The surface energy balance of Austre Lovénbreen, Svalbard, during the ablation period in 2014
Abstract
The ability to simulate the surface energy balance is key to studying land–atmosphere interactions; however, it remains a weakness in Arctic polar sciences. Based on the analysis of meteorological data from 1 June to 30 September 2014 from an automatic weather station on the glacier Austre Lovénbreen, near Ny–Ålesund, Svalbard, we established a surface energy balance model to simulate surface melt. The results reveal that the net shortwave radiation accounts for 87% (39 W m–2) of the energy sources, and is controlled by cloud cover and surface albedo. The sensible heat equals 6 W m–2 and is a continuous energy source at the glacier surface. Net longwave radiation and latent heat account for 31% and 5% of heat sinks, respectively. The simulated summer mass balance equals –793 mm w.e., agreeing well with the observation by an ultrasonic ranger.
Downloads
References
Aas K.S., Berntsen T.K., Boike J., Etzelmüller B., Kristjánsson J.E., Maturilli M., Schuler T.V., Stordal F. & Westermann S. 2015. A comparison between simulated and observed surface energy balance at the Svalbard archipelago. Journal of Applied Meteorology and Climatology 54, 1102–1119, doi: 10.1175/JAMC-D-14-0080.1.
Ai S.T., Ding X., An J.C., Lin G.B., Wang Z.M. & Yan M. 2019. Discovery of the fastest ice flow along the central flow line of Austre Lovénbreen, a poly-thermal valley glacier in Svalbard. Remote Sensing 11, article no. 1488. doi: 10.3390/rs11121488.
Ai S.T., Wang Z.M., E D.C. & Yan M. 2012. Surface movement research of Arctic glaciers using GPS method. Geomatics and Information Science of Wuhan University 37, 1337–1340, doi: 10.1007/s11783-011-0280-z.
Arnold N.S. & Rees W.G. 2003. Self-similarity in glacier surface characteristics. Journal of Glaciology 49, 547–554, doi: 10.3189/172756503781830368.
Arnold N.S., Rees W.G., Hodson A.J. & Kohler J. 2006. Topographic controls on the surface energy balance of a High Arctic valley glacier. Journal of Geophysical Research—Earth Surface 111, F02011, doi: 10.1029/2005JF000426.
Beesley J.A. 2000. Estimating the effect of clouds on the Arctic surface energy budget. Journal of Geophysical Research—Atmospheres 105, 10103–10117, doi: 10.1029/2000jd900043.
Beljaars A.C.M. & Holtslag A.A.M. 1991. Flux parameterization over land surfaces for atmospheric models. Journal of Applied Meteorology 30, 327–341, doi: 10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2.
Bernard E., Friedt J.M., Schiavone S., Tolle F. & Griselin M. 2018. Assessment of periglacial response to increased runoff: an Arctic hydrosystem bears witness. Land Degradation and Development 29, 3709–3720, doi: 10.1002/ldr.3099.
Boike J., Roth K. & Ippisch O. 2003. Seasonal snow cover on frozen ground: energy balance calculations of a permafrost site near Ny‐Ålesund, Spitsbergen. Journal of Geophysical Research—Atmospheres 108, article no. 8163, doi: 10.1029/2001jd000939.
Bougamont M., Bamber J.L. & Greuell W. 2005. A surface mass balance model for the Greenland Ice Sheet. Journal of Geophysical Research—Earth Surface 110, F04018, doi: 10.1029/2005JF000348.
Businger J.A., Wyngaard J.C., Izumi Y. & Bradley E.F. 1971. Flux-profile relationships in the atmospheric surface layer. Journal of the Atmospheric Sciences 28, 181–189, doi: 10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.
Chechin D.G., Makhotina I.A., Lüpkes C. & Makshtas A.P. 2019. Effect of wind speed and leads on clear-sky cooling over Arctic sea ice during polar night. Journal of the Atmospheric Sciences 76, 2481–2503, doi: 10.1175/JAS-D-18-0277.1.
