Aggregations of foraging black guillemots (Cepphus grylle) at a sea-ice edge in front of a tidewater glacier

  • Øystein Varpe Department of Biological Sciences, University of Bergen, Bergen, Norway; Norwegian Institute for Nature Research, Bergen, Norway; & Norwegian Polar Institute, Fram Centre, Tromsø, Norway
  • Geir W. Gabrielsen Norwegian Polar Institute, Fram Centre, Tromsø, Norway; & The University Centre in Svalbard, Longyearbyen, Norway
Keywords: Alcidae, coastal ecology, marine-terminating glacier, cryosphere, Arctic, estuarine circulation


Seabirds in cold biomes sometimes aggregate near glacier fronts and at sea-ice edges to forage. In this note, we report on large aggregations of black guillemots (Cepphus grylle) at the edge of sea ice in front of the tidewater glacier Kongsbreen (Kongsfjorden, Svalbard). During several days in the second half of June 2011, we observed 49–155 individuals of black guillemots at this ice edge. They foraged actively, and many of the dives were directed underneath the sea ice. The outflow of glacial meltwater and resulting upwelling generated opportunities for the black guillemots to feed, likely on zooplankton or fish. The black guillemots used the sea ice as a resting platform between dives or diving sessions, and whilst on the ice, they interacted socially. On our last visit, the sea ice was gone, and the black guillemots had left the bay. At the neighbouring tidewater glacier Kronebreen, there was no sea ice connected to the glacier. Surface-feeding seabirds, particularly black-legged kittiwakes (Rissa tridactyla), were numerous at the plumes generated by meltwater from Kronebreen. Black guillemots were not seen at these plumes, but some individuals were seen scattered in the fjord system. Our observations add to the natural history of black guillemots and enhance our knowledge of ecological interactions and seabird habitat use shaped by tidewater glaciers.


Download data is not yet available.


Aksnes D.L. & Utne A.C.W. 1997. A revised model of visual range in fish. Sarsia 82, 137–147, doi: 10.1080/00364827.1997.10413647.

Anker-Nilssen T., Bakken V., Strøm H., Golovkin A.N., Bianki V.V. & Tatarinkova I.P. 2000. The status of marine birds breeding in the Barents Sea area. Norwegian Polar Institute Report Series 113. Tromsø: Norwegian Polar Institute.

Arimitsu M.L., Piatt J.F., Madison E.N., Conaway J.S. & Hillgruber N. 2012. Oceanographic gradients and seabird prey community dynamics in glacial fjords. Fisheries Oceanography 21, 148–169, doi: 10.1111/j.1365-2419.2012.00616.x.

Berge J., Daase M., Renaud P.E., Ambrose W.G., Jr., Darnis G., Last K.S., Leu E., Cohen J.H., Johnsen G., Moline M.A., Cottier F., Varpe Ø., Shunatova N., Bałazy P., Morata N., Massabuau J.-C., Falk-Petersen S., Kosobokova K., Hoppe C.J.M., Węsławski J.M., Kukliński P., Legeżyńska J., Nikishina D., Cusa M., Kędra M., Włodarska-Kowalczuk M., Vogedes D., Camus L., Tran D., Michaud E., Gabrielsen T.M., Granovitch A., Gonchar A., Krapp R. & Callesen T.A. 2015. Unexpected levels of biological activity during the polar night offer new perspectives on a warming Arctic. Current Biology 25, 2555–2561, doi: 10.1016/j.cub.2015.08.024.

Bertrand P., Bêty J., Yoccoz N.G., Fortin M.-J., Strøm H., Steen H., Kohler J., Harris S.M., Patrick S.C., Chastel O., Blévin P., Hop H., Moholdt G., Maton J. & Descamps S. 2021. Fine-scale spatial segregation in a pelagic seabird driven by differential use of tidewater glacier fronts. Scientific Reports 11, article no. 22109, doi: 10.1038/s41598-021-01404-1.

Bradstreet M.S.W. 1979. Thick-billed murres and black guillemots in the Barrow Strait area, N.W.T., during spring: distribution and habitat use. Canadian Journal of Zoology 57, 1789–1802, doi: 10.1139/z79-233.

Bradstreet M.S.W. 1980. Thick-billed murres and black guillemots in the Barrow Strait area, NWT, during spring: diets and food availability along ice edges. Canadian Journal of Zoology 58, 2120–2140, doi: 10.1139/z80-292.

Cauvy-Fraunié S. & Dangles O. 2019. A global synthesis of biodiversity responses to glacier retreat. Nature Ecology & Evolution 3, 1675–1685, doi: 10.1038/s41559-019-1042-8.

Cramp S. (ed.) 1986. Handbook of the birds of Europe the Middle Ease and North Africa: the birds of the Western Palearctic. Volume IV: terns to woodpeckers. Oxford: Oxford University Press.

