244305, doi: 10.1063/1.4882898.


Noro K., Hattori S., Uemura R., Fukui K., Hirabayashi M., Kawamura K., Motoyama H., Takenaka N. & Yoshida N. 2018. Spatial variation of isotopic compositions of snowpack nitrate related to post-depositional processes in eastern Dronning Maud Land, East Antarctica. Geochemical Journal 52, e7–e14, doi: 10.2343/geochemj.2.0519.


Röthlisberger R., Hutterli M.A., Sommer S., Wolff E.W. & Mulvaney R. 2000. Factors controlling nitrate in ice cores: evidence from the Dome C deep ice core. Journal of Geophysical Research—Atmospheres 105, 20565–20572, doi: 10.1029/2000JD900264.


Sato K., Takenaka N., Bandow H. & Maeda Y. 2008. Evaporation loss of dissolved volatile substances from ice surfaces. The Journal of Physical Chemistry A 112, 7600–7607, doi: 10.1021/jp075551r.


Savarino J., Kaiser J., Morin S., Sigman D.M. & Thiemens M.H. 2007. Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica. Atmospheric Chemistry and Physics 7, 1925–1945, doi: 10.5194/acp-7-1925-2007.


Shi G., Buffen A.M., Ma H., Hu Z., Sun B., Li C., Yu J., Ma T., An C., Jiang S., Li Y. & Hastings M.G. 2018. Distinguishing summertime atmospheric production of nitrate across the East Antarctic Ice Sheet. Geochimica et Cosmochimica Acta 231, 1–14, doi: 10.1016/j.gca.2018.03.025.


Shi G., Chai J., Zhu Z., Hu Z., Chen Z., Yu J., Ma T., Ma H., An C., Jiang S., Tang X. & Hastings M.G. 2019. Isotope fractionation of nitrate during volatilization in snow: a field investigation in Antarctica. Geophysical Research -Letters 46, 3287–3297, doi: 10.1029/2019GL081968.


Traversi R., Usoskin I.G., Solanki S.K., Becagli S., Frezzotti M., Severi M., Stenni B. & Udisti R. 2012. Nitrate in polar ice: a new tracer of solar variability. Solar Physics 280, 237–254, doi: 10.1007/s11207-012-0060-3.


Winton V.H.L., Ming A., Caillon N., Hauge L., Jones A.E., Savarino J., Yang X. & Frey M.M. 2020. Deposition, recycling, and archival of nitrate stable isotopes between the air–snow interface: comparison between Dronning Maud Land and Dome C, Antarctica. Atmospheric Chemistry and Physics 20, 5861–5885, doi: 10.5194/acp-20-5861-2020.


Zatko M.C., Geng L., Alexander B., Sofen E. & Klein K. 2016. The impact of snow nitrate photolysis on boundary layer chemistry and the recycling and redistribution of reactive nitrogen across Antarctica and Greenland in a global chemical transport model, Atmospheric Chemistry and -Physics 16, 2819–2842, doi: 10.5194/acp-16-2819-2016.


Zatko M.C., Grenfell T.C., Alexander B., Doherty S.J., Thomas J.L. & Yang X. 2013. The influence of snow grain size and impurities on the vertical profiles of actinic flux and associated NOx emissions on the Antarctic and Greenland ice sheets. Atmospheric Chemistry and Physics 13, 3547–3567, doi: 10.5194/acp-13-3547-2013.
Published
2020-12-28
How to Cite
Noro K., & Takenaka N. (2020). Post-depositional loss of nitrate and chloride in Antarctic snow by photolysis and sublimation: a field investigation. Polar Research, 39. https://doi.org/10.33265/polar.v39.5146
Section
Research Articles