Chen J.Z., Qin X., Kang S.C., Du W.T., Sun W.J. & Liu Y.S. 2018. Effects of clouds on surface melting of Laohugou glacier No. 12, western Qilian Mountains, China. Journal of Glaciology 64, 89–99, doi: 10.1017/jog.2017.82.
Conway J.P. & Cullen N.J. 2016.Cloud effects on surface energy and mass balance in the ablation area of Brewster Glacier, New Zealand. The Cryosphere 10, 975–1019, doi: 10.5194/tc-10-313-2016.
Cristóbal J., Prakash A., Anderson M.C., Kustas W.P., Euskirchen E.S. & Kane D.L. 2017. Estimation of surface energy fluxes in the Arctic tundra using the remote sensing thermal-based two-source energy balance model. Hydrology and Earth System Sciences 21, 1339–1358, doi: 10.5194/hess-21-1339-2017.
Deng H.B., Lu L.H. & Bian L.G. 2006. Surface radiation characteristics at Ny-Ålesund over the Arctic tundra area. Chinese Journal of Polar Research 18, 254–264, doi: 10.1109/TPSD.2006.5507455.
Ding M.H., Agrawal A., Heil P. & Yang D.Y. 2019. Surface energy balance on the Antarctic plateau as measured with an automatic weather station during 2014. Advances in Polar Science 30, 93–105, doi: 10.13679/j.advps.2018.0050.
Ding M.H., Wang S.J. & Sun W.J. 2018. Decadal climate change in Ny-Ålesund, Svalbard, a representative area of the Arctic. Condensed Matter 3, article no. 12, doi: 10.3390/condmat3020012.
Ding M.H., Yang D.Y., Van den Broeke M.R., Allison I., Xiao C.D., Qin D.H. & Huai B.J. 2020. The surface energy balance at Panda 1 Station, Princess Elizabeth Land: a typical katabatic wind region in East Antarctica. Journal of Geophysical Research—Atmospheres 125, e2019JD030378, doi: 10.1029/2019JD030378.
Dou T.F., Du Z.H., Li S.T., Zhang Y.L., Zhang Q., Hao M.J., Li C.J., Tian B., Ding M.H. & Xiao C.D. 2019. Brief communication: An alternative method for estimating the scavenging efficiency of black carbon by meltwater over sea ice. The Cryosphere 13, 3309–3316, doi: 10.5194/tc-2019-147.
Dou T.H., Xiao C.D., Liu J.P., Han W., Du Z.H., Mahoney A.R. & Jones J. 2019. A key factor initiating surface ablation of Arctic sea ice: earlier and increasing liquid precipitation. The Cryosphere 13, 1233–1246, doi: 10.5194/tc-13-1233-2019.
Dürr B. & Philipona R. 2004. Automatic cloud amount detection by surface longwave downward radiation measurements. Journal of Geophysical Research—Atmospheres 109, D05201, doi: org/10.1029/2003JD004182.
Favier V., Wagnon P., Chazarin J.P., Maisincho L. & Coudrain A. 2004. One-year measurements of surface heat budget on the ablation zone of Antezana Glacier 15, Ecuadorian Andes. Journal of Geophysical Research—Atmospheres 109, D18105, doi: 10.1029/2003JD004359.
Franco B., Fettweis X. & Erpicum M. 2013. Future projections of the Greenland Ice Sheet energy balance driving the surface melt. The Cryosphere 7, 1–18, doi: 10.5194/tc-7-1-2013.
Hanna E., Huybrechts P., Steffen K., Cappelen J., Huff R., Shuman C., Irvine-Fynn T., Wise S. & Griffiths M. 2008. Increased runoff from melt from the Greenland Ice Sheet: a response to global warming. Journal of Climate 21, 331–341, doi: 10.1175/2007JCLI1964.1.
Harstveit K. 1984. Snowmelt modelling and energy exchange between the atmosphere and a melting snow cover. Scientific Report 4. Bergen: Geophysical Institute, Meteorological Division, University of Bergen.
Hock R. 2005. Glacier melt: a review of processes and their modelling. Progress in Physical Geography 29, 362–391, doi: 10.1191/0309133305pp453ra.