Crawford R.E. & Jorgenson J.K. 1993. Schooling behaviour of Arctic cod, Boreogadus saida, in relation to drifting pack ice. Environmental Biology of Fishes 36, 345–357, doi: 10.1007/BF00012412.

Day R.H. & Nigro D.A. 2000. Feeding ecology of Kittlitz’s and marbled murrelets in Prince William Sound, Alaska. Waterbirds 23, 1–14.

Day R.H., Nigro D.A. & Prichard A.K. 2000. At-sea habitat use by the Kittlitz’s murrelet Brachyramphus brevirostris in nearshore waters of Prince William Sound, Alaska. Marine Ornithology 28, 105–114.

de Vries J.D. & van Eerden M.R. 1995. Thermal conductance in aquatic birds in relation to the degree of water contact, body mass, and body fat: energetic implications of living in a strong cooling environment. Physiological Zoology 68, 1143–1163, doi: 10.1086/physzool.68.6.30163797.

Divoky G.J., Brown E. & Elliott K.H. 2021. Reduced seasonal sea ice and increased sea surface temperature change prey and foraging behaviour in an ice-obligate Arctic seabird, Mandt’s black guillemot (Cepphus -grylle mandtii). Polar Biology 44, 701–715, doi: 10.1007/s00300-021-02826-3.

Divoky G.J., Douglas D.C. & Stenhouse I.J. 2016. Arctic sea ice a major determinant in Mandt’s black guillemot movement and distribution during non-breeding season. Biology Letters 12, article no. 20160275, doi: 10.1098/rsbl.2016.0275.

Divoky G.J., Lukacs P.M. & Druckenmiller M.L. 2015. Effects of recent decreases in Arctic sea ice on an ice-associated marine bird. Progress in Oceanography 136, 151–161, doi: 10.1016/j.pocean.2015.05.010.

Duarte P., Sundfjord A., Meyer A., Hudson S.R., Spreen G. & Smedsrud L.H. 2020. Warm Atlantic Water explains observed sea ice melt rates north of Svalbard. Journal of Geophysical Research—Oceans 125, e2019JC015662, doi: 10.1029/2019JC015662.

Fretwell S.D. & Lucas H.L., Jr. 1970. On territorial behavior and other factors influencing habitat distribution in birds: I. Theoretical development. Acta Biotheoretica 19, 16–36, doi: 10.1007/BF01601953.

Gabrielsen G.W., Mehlum F. & Karlsen H.E. 1988. Thermoregulation in four species of Arctic seabirds. Journal of Comparative Physiology B 157, 703–708, doi: 10.1007/BF00691000.

Geyman E.C., van Pelt W.J.J., Maloof A.C., Aas H.F. & Kohler J. 2022. Historical glacier change on Svalbard predicts doubling of mass loss by 2100. Nature 601, 374–379, doi: 10.1038/s41586-021-04314-4.

Hartley C.H. & Fisher J. 1936. The marine foods of birds in an inland fjord region in west Spitsbergen: part 2. Birds. Journal of Animal Ecology 5, 370–389, doi: 10.2307/1041.

Hawkins P.A.J., Butler P.J., Woakes A.J. & Gabrielsen G.W. 1997. Heat increment of feeding in Brunnich’s guillemot Uria lomvia. Journal of Experimental Biology 200, 1757–1763, doi: 10.1242/jeb.200.12.1757.

Hop H. & Gjøsaeter H. 2013. Polar cod (Boreogadus saida) and capelin (Mallotus villosus) as key species in marine food webs of the Arctic and the Barents Sea. Marine Biology Research 9, 878–894, doi: 10.1080/17451000.2013.775458.

Houston A.I. & McNamara J.M. 1999. Models of adaptive behaviour. Cambridge: Cambridge University Press.

Langbehn T.J. & Varpe Ø. 2017. Sea-ice loss boosts visual search: fish foraging and changing pelagic interactions in polar oceans. Global Change Biology 23, 5318–5330, doi: 10.1111/gcb.13797.

Levin S.A. 1992. The problem of pattern and scale in ecology. Ecology 73, 1943–1967, doi: 10.2307/1941447.

Lønne O.J. & Gabrielsen G.W. 1992. Summer diet of seabirds feeding in sea-ice covered waters near Svalbard. Polar Biology 12, 685–692, doi: 10.1007/BF00238868.

Lydersen C., Assmy P., Falk-Petersen S., Kohler J., Kovacs K.M., Reigstad M., Steen H., Strøm H., Sundfjord A., Varpe Ø., Walczowski W., Weslawski J.M. & Zajaczkowski M. 2014. The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. Journal of Marine Systems 129, 452–471, doi: 10.1016/j.jmarsys.2013.09.006.

Lydersen C., Gjertz I. & Węsławski J.M. 1989. Stomach contents of autumn-feeding marine vertebrates from Hornsund, Svalbard. Polar Record 25, 107–114, doi: 10.1017/S0032247400010408.