Huai B.J., Van den Broeke M.R. & Reijmer C. H. 2020. Long-term surface energy balance of the western Greenland Ice Sheet and the role of large-scale circulation variability. The Cryosphere 14, 4181–4199, doi: 10.5194/tc-2020-138.
Jiang X., Wang N.L., He J.Q., Wu X.B. & Song G.J. 2010. A distributed surface energy and mass balance model and its application to a mountain glacier in China. Chinese Science Bulletin 55, 2079–2087, doi: 10.1007/s11434-010-3068-9.
IPCC (Intergovernmental Panel on Climate Change) 2019. Summary for policymakers. In H.-O. Pörtneret al. (eds.): Special report on the ocean and cryosphere in a changing climate. Accessed on the internet at https://www.ipcc.ch/srocc/chapter/summary-for-policymakers/ on 10 November 2021.
Karner F., Obleitner F., Krismer T., Kohler J. & Greuell W. 2013. A decade of energy and mass balance investigations on the glacier Kongsvegen, Svalbard. Journal of Geophysical Research—Atmospheres 118, 3986–4000, doi: 10.1029/2012JD018342.
Klok E.L. & Oerlemans J. 2002. Model study of the spatial distribution of the energy and mass balance of Morteratschgletscher, Switzerland. Journal of Glaciology 48, 505–518.
Klok E.J., Nolan M. & Van den Broeke M.R. 2005. Analysis of meteorological data and the surface energy balance of McCall Glacier, Alaska, USA. Journal of Glaciology 51, 451–461, doi: 10.3189/172756505781829241.
Köhler A., Nuth C. Weidle C., Gibbons S.J. & Schweitzer J. 2015. Dynamic glacier activity revealed through passive regional seismic monitoring on Spitsbergen, Svalbard. Polar Research 34, article no. 26178, doi: 10.3402/polar.v34.26178.
Kohler J., Nordli Ø., Brandt O., Isaksson E., Pohjola V., Martma T. & Aas H.F. 2002. Svalbard temperature and precipitation, late 19th century to the present. Final report on ACIA-funded project. Accessed on the internet at https://notendur.hi.is/oi/AG-326%202006%20readings/Holocene%20readings/Kohler%20et%20al%20Svalbard%20climate.pdf on 12 October 2021.
König M., Nuth C., Kohler J., Moholdt G. & Pettersen R. 2014. A digital glacier database for Svalbard. In J.S. Kargelet al. (eds.): Global land ice measurements from space. Pp. 229–239. Cham, Switzerland: Springer.
Kuhn M. 2011. The microclimate of valley glaciers. Journal of -Glaciology 57, 1173–1174, doi: 10.3189/002214311798843313.
Kupfer H., Herber A. & König-Langlo G. 2006. Radiation measurements and synoptic observations at Ny-Ålesund, Svalbard. Bremerhaven: Alfred Wegener Institute for Polar and Marine Research.
Liston G.E. & Elder K. 2006. A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). Journal of Hydrometeorology 7, 217–234, doi: 10.1175/JHM486.1.
Louis J.F., Tiedtke M. & Geleyn J.F. 1982. A short history of the operational PBL-parameterization at ECMWF. Accessed on the internet at https://www.ecmwf.int/node/10845 on 12 October 2021.
Ma Y.F., Bia L.G., Xiao C.D. & Dou T.F. 2011. Characteristics of near surface turbulent parameters along the traverse route from Zhongshan Station to Dome A, East Antarctic. Chinese Journal of Geophysics 54, 1960–1971, doi: 10.3969/j.issn.00015733.2011.08.003.
Marlin C., Tolle F., Griselin M., Bernard E., Saintenoy A., Quenet M. & Friedt J.M. 2017. Change in geometry of a High Arctic glacier from 1948 to 2013 (Austre Lovénbreen, Svalbard). Geografiska Annaler Series A 99, 115–138, doi: 10.1080/04353676.2017.1285203.
Maturilli M., Herber A. & König-Langlo G. 2012. Climatology and time series of surface meteorology in Ny-Ålesund, Svalbard. Earth System Science Data 5, 155–163, doi: 10.5194/essdd-5-1057-2012.
Midgley N.G., Cook S.J., Graham D.J. & Tonkin T.N. 2013. Origin, evolution and dynamic context of a neoglacial lateral–frontal moraine at Austre Lovénbreen, Svalbard. Geomorphology 198, 96–106, doi: 10.1016/j.geomorph.2013.05.017.
Mölg T. & Hardy D.R. 2004. Ablation and associated energy balance of a horizontal glacier surface on Kilimanjaro. Journal of Geophysical Research—Atmospheres 109, D16104. doi: 10.1029/2003jd004338.
Nakabayashi H., Kodama Y., Takeuchi Y., Ozeki T. & Ishikawa N. 1996. Characteristics of heat balance during the snowmelt season in Ny-Ålesund, Spitsbergen Island. Memoirs of National Institute of Polar Research, Spec. Issue, 51, 255–266.
Nakamura N. & Oort A.H. 1988. Atmospheric heat budgets of the polar regions. Journal of Geophysical Research—Atmospheres 93, 9510–9524, doi: 10.1029/JD093iD08p09510.
Nash J.E. & Sutcliffe J.V. 1970. River flow forecasting through conceptual models part I—a discussion of principles. Journal of Hydrology 10, 282–290, doi: 10.1016/0022-1694(70)90255-6.
Nordli Ø. & Kohler J. 2004. The early 20th century warming. Daily observations at Grønfjorden and Longyearbyen on Spitsbergen. 2nd edn. Klima 12/03. Oslo: Norwegian Meteorological Institute.
Nordli Ø., Przybylak R., Ogilvie A.E. & Isaksen K. 2014. Long-term temperature trends and variability on Spitsbergen: the extended Svalbard Airport temperature series, 1898–2012. Polar Research 33, article no. 21349, doi: 10.3402/polar.v33.21349.
Nuth C., Moholdt G., Kohler J., Hagen J.O. & Kääb A. 2010. Svalbard glacier elevation changes and contribution to sea level rise. Journal of Geophysical Research—Earth Surface 115, F01008, doi: 10.1029/2008JF001223.
Oerlemans J., Giesen R.H. & Van den Broek M.R. 2009. Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland). Journal of Glaciology 55, 729–736, doi: 10.3189/002214309789470969.
Oerlemans J., Jania J. & Kolondra L. 2011. Application of a minimal glacier model to Hansbreen, Svalbard. The Cryosphere 5, 1–11, doi: 10.5194/tc-5-1-2011.
Oerlemans J. & Klok E.J. 2002. Energy balance of a glacier surface: analysis of automatic weather station data from the Morteratschgletscher, Switzerland. Arctic, Antarctic, and Alpine Research 34, 477–485, doi: 10.1080/15230430.2002.12003519.
Ohmura A. 2012. Present status and variations in the Arctic energy balance. Polar Science 6, 5–13, doi: 10.1016/j.polar.2012.03.003.
Oke T.R. 1987. Boundary layer climates. 2nd edn. New York: Routledge.
Østby T.I., Schuler T.V., Hagen J.O., Hock R., Kohler J. & Reijmer C.H. 2017. Diagnosing the decline in climatic mass balance of glaciers in Svalbard over 1957–2014. The Cryosphere 11, 191–215, doi: 10.5194/tc-11-191-2017.
Pramanik A., Kohler J., Schuler T.V., Van Pelt W. & Cohen L. 2019. Comparison of snow accumulation events on two High Arctic glaciers to model-derived and observed precipitation. Polar Research 38, article no. 3364, doi: 10.33265/polar.v38.3364.
Radić V. & Hock R. 2014. Glaciers in the Earth’s hydrological cycle: assessments of glacier mass and runoff changes on global and regional scales. Surveys in Geophysics 35, 813–837, doi: 10.1007/s10712-013-9262-y.
Raschke E. & Ohmura A. 2005. Radiation budget of the climate system (Chapter 4). Observed Global Climate. Group V: Geophysics, Landolt-Börnstein Numerical and Functional Relationships in Science and Technology, New Series, Vol. 6, 4–1.