McLaren P.L. & Renaud W.E. 1982. Seabird concentrations in late summer along the coasts of Devon and Ellesmere Island, NWT. Arctic 35, 112–117, doi: 10.14430/arctic2311.

Mehlum F. 1984. Konsentrasjoner av sjøfugl langs kanten av isbreer og utenfor breelver på Svalbard. (Concentrations of seabirds along the edges of glaciers and off glacial streams in Svalbard.) Fauna 37, 156–160.

Mehlum F. & Gabrielsen G.W. 1993. The diet of High‐Arctic seabirds in coastal and ice‐covered, pelagic areas near the Svalbard archipelago. Polar Research 12, 1–20, doi: 10.1111/j.1751-8369.1993.tb00417.x.

Mehlum F., Gabrielsen G.W. & Nagy K.A. 1993. Energy expenditure by black guillemots (Cepphus grylle) during chick-rearing. Colonial Waterbirds 16, 45-52, doi: 10.2307/1521555.

Nahrgang J., Varpe Ø., Korshunova E., Murzina S., Hallanger I.G., Vieweg I. & Berge J. 2014. Gender specific reproductive strategies of an Arctic key species (Boreogadus saida) and implications of climate change. PLoS One 9, e98452, doi: 10.1371/journal.pone.0098452.

Niizuma Y., Gabrielsen G.W., Sato K., Watanuki Y. & Naito Y. 2007. Brunnich’s guillemots (Uria lomvia) maintain high temperature in the body core during dives. Comparative Biochemistry and Physiology, Part A 147, 438–444, doi: 10.1016/j.cbpa.2007.01.014.

Nishizawa B., Kanna N., Abe Y., Ohashi Y., Sakakibara D., Asaji I., Sugiyama S., Yamaguchi A. & Watanuki Y. 2020. Contrasting assemblages of seabirds in the subglacial meltwater plume and oceanic water of Bowdoin Fjord, northwestern Greenland. ICES Journal of Marine Science 77, 711–720, doi: 10.1093/icesjms/fsz213.

Onarheim I.H., Eldevik T., Smedsrud L.H. & Stroeve J.C. 2018. Seasonal and regional manifestation of Arctic sea ice loss. Journal of Climate 31, 4917–4932, doi: 10.1175/jcli-d-17-0427.1.

Pavlova O., Gerland S. & Hop H. 2019. Changes in sea-ice extent and thickness in Kongsfjorden, Svalbard (2003–2016). In H. Hop & C. Wiencke (eds.): The ecosystem of Kongsfjorden, Svalbard. Pp. 105–136. Cham: Springer International Publishing.

Stempniewicz L., Goc M., Kidawa D., Urbański J., Hadwiczak M. & Zwolicki A. 2017. Marine birds and mammals foraging in the rapidly deglaciating Arctic fjord—numbers, distribution and habitat preferences. Climatic Change 140, 533–548, doi: 10.1007/s10584-016-1853-4.

Stephens D.W., Brown J.S. & Ydenberg R.C. 2007. Foraging: behaviour and ecology. Chicago, IL: University of Chicago Press.

Stott F.C. 1936. The marine foods of birds in an inland fjord region in west Spitsbergen: part 1. plankton and in shore benthos. Journal of Animal Ecology 5, 356–369, doi: 10.2307/1040.

Tarroux A., Cherel Y., Fauchald P., Kato A., Love O.P., Ropert-Coudert Y., Spreen G., Varpe Ø., Weimerskirch H., Yoccoz N.G., Zahn S. & Descamps S. 2020. Foraging tactics in dynamic sea-ice habitats affect individual state in a long-ranging seabird. Functional Ecology 34, 1839–1856, doi: 10.1111/1365-2435.13632.

Urbanski J.A., Stempniewicz L., Węsławski J.M., Dragańska-Deja K., Wochna A., Goc M. & Iliszko L. 2017. Subglacial discharges create fluctuating foraging hotspots for sea birds in tidewater glacier bays. Scientific Reports 7, article no. 43999, doi: 10.1038/srep43999.

Varpe Ø., Daase M. & Kristiansen T. 2015. A fish-eye view on the new Arctic lightscape. ICES Journal of Marine Science 72, 2532–2538, doi: 10.1093/icesjms/fsv129.

Węsławski J.M. & Legeżyńska J. 1998. Glaciers caused zooplankton mortality? Journal of Plankton Research 20, 1233–1240, doi: 10.1093/plankt/20.7.1233

Węsławski J.M., Pedersen G., Falk-Petersen S. & Poraziński K. 2000. Entrapment of macroplankton in an Arctic fjord basin, Kongsfjorden, Svalbard. Oceanologia 42, 57–69.
How to Cite
Varpe Øystein, & Gabrielsen G. W. (2022). Aggregations of foraging black guillemots (<em>Cepphus grylle</em&gt;) at a sea-ice edge in front of a tidewater glacier. Polar Research, 41.
Research Notes