Saintenoy A., Friedt J. M., Tolle F., Bernard E., Laffly D., Marlin C. & Griselin M. 2011. High density coverage investigation of the Austre Lovénbreen (Svalbard) using ground penetrating radar. In: 2011 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR). Doi: 10.1109/IWAGPR.2011.5963894. New York: Institute of Electrical and Electronics Engineers.
Sauter T. & Obleitner F. 2015. Assessing the uncertainty of glacier mass-balance simulations in the European Arctic based on variance decomposition. Geoscientific Model Development 8, 3911–3928, doi: 10.5194/gmd-8-3911-2015.
Screen J.A. & Simmonds I. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337, doi: 10.1038/nature09051.
Sedlar J., Tjernström M., Mauritsen T., Shupe M.D., Brooks I.M., Persson P.O.G., Birch C.E., Leck C., Sirevaag A. & Nicolaus M. 2011. A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing. Climate Dynamics 37, 1643–1660, doi: 10.1007/s00382-010-0937-5.
Serreze M.C., Barrett A.P., Slater A.G., Steele M., Zhang J. & Trenberth K.E. 2007. The large‐scale energy budget of the Arctic. Journal of Geophysical Research—Atmospheres 112, D11122, doi: 10.1029/2006JD00823.
Serreze M.C. & Barry R.G. 2011. Processes and impacts of Arctic amplification: a research synthesis. Global and Planetary Change 77, 85–96, doi: 10.1016/j.gloplacha.2011.03.004.
Sheng P.X. 2013. Atmospheric physics. Beijing: Peking University Press.
Sun W.J., Qin X., Wang Y.T., Chen J.Z., Du W.T., Zhang T. & Huai B.J. 2018. The response of surface mass and energy balance of a continental glacier to climate variability, western Qilian Mountains, China. Climate Dynamics 50, 3557–3570, doi: 10.1007/s00382-017-3823-6.
Sun W.J., Yan M., Ai S.T., Zhu G.C., Wang Z.M., Liu L.B., Xu Y.T. & Ren J.W. 2016. Ice temperature characteristics of the Austre Lovenbreen glacier in Ny-Ålesund, Arctic region. Geomatics and Information Science of Wuhan University 36, 676–678, doi: 10.13203/j.whugis20150302.
van den Broeke M., Reijmer C., van As D. & Boot W. 2006. Daily cycle of the surface energy balance in Antarctica and the influence of clouds. International Journal of Climatology 26, 1587–1605, doi: 10.1002/joc.1323.
van den Broeke M., Reijmer C. & van de Wal R. 2004a. A study of the surface mass balance in Dronning Maud Land, Antarctica, using automatic weather stations. Journal of Glaciology 50, 565–582, doi: 10.3189/172756504781829756.
van den Broeke M., Reijmer C. & van de Wal R. 2004b. Surface radiation balance in Antarctica as measured with automatic weather stations. Journal of Geophysical Research—Atmospheres 109, 715–728, doi: 10.1029/2003jd004394.
van den Broeke M., Smeets P., Ettema J. & Munneke P.K. 2008. Surface radiation balance in the ablation zone of the West Greenland Ice Sheet. Journal of Geophysical Research—Atmospheres 113, article no. D13105, doi: 10.1029/2007JD009283.
van den Broeke M., Smeets P., Ettema J., van der Veen C., van de Wal R. & Oerlemans J. 2008. Partitioning of melt energy and meltwater fluxes in the ablation zone of the West Greenland Ice Sheet. The Cryosphere 2, 179–189, doi: 10.5194/tcd-2-711-2008.
van den Broeke M.R, Smeets C.J.P.P. & van de Wal R.S.W. 2011. The seasonal cycle and interannual variability of surface energy balance and melt in the ablation zone of the West Greenland Ice Sheet. The Cryosphere 5, 377–390, doi: 10.5194/tc-5-377-2011.
van den Broeke M., van As D., Reijmer C. & van de Wal R. 2004. Assessing and improving the quality of unattended radiation observations in Antarctica. Journal of Atmospheric and Oceanic Technology 21, 1417–1431, doi: 10.1175/1520-0426(2004)0212.0.CO;2.
van den Broeke M., van As D., Reijmer C. & van de Wal R. 2005. Sensible heat exchange at the Antarctic snow surface: a study with automatic weather stations. International Journal of Climatology 25, 1081–110, doi: 10.1002/joc.1152.
van Pelt W. & Kohler J. 2015. Modelling the long-term mass balance and firn evolution of glaciers around Kongsfjorden, Svalbard. Journal of Glaciology 61, 731–744. doi: 10.3189/2015JoG14J223.
van Pelt W., Pohjola V., Pettersson R., Marchenko S., Kohler J., Luks B., Hagen J.O., Schuler T.V., Dunse T., Noel B. & Reijmer C. 2019. A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018). The Cryosphere 13, 2259–2280, doi: 10.5194/tc-2019-53.
Wagnon P., Sicart J.E., Berthier E. & Chazarin J.P. 2003. Wintertime high-altitude surface energy balance of a Bolivian glacier, Illimani, 6340 m above sea level. Journal of Geophysical Research—Atmospheres 108, article no. 4177, doi: 10.1029/2002jd002088.
Wang Z.M., Lin G.B. & Ai S.T. 2019. How long will an Arctic mountain glacier survive? A case study of Austre Lovénbreen, Svalbard. Polar Research 38, article no. 3519, doi: 10.33265/polar.v38.3519.
Wei T., Ding M.H., Wu B.Y., Lu C.G. & Wang S.J. 2016. Variations in temperature‐related extreme events (1975–2014) in Ny‐Ålesund, Svalbard. Atmospheric Science Letters 17, 102–108, doi: 10.1002/asl.632.
Westermann S., Lüers J., Langer M., Piel K. & Boike J. 2009. The annual surface energy budget of a High-Arctic permafrost site on Svalbard, Norway. Cryosphere Discussions 2, 245–263, doi: 10.5194/tcd-3-631-2009.
Yamanouchi T. 2018. Arctic warming by cloud radiation enhanced by moist air intrusion observed at Ny-Ålesund, Svalbard. Polar Science 21, 110–116, doi: 10.1016/j.polar.2018.10.009.
Yang W., Guo X.F., Yao T.D., Yang K., Zhao L., Li S.H. & Zhu M.L. 2011. Summertime surface energy budget and ablation modeling in the ablation zone of a maritime Tibetan glacier. Journal of Geophysical Research—Atmospheres 116, D14116, doi: 10.1029/2010JD015183.
Yang W., Guo X.F., Yao T.D., Zhu M.L. & Wang Y.J. 2016. Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations. Climate Dynamics 47, 805–815, doi: 10.1007/s00382-015-2872-y.
Zhang G.S., Kang S.C., Fujita K., Huintjes E., Xu J.Q., Yamazaki T., Haginoya S., Wei Y., Scherer D., Schneider C. & Yao T.D. 2013. Energy and mass balance of Zhadang glacier surface, central Tibetan Plateau. Journal of Glaciology 59, 137–148, doi: 10.3189/2013JoG12J152.
Zhang R.D., Wang H.L., Fu Q., Rasch P.J. & Wang X.J. 2019. Unraveling driving forces explaining significant reduction in satellite-inferred Arctic surface albedo since the 1980s. Proceedings of the National Academy of Sciences of the United States of America 116, 23947–23953, doi: 10.1073/pnas.1915258116.
Zhang Y.L., Kang S.C., Cong Z.Y., Schmale J., Sprenger M., Li C.L., Yang W., Gao T.G., Sillanpaa M., Li X.F., Liu Y.J., Chen P.F. & Zhang X.L. 2017. Light-absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan Plateau. Journal of Geophysical Research—Atmospheres 122, 6915–6933, doi: 10.1002/2016JD026397.
Authors contributing to Polar Research retain copyright of their work, with first publication rights granted to the Norwegian Polar Institute. Read the journal's full Copyright- and Licensing Policy.